| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/bitops.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt_utils.h" |
| #include "av1/encoder/tokenize.h" |
| |
| #define RD_THRESH_POW 1.25 |
| |
| #define RD_THRESH_MUL 4.40 |
| #define RDMULT_FROM_Q2_NUM 96 |
| #define RDMULT_FROM_Q2_DEN 32 |
| |
| // The baseline rd thresholds for breaking out of the rd loop for |
| // certain modes are assumed to be based on 8x8 blocks. |
| // This table is used to correct for block size. |
| // The factors here are << 2 (2 = x0.5, 32 = x8 etc). |
| static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { |
| 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16 |
| }; |
| |
| static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA] |
| [EXT_TX_SIZES] = { |
| { 1, 1, 1, 1 }, // unused |
| #if CONFIG_ATC_NEWTXSETS |
| { 1, 1, 1, 0 }, |
| #else |
| { 1, 1, 0, 0 }, |
| { 0, 0, 1, 0 }, |
| #endif // CONFIG_ATC_NEWTXSETS |
| }; |
| |
| static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER] |
| [EXT_TX_SIZES] = { |
| { 1, 1, 1, 1 }, // unused |
| { 1, 1, 0, 0 }, |
| { 0, 0, 1, 0 }, |
| { 0, 1, 1, 1 }, |
| }; |
| |
| static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA, |
| EXT_TX_SETS_INTER)] = { |
| { |
| // Intra |
| EXT_TX_SET_DCTONLY, |
| #if CONFIG_ATC_NEWTXSETS |
| EXT_NEW_TX_SET, |
| #else |
| EXT_TX_SET_DTT4_IDTX_1DDCT, |
| EXT_TX_SET_DTT4_IDTX, |
| #endif // CONFIG_ATC_NEWTXSETS |
| }, |
| { |
| // Inter |
| EXT_TX_SET_DCTONLY, |
| EXT_TX_SET_ALL16, |
| EXT_TX_SET_DTT9_IDTX_1DDCT, |
| EXT_TX_SET_DCT_IDTX, |
| }, |
| }; |
| void av1_fill_mode_rates(AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| ModeCosts *mode_costs, FRAME_CONTEXT *fc) { |
| int i, j; |
| for (int plane_index = (xd->tree_type == CHROMA_PART); |
| plane_index < PARTITION_STRUCTURE_NUM; plane_index++) { |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->partition_cost[plane_index][i], |
| fc->partition_cdf[plane_index][i], NULL); |
| } |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->partition_noext_cost[plane_index][i], |
| fc->partition_noext_cdf[plane_index][i], NULL); |
| } |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| for (int dir = 0; dir < NUM_LIMITED_PARTITION_PARENTS; dir++) { |
| av1_cost_tokens_from_cdf( |
| mode_costs->limited_partition_cost[plane_index][dir][i], |
| fc->limited_partition_cdf[plane_index][dir][i], NULL); |
| } |
| } |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| for (int dir = 0; dir < NUM_LIMITED_PARTITION_PARENTS; dir++) { |
| av1_cost_tokens_from_cdf( |
| mode_costs->limited_partition_noext_cost[plane_index][dir][i], |
| fc->limited_partition_noext_cdf[plane_index][dir][i], NULL); |
| } |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| for (i = 0; i < PARTITION_CONTEXTS_REC; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->partition_rec_cost[i], |
| fc->partition_rec_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->partition_middle_rec_cost[i], |
| fc->partition_middle_rec_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->partition_noext_rec_cost[i], |
| fc->partition_noext_rec_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->partition_middle_noext_rec_cost[i], |
| fc->partition_middle_noext_rec_cdf[i], NULL); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| if (cm->current_frame.skip_mode_info.skip_mode_flag) { |
| for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i], |
| fc->skip_mode_cdfs[i], NULL); |
| } |
| } |
| |
| for (i = 0; i < SKIP_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i], |
| fc->skip_txfm_cdfs[i], NULL); |
| } |
| |
| av1_cost_tokens_from_cdf(mode_costs->mrl_index_cost, fc->mrl_index_cdf, NULL); |
| |
| for (i = 0; i < FSC_MODE_CONTEXTS; ++i) { |
| for (j = 0; j < FSC_BSIZE_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->fsc_cost[i][j], |
| fc->fsc_mode_cdf[i][j], NULL); |
| } |
| } |
| |
| #if CONFIG_IMPROVED_CFL |
| av1_cost_tokens_from_cdf(mode_costs->cfl_index_cost, fc->cfl_index_cdf, NULL); |
| #endif |
| #if CONFIG_AIMC |
| av1_cost_tokens_from_cdf(mode_costs->y_primary_flag_cost, fc->y_mode_set_cdf, |
| NULL); |
| for (i = 0; i < Y_MODE_CONTEXTS; ++i) { |
| // y mode costs |
| av1_cost_tokens_from_cdf(mode_costs->y_first_mode_costs[i], |
| fc->y_mode_idx_cdf_0[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->y_second_mode_costs[i], |
| fc->y_mode_idx_cdf_1[i], NULL); |
| } |
| #else |
| for (i = 0; i < KF_MODE_CONTEXTS; ++i) |
| for (j = 0; j < KF_MODE_CONTEXTS; ++j) |
| av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j], |
| fc->kf_y_cdf[i][j], NULL); |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) |
| av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i], |
| NULL); |
| #endif // CONFIG_AIMC |
| |
| for (i = 0; i < CFL_ALLOWED_TYPES; ++i) |
| #if CONFIG_AIMC |
| for (j = 0; j < UV_MODE_CONTEXTS; ++j) |
| #else |
| for (j = 0; j < INTRA_MODES; ++j) |
| #endif |
| av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j], |
| fc->uv_mode_cdf[i][j], NULL); |
| |
| av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost, |
| fc->filter_intra_mode_cdf, NULL); |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| if (av1_filter_intra_allowed_bsize(cm, i)) |
| av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i], |
| fc->filter_intra_cdfs[i], NULL); |
| } |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i], |
| fc->switchable_interp_cdf[i], NULL); |
| |
| for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i], |
| fc->palette_y_size_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i], |
| fc->palette_uv_size_cdf[i], NULL); |
| for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j], |
| fc->palette_y_mode_cdf[i][j], NULL); |
| } |
| } |
| |
| for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i], |
| fc->palette_uv_mode_cdf[i], NULL); |
| } |
| |
| for (i = 0; i < PALETTE_SIZES; ++i) { |
| for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j], |
| fc->palette_y_color_index_cdf[i][j], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j], |
| fc->palette_uv_color_index_cdf[i][j], NULL); |
| } |
| } |
| |
| #if CONFIG_NEW_COLOR_MAP_CODING |
| for (i = 0; i < PALETTE_ROW_FLAG_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->palette_y_row_flag_cost[i], |
| fc->identity_row_cdf_y[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->palette_uv_row_flag_cost[i], |
| fc->identity_row_cdf_uv[i], NULL); |
| } |
| #endif |
| int sign_cost[CFL_JOINT_SIGNS]; |
| av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); |
| for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { |
| int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U]; |
| int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V]; |
| if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) { |
| memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); |
| } else { |
| const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); |
| } |
| if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) { |
| memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); |
| } else { |
| const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); |
| } |
| for (int u = 0; u < CFL_ALPHABET_SIZE; u++) |
| cost_u[u] += sign_cost[joint_sign]; |
| } |
| |
| #if CONFIG_NEW_TX_PARTITION |
| av1_cost_tokens_from_cdf(mode_costs->intra_2way_txfm_partition_cost, |
| fc->intra_2way_txfm_partition_cdf, NULL); |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| // Square |
| av1_cost_tokens_from_cdf(mode_costs->intra_4way_txfm_partition_cost[0][i], |
| fc->intra_4way_txfm_partition_cdf[0][i], NULL); |
| // Rectangular |
| av1_cost_tokens_from_cdf(mode_costs->intra_4way_txfm_partition_cost[1][i], |
| fc->intra_4way_txfm_partition_cdf[1][i], NULL); |
| } |
| #else |
| for (i = 0; i < MAX_TX_CATS; ++i) |
| for (j = 0; j < TX_SIZE_CONTEXTS; ++j) |
| av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j], |
| fc->tx_size_cdf[i][j], NULL); |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| #if CONFIG_NEW_TX_PARTITION |
| av1_cost_tokens_from_cdf(mode_costs->inter_2way_txfm_partition_cost, |
| fc->inter_2way_txfm_partition_cdf, NULL); |
| for (i = 0; i < TXFM_PARTITION_INTER_CONTEXTS; ++i) { |
| // Square |
| av1_cost_tokens_from_cdf(mode_costs->inter_4way_txfm_partition_cost[0][i], |
| fc->inter_4way_txfm_partition_cdf[0][i], NULL); |
| // Rectangular |
| av1_cost_tokens_from_cdf(mode_costs->inter_4way_txfm_partition_cost[1][i], |
| fc->inter_4way_txfm_partition_cdf[1][i], NULL); |
| #else |
| for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i], |
| fc->txfm_partition_cdf[i], NULL); |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| int s; |
| for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
| #if CONFIG_ATC_REDUCED_TXSET |
| if (cm->features.reduced_tx_set_used || |
| use_inter_ext_tx_for_txsize[s][i]) { |
| #else |
| if (use_inter_ext_tx_for_txsize[s][i]) { |
| #endif // CONFIG_ATC_REDUCED_TXSET |
| av1_cost_tokens_from_cdf( |
| mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], |
| av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); |
| } |
| } |
| for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
| #if CONFIG_ATC_NEWTXSETS |
| int tx_set_type = av1_ext_tx_set_idx_to_type[0][s]; |
| #if CONFIG_ATC_REDUCED_TXSET |
| const int cdf_offset = cm->features.reduced_tx_set_used ? 1 : 0; |
| #endif // CONFIG_ATC_REDUCED_TXSET |
| #endif // CONFIG_ATC_NEWTXSETS |
| if (use_intra_ext_tx_for_txsize[s][i]) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| av1_cost_tokens_from_cdf( |
| #if CONFIG_ATC_NEWTXSETS |
| mode_costs->intra_tx_type_costs[s][i][j], |
| #if CONFIG_ATC_REDUCED_TXSET |
| fc->intra_ext_tx_cdf[s + cdf_offset][i][j], |
| #else |
| fc->intra_ext_tx_cdf[s][i][j], |
| #endif |
| tx_set_type == EXT_NEW_TX_SET |
| ? av1_md_idx2type[av1_size_class[i]][av1_md_class[j]] |
| : av1_ext_tx_inv[tx_set_type]); |
| #else |
| mode_costs->intra_tx_type_costs[s][i][j], |
| fc->intra_ext_tx_cdf[s][i][j], |
| av1_ext_tx_inv_intra[av1_ext_tx_set_idx_to_type[0][s]]); |
| #endif // CONFIG_ATC_NEWTXSETS |
| } |
| } |
| } |
| } |
| #if !CONFIG_AIMC |
| for (i = 0; i < PARTITION_STRUCTURE_NUM; ++i) { |
| for (j = 0; j < DIRECTIONAL_MODES; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i][j], |
| fc->angle_delta_cdf[i][j], NULL); |
| } |
| } |
| |
| #endif // !CONFIG_AIMC |
| #if CONFIG_NEW_CONTEXT_MODELING |
| for (i = 0; i < INTRABC_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->intrabc_cost[i], fc->intrabc_cdf[i], |
| NULL); |
| } |
| #else |
| av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL); |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| #if CONFIG_BVP_IMPROVEMENT |
| av1_cost_tokens_from_cdf(mode_costs->intrabc_mode_cost, fc->intrabc_mode_cdf, |
| NULL); |
| for (i = 0; i < MAX_REF_BV_STACK_SIZE - 1; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->intrabc_drl_idx_cost[i], |
| fc->intrabc_drl_idx_cdf[i], NULL); |
| } |
| #endif // CONFIG_BVP_IMPROVEMENT |
| |
| for (i = 0; i < TX_SIZES; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->stx_flag_cost[i], fc->stx_cdf[i], |
| NULL); |
| } |
| |
| #if CONFIG_CROSS_CHROMA_TX |
| for (i = 0; i < EXT_TX_SIZES; ++i) { |
| for (j = 0; j < CCTX_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->cctx_type_cost[i][j], |
| fc->cctx_type_cdf[i][j], NULL); |
| } |
| } |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| if (!frame_is_intra_only(cm)) { |
| for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i], |
| fc->comp_inter_cdf[i], NULL); |
| } |
| |
| #if CONFIG_TIP |
| for (i = 0; i < TIP_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->tip_cost[i], fc->tip_cdf[i], NULL); |
| } |
| #endif // CONFIG_TIP |
| |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < INTER_REFS_PER_FRAME - 1; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j], |
| fc->single_ref_cdf[i][j], NULL); |
| } |
| } |
| |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| for (j = 0; j < INTER_REFS_PER_FRAME - 1; ++j) { |
| #else |
| for (j = 0; j < INTER_REFS_PER_FRAME - 2; ++j) { |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| av1_cost_tokens_from_cdf(mode_costs->comp_ref0_cost[i][j], |
| fc->comp_ref0_cdf[i][j], NULL); |
| } |
| } |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < COMPREF_BIT_TYPES; j++) { |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| for (int k = 0; k < INTER_REFS_PER_FRAME - 1; ++k) { |
| #else |
| for (int k = 0; k < INTER_REFS_PER_FRAME - 2; ++k) { |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| av1_cost_tokens_from_cdf(mode_costs->comp_ref1_cost[i][j][k], |
| fc->comp_ref1_cdf[i][j][k], NULL); |
| } |
| } |
| } |
| |
| #if CONFIG_CONTEXT_DERIVATION |
| for (j = 0; j < INTRA_INTER_SKIP_TXFM_CONTEXTS; ++j) { |
| for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[j][i], |
| fc->intra_inter_cdf[j][i], NULL); |
| } |
| } |
| #else |
| for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i], |
| fc->intra_inter_cdf[i], NULL); |
| } |
| #endif // CONFIG_CONTEXT_DERIVATION |
| |
| for (i = 0; i < INTER_SINGLE_MODE_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->inter_single_mode_cost[i], |
| fc->inter_single_mode_cdf[i], NULL); |
| } |
| |
| #if CONFIG_WARPMV |
| for (i = 0; i < WARPMV_MODE_CONTEXT; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->inter_warp_mode_cost[i], |
| fc->inter_warp_mode_cdf[i], NULL); |
| } |
| #endif // CONFIG_WARPMV |
| |
| for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost[0][i], |
| fc->drl_cdf[0][i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost[1][i], |
| fc->drl_cdf[1][i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost[2][i], |
| fc->drl_cdf[2][i], NULL); |
| } |
| |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| for (i = 0; i < 3; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->skip_drl_mode_cost[i], |
| fc->skip_drl_cdf[i], NULL); |
| } |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| for (i = 0; i < INTER_COMPOUND_MODE_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(mode_costs->use_optflow_cost[i], |
| fc->use_optflow_cdf[i], NULL); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_FLEX_MVRES |
| |
| for (j = 0; j < NUM_MV_PREC_MPP_CONTEXT; ++j) { |
| av1_cost_tokens_from_cdf(mode_costs->pb_block_mv_mpp_flag_costs[j], |
| fc->pb_mv_mpp_flag_cdf[j], NULL); |
| } |
| for (i = MV_PRECISION_HALF_PEL; i < NUM_MV_PRECISIONS; ++i) { |
| for (j = 0; j < MV_PREC_DOWN_CONTEXTS; ++j) |
| av1_cost_tokens_from_cdf( |
| mode_costs |
| ->pb_block_mv_precision_costs[j][i - MV_PRECISION_HALF_PEL], |
| fc->pb_mv_precision_cdf[j][i - MV_PRECISION_HALF_PEL], NULL); |
| } |
| |
| #endif // CONFIG_FLEX_MVRES |
| #if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD |
| av1_cost_tokens_from_cdf(mode_costs->jmvd_scale_mode_cost, |
| fc->jmvd_scale_mode_cdf, NULL); |
| av1_cost_tokens_from_cdf(mode_costs->jmvd_amvd_scale_mode_cost, |
| fc->jmvd_amvd_scale_mode_cdf, NULL); |
| #endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD |
| for (i = 0; i < INTER_COMPOUND_MODE_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i], |
| fc->inter_compound_mode_cdf[i], NULL); |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) |
| av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i], |
| fc->compound_type_cdf[i], NULL); |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| if (av1_is_wedge_used(i)) { |
| #if CONFIG_WEDGE_MOD_EXT |
| av1_cost_tokens_from_cdf(mode_costs->wedge_angle_dir_cost[i], |
| fc->wedge_angle_dir_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->wedge_angle_0_cost[i], |
| fc->wedge_angle_0_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->wedge_angle_1_cost[i], |
| fc->wedge_angle_1_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->wedge_dist_cost[i], |
| fc->wedge_dist_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->wedge_dist_cost2[i], |
| fc->wedge_dist_cdf2[i], NULL); |
| #else |
| av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i], |
| fc->wedge_idx_cdf[i], NULL); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| } |
| } |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i], |
| fc->interintra_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i], |
| fc->interintra_mode_cdf[i], NULL); |
| } |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i], |
| fc->wedge_interintra_cdf[i], NULL); |
| } |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->obmc_cost[i], fc->obmc_cdf[i], NULL); |
| } |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->warped_causal_cost[i], |
| fc->warped_causal_cdf[i], NULL); |
| } |
| #if CONFIG_WARPMV |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->warped_causal_warpmv_cost[i], |
| fc->warped_causal_warpmv_cdf[i], NULL); |
| } |
| #endif // CONFIG_WARPMV |
| |
| #if CONFIG_WARP_REF_LIST |
| for (i = 0; i < 3; i++) { |
| for (j = 0; j < WARP_REF_CONTEXTS; j++) { |
| av1_cost_tokens_from_cdf(mode_costs->warp_ref_idx_cost[i][j], |
| fc->warp_ref_idx_cdf[i][j], NULL); |
| } |
| } |
| #endif // CONFIG_WARP_REF_LIST |
| |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->warp_delta_cost[i], |
| fc->warp_delta_cdf[i], NULL); |
| } |
| for (i = 0; i < 2; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->warp_delta_param_cost[i], |
| fc->warp_delta_param_cdf[i], NULL); |
| } |
| for (i = 0; i < WARP_EXTEND_CTXS1; i++) { |
| for (j = 0; j < WARP_EXTEND_CTXS2; j++) { |
| av1_cost_tokens_from_cdf(mode_costs->warp_extend_cost[i][j], |
| fc->warp_extend_cdf[i][j], NULL); |
| } |
| } |
| #else |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i], |
| fc->motion_mode_cdf[i], NULL); |
| } |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i], |
| fc->obmc_cdf[i], NULL); |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| #if CONFIG_BAWP |
| av1_cost_tokens_from_cdf(mode_costs->bawp_flg_cost, fc->bawp_cdf, NULL); |
| #endif |
| for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) { |
| av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i], |
| fc->comp_group_idx_cdf[i], NULL); |
| } |
| } |
| } |
| |
| void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) { |
| #if CONFIG_LR_FLEX_SYNTAX |
| for (int c = 0; c < MAX_LR_FLEX_SWITCHABLE_BITS; ++c) |
| for (int p = 0; p < MAX_MB_PLANE; ++p) |
| av1_cost_tokens_from_cdf(mode_costs->switchable_flex_restore_cost[c][p], |
| fc->switchable_flex_restore_cdf[c][p], NULL); |
| #else |
| av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost, |
| fc->switchable_restore_cdf, NULL); |
| #endif // CONFIG_LR_FLEX_SYNTAX |
| av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost, |
| fc->wiener_restore_cdf, NULL); |
| av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost, |
| fc->sgrproj_restore_cdf, NULL); |
| #if CONFIG_WIENER_NONSEP |
| av1_cost_tokens_from_cdf(mode_costs->wienerns_restore_cost, |
| fc->wienerns_restore_cdf, NULL); |
| for (int c = 0; c < WIENERNS_REDUCE_STEPS; ++c) |
| av1_cost_tokens_from_cdf(mode_costs->wienerns_reduce_cost[c], |
| fc->wienerns_reduce_cdf[c], NULL); |
| #if ENABLE_LR_4PART_CODE |
| for (int c = 0; c < WIENERNS_4PART_CTX_MAX; ++c) |
| av1_cost_tokens_from_cdf(mode_costs->wienerns_4part_cost[c], |
| fc->wienerns_4part_cdf[c], NULL); |
| #endif // ENABLE_LR_4PART_CODE |
| #endif // CONFIG_WIENER_NONSEP |
| #if CONFIG_PC_WIENER |
| av1_cost_tokens_from_cdf(mode_costs->pc_wiener_restore_cost, |
| fc->pc_wiener_restore_cdf, NULL); |
| #endif // CONFIG_PC_WIENER |
| #if CONFIG_LR_MERGE_COEFFS |
| // Bit cost for parameter to designate whether unit coeffs are merged. |
| av1_cost_tokens_from_cdf(mode_costs->merged_param_cost, fc->merged_param_cdf, |
| NULL); |
| #endif // CONFIG_LR_MERGE_COEFFS |
| } |
| |
| // Values are now correlated to quantizer. |
| static int sad_per_bit_lut_8[QINDEX_RANGE]; |
| static int sad_per_bit_lut_10[QINDEX_RANGE]; |
| static int sad_per_bit_lut_12[QINDEX_RANGE]; |
| |
| static void init_me_luts_bd(int *bit16lut, int range, |
| aom_bit_depth_t bit_depth) { |
| int i; |
| // Initialize the sad lut tables using a formulaic calculation for now. |
| // This is to make it easier to resolve the impact of experimental changes |
| // to the quantizer tables. |
| for (i = 0; i < range; i++) { |
| const double q = av1_convert_qindex_to_q(i, bit_depth); |
| bit16lut[i] = (int)(0.0836 * q + 2.4107); |
| } |
| } |
| |
| void av1_init_me_luts(void) { |
| init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE_8_BITS, AOM_BITS_8); |
| init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE_10_BITS, AOM_BITS_10); |
| init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12); |
| } |
| |
| static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, |
| 8, 8, 4, 4, 2, 2, 1, 0 }; |
| static const int rd_layer_depth_factor[6] = { |
| 128, 128, 144, 160, 160, 180, |
| }; |
| |
| int av1_compute_rd_mult_based_on_qindex(const AV1_COMP *cpi, int qindex) { |
| const int q = |
| av1_dc_quant_QTX(qindex, 0, cpi->common.seq_params.base_y_dc_delta_q, |
| cpi->common.seq_params.bit_depth); |
| int64_t rdmult = ROUND_POWER_OF_TWO_64( |
| (int64_t)((int64_t)q * q * RDMULT_FROM_Q2_NUM / RDMULT_FROM_Q2_DEN), |
| 2 * QUANT_TABLE_BITS); |
| |
| switch (cpi->common.seq_params.bit_depth) { |
| case AOM_BITS_8: break; |
| case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break; |
| case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| return (int)(rdmult > 0 ? rdmult : 1); |
| } |
| |
| int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { |
| int64_t rdmult = av1_compute_rd_mult_based_on_qindex(cpi, qindex); |
| if (is_stat_consumption_stage(cpi) && |
| (cpi->common.current_frame.frame_type != KEY_FRAME)) { |
| const GF_GROUP *const gf_group = &cpi->gf_group; |
| const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); |
| const int layer_depth = AOMMIN(gf_group->layer_depth[gf_group->index], 5); |
| |
| rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7; |
| rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); |
| } |
| return (int)rdmult; |
| } |
| |
| int av1_get_deltaq_offset(const AV1_COMP *cpi, int qindex, double beta) { |
| assert(beta > 0.0); |
| int q = av1_dc_quant_QTX(qindex, 0, cpi->common.seq_params.base_y_dc_delta_q, |
| cpi->common.seq_params.bit_depth); |
| int newq = (int)rint(q / sqrt(beta)); |
| int orig_qindex = qindex; |
| if (newq < q) { |
| do { |
| qindex--; |
| q = av1_dc_quant_QTX(qindex, 0, cpi->common.seq_params.base_y_dc_delta_q, |
| cpi->common.seq_params.bit_depth); |
| } while (newq < q && qindex > 0); |
| } else { |
| do { |
| qindex++; |
| q = av1_dc_quant_QTX(qindex, 0, cpi->common.seq_params.base_y_dc_delta_q, |
| cpi->common.seq_params.bit_depth); |
| } while (newq > q && |
| (qindex < |
| (cpi->common.seq_params.bit_depth == AOM_BITS_8 ? MAXQ_8_BITS |
| : cpi->common.seq_params.bit_depth == AOM_BITS_10 ? MAXQ_10_BITS |
| : MAXQ))); |
| } |
| return qindex - orig_qindex; |
| } |
| |
| int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) { |
| assert(beta > 0.0); |
| const AV1_COMMON *cm = &cpi->common; |
| int64_t q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, |
| cm->seq_params.base_y_dc_delta_q, |
| cm->seq_params.bit_depth); |
| int64_t rdmult = 0; |
| |
| switch (cm->seq_params.bit_depth) { |
| case AOM_BITS_8: |
| rdmult = ROUND_POWER_OF_TWO_64( |
| (int64_t)((RDMULT_FROM_Q2_NUM * (double)q * q / beta) / |
| RDMULT_FROM_Q2_DEN), |
| 2 * QUANT_TABLE_BITS); |
| |
| break; |
| case AOM_BITS_10: |
| rdmult = ROUND_POWER_OF_TWO_64( |
| (int64_t)((RDMULT_FROM_Q2_NUM * (double)q * q / beta) / |
| RDMULT_FROM_Q2_DEN), |
| 4 + 2 * QUANT_TABLE_BITS); |
| break; |
| case AOM_BITS_12: |
| default: |
| assert(cm->seq_params.bit_depth == AOM_BITS_12); |
| rdmult = ROUND_POWER_OF_TWO_64( |
| (int64_t)((RDMULT_FROM_Q2_NUM * (double)q * q / beta) / |
| RDMULT_FROM_Q2_DEN), |
| 8 + 2 * QUANT_TABLE_BITS); |
| break; |
| } |
| |
| if (is_stat_consumption_stage(cpi) && |
| (cm->current_frame.frame_type != KEY_FRAME)) { |
| const GF_GROUP *const gf_group = &cpi->gf_group; |
| const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); |
| |
| const int layer_depth = AOMMIN(gf_group->layer_depth[gf_group->index], 5); |
| rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7; |
| |
| rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); |
| } |
| if (rdmult < 1) rdmult = 1; |
| return (int)rdmult; |
| } |
| |
| static int compute_rd_thresh_factor(int qindex, int base_y_dc_delta_q, |
| aom_bit_depth_t bit_depth) { |
| double q; |
| switch (bit_depth) { |
| case AOM_BITS_8: |
| q = av1_dc_quant_QTX(qindex, 0, base_y_dc_delta_q, AOM_BITS_8) / 4.0; |
| break; |
| case AOM_BITS_10: |
| q = av1_dc_quant_QTX(qindex, 0, base_y_dc_delta_q, AOM_BITS_10) / 16.0; |
| break; |
| case AOM_BITS_12: |
| q = av1_dc_quant_QTX(qindex, 0, base_y_dc_delta_q, AOM_BITS_12) / 64.0; |
| break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| // TODO(debargha): Adjust the function below. |
| q /= (1 << QUANT_TABLE_BITS); |
| return AOMMAX((int)(pow(q, RD_THRESH_POW) * RD_THRESH_MUL), 8); |
| } |
| |
| void av1_set_sad_per_bit(const AV1_COMP *cpi, MvCosts *mv_costs, int qindex) { |
| switch (cpi->common.seq_params.bit_depth) { |
| case AOM_BITS_8: mv_costs->sadperbit = sad_per_bit_lut_8[qindex]; break; |
| case AOM_BITS_10: mv_costs->sadperbit = sad_per_bit_lut_10[qindex]; break; |
| case AOM_BITS_12: mv_costs->sadperbit = sad_per_bit_lut_12[qindex]; break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| } |
| } |
| |
| static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { |
| int i, bsize, segment_id; |
| |
| for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { |
| const int qindex = |
| clamp(av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex, |
| cm->seq_params.bit_depth) + |
| cm->quant_params.y_dc_delta_q, |
| 0, |
| cm->seq_params.bit_depth == AOM_BITS_8 ? MAXQ_8_BITS |
| : cm->seq_params.bit_depth == AOM_BITS_10 ? MAXQ_10_BITS |
| : MAXQ); |
| |
| const int q = compute_rd_thresh_factor( |
| qindex, cm->seq_params.base_y_dc_delta_q, cm->seq_params.bit_depth); |
| |
| for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| // Threshold here seems unnecessarily harsh but fine given actual |
| // range of values used for cpi->sf.thresh_mult[]. |
| const int t = q * rd_thresh_block_size_factor[bsize]; |
| const int thresh_max = INT_MAX / t; |
| |
| for (i = 0; i < MB_MODE_COUNT; ++i) |
| rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max |
| ? rd->thresh_mult[i] * t / 4 |
| : INT_MAX; |
| } |
| } |
| } |
| |
| void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc, |
| const int num_planes) { |
| const int nplanes = AOMMIN(num_planes, PLANE_TYPES); |
| for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) { |
| for (int plane = 0; plane < nplanes; ++plane) { |
| LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane]; |
| |
| for (int ctx = 0; ctx < 2; ++ctx) { |
| aom_cdf_prob *pcdf; |
| switch (eob_multi_size) { |
| case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break; |
| case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break; |
| case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break; |
| case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break; |
| case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break; |
| case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break; |
| case 6: |
| default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break; |
| } |
| av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL); |
| } |
| } |
| } |
| for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { |
| for (int plane = 0; plane < nplanes; ++plane) { |
| LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane]; |
| |
| for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], |
| fc->txb_skip_cdf[tx_size][ctx], NULL); |
| #if CONFIG_CONTEXT_DERIVATION |
| for (int ctx = 0; ctx < V_TXB_SKIP_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->v_txb_skip_cost[ctx], |
| fc->v_txb_skip_cdf[ctx], NULL); |
| #endif // CONFIG_CONTEXT_DERIVATION |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx], |
| fc->coeff_base_eob_cdf[tx_size][plane][ctx], |
| NULL); |
| #if CONFIG_ATC_COEFCODING |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->base_lf_eob_cost[ctx], |
| fc->coeff_base_lf_eob_cdf[tx_size][plane][ctx], |
| NULL); |
| for (int ctx = 0; ctx < LF_SIG_COEF_CONTEXTS; ++ctx) { |
| av1_cost_tokens_from_cdf(pcost->base_lf_cost[ctx], |
| fc->coeff_base_lf_cdf[tx_size][plane][ctx], |
| NULL); |
| } |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { |
| av1_cost_tokens_from_cdf(pcost->base_cost[ctx], |
| fc->coeff_base_cdf[tx_size][plane][ctx], NULL); |
| } |
| #else |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->base_cost[ctx], |
| fc->coeff_base_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { |
| pcost->base_cost[ctx][4] = 0; |
| pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] + |
| av1_cost_literal(1) - |
| pcost->base_cost[ctx][0]; |
| pcost->base_cost[ctx][6] = |
| pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1]; |
| pcost->base_cost[ctx][7] = |
| pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2]; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], |
| fc->eob_extra_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], |
| fc->dc_sign_cdf[plane][ctx], NULL); |
| #if CONFIG_CONTEXT_DERIVATION |
| if (plane == PLANE_TYPE_UV) { |
| for (int i = 0; i < CROSS_COMPONENT_CONTEXTS; ++i) |
| for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->v_dc_sign_cost[i][ctx], |
| fc->v_dc_sign_cdf[i][ctx], NULL); |
| for (int i = 0; i < CROSS_COMPONENT_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(pcost->v_ac_sign_cost[i], |
| fc->v_ac_sign_cdf[i], NULL); |
| } |
| #endif // CONFIG_CONTEXT_DERIVATION |
| |
| #if CONFIG_ATC_COEFCODING |
| for (int ctx = 0; ctx < LF_LEVEL_CONTEXTS; ++ctx) { |
| int br_lf_rate[BR_CDF_SIZE]; |
| int prev_cost_lf = 0; |
| int i, j; |
| av1_cost_tokens_from_cdf(br_lf_rate, fc->coeff_br_lf_cdf[plane][ctx], |
| NULL); |
| for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { |
| for (j = 0; j < BR_CDF_SIZE - 1; j++) { |
| pcost->lps_lf_cost[ctx][i + j] = prev_cost_lf + br_lf_rate[j]; |
| } |
| prev_cost_lf += br_lf_rate[j]; |
| } |
| pcost->lps_lf_cost[ctx][i] = prev_cost_lf; |
| } |
| for (int ctx = 0; ctx < LF_LEVEL_CONTEXTS; ++ctx) { |
| pcost->lps_lf_cost[ctx][0 + COEFF_BASE_RANGE + 1] = |
| pcost->lps_lf_cost[ctx][0]; |
| for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { |
| pcost->lps_lf_cost[ctx][i + COEFF_BASE_RANGE + 1] = |
| pcost->lps_lf_cost[ctx][i] - pcost->lps_lf_cost[ctx][i - 1]; |
| } |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { |
| int br_rate[BR_CDF_SIZE]; |
| int prev_cost = 0; |
| int i, j; |
| av1_cost_tokens_from_cdf( |
| #if CONFIG_ATC_COEFCODING |
| br_rate, fc->coeff_br_cdf[plane][ctx], |
| #else |
| br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx], |
| #endif // CONFIG_ATC_COEFCODING |
| NULL); |
| // printf("br_rate: "); |
| // for(j = 0; j < BR_CDF_SIZE; j++) |
| // printf("%4d ", br_rate[j]); |
| // printf("\n"); |
| for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { |
| for (j = 0; j < BR_CDF_SIZE - 1; j++) { |
| pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j]; |
| } |
| prev_cost += br_rate[j]; |
| } |
| pcost->lps_cost[ctx][i] = prev_cost; |
| // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx); |
| // for (i = 0; i <= COEFF_BASE_RANGE; i++) |
| // printf("%5d ", pcost->lps_cost[ctx][i]); |
| // printf("\n"); |
| } |
| for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { |
| pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] = |
| pcost->lps_cost[ctx][0]; |
| for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { |
| pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] = |
| pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1]; |
| } |
| } |
| } |
| } |
| |
| for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { |
| int plane = PLANE_TYPE_Y; |
| LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane]; |
| for (int ctx = 0; ctx < IDTX_SIG_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->idtx_base_cost[ctx], |
| fc->coeff_base_cdf_idtx[ctx], NULL); |
| for (int ctx = 0; ctx < IDTX_SIG_COEF_CONTEXTS; ++ctx) { |
| pcost->idtx_base_cost[ctx][4] = 0; |
| pcost->idtx_base_cost[ctx][5] = pcost->idtx_base_cost[ctx][1] + |
| av1_cost_literal(1) - |
| pcost->idtx_base_cost[ctx][0]; |
| pcost->idtx_base_cost[ctx][6] = |
| pcost->idtx_base_cost[ctx][2] - pcost->idtx_base_cost[ctx][1]; |
| pcost->idtx_base_cost[ctx][7] = |
| pcost->idtx_base_cost[ctx][3] - pcost->idtx_base_cost[ctx][2]; |
| } |
| for (int ctx = 0; ctx < IDTX_SIGN_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->idtx_sign_cost[ctx], |
| fc->idtx_sign_cdf[ctx], NULL); |
| for (int ctx = 0; ctx < IDTX_LEVEL_CONTEXTS; ++ctx) { |
| int br_rate_skip[BR_CDF_SIZE]; |
| int prev_cost_skip = 0; |
| int i, j; |
| av1_cost_tokens_from_cdf(br_rate_skip, fc->coeff_br_cdf_idtx[ctx], NULL); |
| for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { |
| for (j = 0; j < BR_CDF_SIZE - 1; j++) { |
| pcost->lps_cost_skip[ctx][i + j] = prev_cost_skip + br_rate_skip[j]; |
| } |
| prev_cost_skip += br_rate_skip[j]; |
| } |
| pcost->lps_cost_skip[ctx][i] = prev_cost_skip; |
| } |
| for (int ctx = 0; ctx < IDTX_LEVEL_CONTEXTS; ++ctx) { |
| pcost->lps_cost_skip[ctx][0 + COEFF_BASE_RANGE + 1] = |
| pcost->lps_cost_skip[ctx][0]; |
| for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { |
| pcost->lps_cost_skip[ctx][i + COEFF_BASE_RANGE + 1] = |
| pcost->lps_cost_skip[ctx][i] - pcost->lps_cost_skip[ctx][i - 1]; |
| } |
| } |
| } |
| |
| #if CONFIG_PAR_HIDING |
| const int tx_size = TX_4X4; |
| const int plane_type = 0; |
| LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane_type]; |
| for (int ctx = 0; ctx < COEFF_BASE_PH_CONTEXTS; ++ctx) { |
| av1_cost_tokens_from_cdf(pcost->base_ph_cost[ctx], |
| fc->coeff_base_ph_cdf[ctx], NULL); |
| } |
| |
| for (int ctx = 0; ctx < COEFF_BR_PH_CONTEXTS; ++ctx) { |
| int br_ph_rate[BR_CDF_SIZE]; |
| int prev_cost = 0; |
| int i, j; |
| av1_cost_tokens_from_cdf(br_ph_rate, fc->coeff_br_ph_cdf[ctx], NULL); |
| for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { |
| for (j = 0; j < BR_CDF_SIZE - 1; j++) { |
| pcost->lps_ph_cost[ctx][i + j] = prev_cost + br_ph_rate[j]; |
| } |
| prev_cost += br_ph_rate[j]; |
| } |
| pcost->lps_ph_cost[ctx][i] = prev_cost; |
| } |
| for (int ctx = 0; ctx < COEFF_BR_PH_CONTEXTS; ++ctx) { |
| pcost->lps_ph_cost[ctx][0 + COEFF_BASE_RANGE + 1] = |
| pcost->lps_ph_cost[ctx][0]; |
| for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { |
| pcost->lps_ph_cost[ctx][i + COEFF_BASE_RANGE + 1] = |
| pcost->lps_ph_cost[ctx][i] - pcost->lps_ph_cost[ctx][i - 1]; |
| } |
| } |
| #endif // CONFIG_PAR_HIDING |
| } |
| |
| #if CONFIG_FLEX_MVRES |
| void fill_dv_costs(IntraBCMvCosts *dv_costs, const FRAME_CONTEXT *fc, |
| MvCosts *mv_costs) { |
| dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX]; |
| dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX]; |
| av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, &fc->ndvc, |
| MV_PRECISION_ONE_PEL |
| #if CONFIG_ADAPTIVE_MVD |
| , |
| 0 |
| #endif |
| ); |
| |
| #if CONFIG_BVCOST_UPDATE |
| // Copy the pointer of the dv cost to the mvcost |
| mv_costs->dv_joint_cost = &dv_costs->joint_mv[0]; |
| mv_costs->dv_nmv_cost[0] = dv_costs->dv_costs[0]; |
| mv_costs->dv_nmv_cost[1] = dv_costs->dv_costs[1]; |
| #else |
| (void)mv_costs; |
| #endif |
| } |
| #elif CONFIG_BVCOST_UPDATE |
| void av1_fill_dv_costs(const FRAME_CONTEXT *fc, IntraBCMVCosts *dv_costs) { |
| int *dvcost[2] = { &dv_costs->mv_component[0][MV_MAX], |
| &dv_costs->mv_component[1][MV_MAX] }; |
| av1_build_nmv_cost_table(dv_costs->joint_mv, |
| #if CONFIG_ADAPTIVE_MVD |
| dv_costs->amvd_joint_mv, dvcost, |
| #endif // CONFIG_ADAPTIVE_MVD |
| dvcost, &fc->ndvc, MV_SUBPEL_NONE); |
| } |
| #endif |
| |
| #if CONFIG_FLEX_MVRES |
| void av1_fill_mv_costs(const FRAME_CONTEXT *fc, int integer_mv, |
| MvSubpelPrecision fr_mv_precision, MvCosts *mv_costs) { |
| for (MvSubpelPrecision pb_mv_prec = MV_PRECISION_8_PEL; |
| pb_mv_prec < NUM_MV_PRECISIONS; pb_mv_prec++) { |
| mv_costs->nmv_costs[pb_mv_prec][0] = |
| &mv_costs->nmv_costs_alloc[pb_mv_prec][0][MV_MAX]; |
| mv_costs->nmv_costs[pb_mv_prec][1] = |
| &mv_costs->nmv_costs_alloc[pb_mv_prec][1][MV_MAX]; |
| av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, |
| mv_costs->nmv_costs[pb_mv_prec], &fc->nmvc, |
| pb_mv_prec |
| #if CONFIG_ADAPTIVE_MVD |
| , |
| 0 |
| #endif |
| ); |
| (void)integer_mv; |
| #if !CONFIG_ADAPTIVE_MVD |
| (void)fr_mv_precision; |
| #endif |
| } |
| |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_nmv_cost[0] = &mv_costs->amvd_nmv_cost_alloc[0][MV_MAX]; |
| mv_costs->amvd_nmv_cost[1] = &mv_costs->amvd_nmv_cost_alloc[1][MV_MAX]; |
| av1_build_nmv_cost_table( |
| mv_costs->amvd_nmv_joint_cost, mv_costs->amvd_nmv_cost, &fc->nmvc, |
| #if BUGFIX_AMVD_AMVR |
| (fr_mv_precision <= MV_PRECISION_QTR_PEL ? fr_mv_precision |
| : MV_PRECISION_QTR_PEL), |
| #else |
| fr_mv_precision, |
| #endif |
| 1); |
| #endif |
| } |
| #else |
| void av1_fill_mv_costs(const FRAME_CONTEXT *fc, int integer_mv, int usehp, |
| MvCosts *mv_costs) { |
| mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX]; |
| mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX]; |
| mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX]; |
| mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX]; |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_nmv_cost[0] = &mv_costs->amvd_nmv_cost_alloc[0][MV_MAX]; |
| mv_costs->amvd_nmv_cost[1] = &mv_costs->amvd_nmv_cost_alloc[1][MV_MAX]; |
| mv_costs->amvd_nmv_cost_hp[0] = &mv_costs->amvd_nmv_cost_hp_alloc[0][MV_MAX]; |
| mv_costs->amvd_nmv_cost_hp[1] = &mv_costs->amvd_nmv_cost_hp_alloc[1][MV_MAX]; |
| #endif // CONFIG_ADAPTIVE_MVD |
| if (integer_mv) { |
| mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost; |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_mv_cost_stack = (int **)&mv_costs->amvd_nmv_cost; |
| #endif // CONFIG_ADAPTIVE_MVD |
| av1_build_nmv_cost_table( |
| mv_costs->nmv_joint_cost, |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_nmv_joint_cost, mv_costs->amvd_mv_cost_stack, |
| #endif // CONFIG_ADAPTIVE_MVD |
| mv_costs->mv_cost_stack, &fc->nmvc, MV_SUBPEL_NONE); |
| } else { |
| mv_costs->mv_cost_stack = |
| usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost; |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_mv_cost_stack = |
| usehp ? mv_costs->amvd_nmv_cost_hp : mv_costs->amvd_nmv_cost; |
| #endif // CONFIG_ADAPTIVE_MVD |
| av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, |
| #if CONFIG_ADAPTIVE_MVD |
| mv_costs->amvd_nmv_joint_cost, |
| mv_costs->amvd_mv_cost_stack, |
| #endif // CONFIG_ADAPTIVE_MVD |
| mv_costs->mv_cost_stack, &fc->nmvc, usehp); |
| } |
| } |
| #endif |
| |
| void av1_initialize_rd_consts(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| RD_OPT *const rd = &cpi->rd; |
| MvCosts *mv_costs = &x->mv_costs; |
| |
| aom_clear_system_state(); |
| |
| rd->RDMULT = av1_compute_rd_mult( |
| cpi, cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q); |
| |
| av1_set_error_per_bit(mv_costs, rd->RDMULT); |
| |
| set_block_thresholds(cm, rd); |
| |
| if ((cpi->oxcf.cost_upd_freq.mv != COST_UPD_OFF) || frame_is_intra_only(cm) || |
| (cm->current_frame.frame_number & 0x07) == 1) |
| av1_fill_mv_costs(cm->fc, cm->features.cur_frame_force_integer_mv, |
| #if CONFIG_FLEX_MVRES |
| cm->features.fr_mv_precision, mv_costs); |
| #else |
| cm->features.allow_high_precision_mv, mv_costs); |
| #endif |
| |
| if (cm->features.allow_screen_content_tools && |
| #if !CONFIG_BVCOST_UPDATE |
| frame_is_intra_only(cm) && |
| #endif // !CONFIG_BVCOST_UPDATE |
| !is_stat_generation_stage(cpi)) { |
| #if CONFIG_FLEX_MVRES |
| fill_dv_costs(&x->dv_costs, cm->fc, mv_costs); |
| #else |
| #if CONFIG_BVCOST_UPDATE |
| IntraBCMVCosts *const dv_costs = &x->dv_costs; |
| #else |
| IntraBCMVCosts *const dv_costs = &cpi->dv_costs; |
| #endif |
| int *dvcost[2] = { &dv_costs->mv_component[0][MV_MAX], |
| &dv_costs->mv_component[1][MV_MAX] }; |
| av1_build_nmv_cost_table(dv_costs->joint_mv, |
| #if CONFIG_ADAPTIVE_MVD |
| dv_costs->amvd_joint_mv, dvcost, |
| #endif // CONFIG_ADAPTIVE_MVD |
| dvcost, &cm->fc->ndvc, MV_SUBPEL_NONE); |
| #endif |
| } |
| |
| if (!is_stat_generation_stage(cpi)) { |
| for (int i = 0; i < TRANS_TYPES; ++i) |
| // IDENTITY: 1 bit |
| // TRANSLATION: 3 bits |
| // ROTZOOM: 2 bits |
| // AFFINE: 3 bits |
| cpi->gm_info.type_cost[i] = (1 + (i > 0 ? (i == ROTZOOM ? 1 : 2) : 0)) |
| << AV1_PROB_COST_SHIFT; |
| } |
| } |
| |
| static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { |
| // NOTE: The tables below must be of the same size. |
| |
| // The functions described below are sampled at the four most significant |
| // bits of x^2 + 8 / 256. |
| |
| // Normalized rate: |
| // This table models the rate for a Laplacian source with given variance |
| // when quantized with a uniform quantizer with given stepsize. The |
| // closed form expression is: |
| // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], |
| // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), |
| // and H(x) is the binary entropy function. |
| static const int rate_tab_q10[] = { |
| 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, |
| 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, |
| 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, |
| 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, |
| 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, |
| 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, |
| 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, |
| 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, |
| 5, 3, 2, 1, 1, 1, 0, 0, |
| }; |
| // Normalized distortion: |
| // This table models the normalized distortion for a Laplacian source |
| // with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expression is: |
| // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) |
| // where x = qpstep / sqrt(variance). |
| // Note the actual distortion is Dn * variance. |
| static const int dist_tab_q10[] = { |
| 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, |
| 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, |
| 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, |
| 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, |
| 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, |
| 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, |
| 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, |
| 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, |
| 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, |
| }; |
| static const int xsq_iq_q10[] = { |
| 0, 4, 8, 12, 16, 20, 24, 28, 32, |
| 40, 48, 56, 64, 72, 80, 88, 96, 112, |
| 128, 144, 160, 176, 192, 208, 224, 256, 288, |
| 320, 352, 384, 416, 448, 480, 544, 608, 672, |
| 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, |
| 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, |
| 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, |
| 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, |
| 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, |
| 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, |
| 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, |
| 180192, 196576, 212960, 229344, 245728, |
| }; |
| const int tmp = (xsq_q10 >> 2) + 8; |
| const int k = get_msb(tmp) - 3; |
| const int xq = (k << 3) + ((tmp >> k) & 0x7); |
| const int one_q10 = 1 << 10; |
| const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); |
| const int b_q10 = one_q10 - a_q10; |
| *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; |
| *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; |
| } |
| |
| void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, |
| unsigned int qstep, int *rate, |
| int64_t *dist) { |
| // This function models the rate and distortion for a Laplacian |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expressions are in: |
| // Hang and Chen, "Source Model for transform video coder and its |
| // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
| // Sys. for Video Tech., April 1997. |
| if (var == 0) { |
| *rate = 0; |
| *dist = 0; |
| } else { |
| int d_q10, r_q10; |
| static const uint32_t MAX_XSQ_Q10 = 245727; |
| const uint64_t xsq_q10_64 = |
| (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; |
| const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); |
| model_rd_norm(xsq_q10, &r_q10, &d_q10); |
| *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); |
| *dist = (var * (int64_t)d_q10 + 512) >> 10; |
| } |
| } |
| |
| static double interp_cubic(const double *p, double x) { |
| return p[1] + 0.5 * x * |
| (p[2] - p[0] + |
| x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + |
| x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); |
| } |
| |
| /* |
| static double interp_bicubic(const double *p, int p_stride, double x, |
| double y) { |
| double q[4]; |
| q[0] = interp_cubic(p, x); |
| q[1] = interp_cubic(p + p_stride, x); |
| q[2] = interp_cubic(p + 2 * p_stride, x); |
| q[3] = interp_cubic(p + 3 * p_stride, x); |
| return interp_cubic(q, y); |
| } |
| */ |
| |
| static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3 |
| }; |
| |
| static int sse_norm_curvfit_model_cat_lookup(double sse_norm) { |
| return (sse_norm > 16.0); |
| } |
| |
| // Models distortion by sse using a logistic function on |
| // l = log2(sse / q^2) as: |
| // dbysse = 16 / (1 + k exp(l + c)) |
| static double get_dbysse_logistic(double l, double c, double k) { |
| const double A = 16.0; |
| const double dbysse = A / (1 + k * exp(l + c)); |
| return dbysse; |
| } |
| |
| // Models rate using a clamped linear function on |
| // l = log2(sse / q^2) as: |
| // rate = max(0, a + b * l) |
| static double get_rate_clamplinear(double l, double a, double b) { |
| const double rate = a + b * l; |
| return (rate < 0 ? 0 : rate); |
| } |
| |
| static const uint8_t bsize_surffit_model_cat_lookup[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 0, 0, 2, 2, 4, 4 |
| }; |
| |
| static const double surffit_rate_params[9][4] = { |
| { |
| 638.390212, |
| 2.253108, |
| 166.585650, |
| -3.939401, |
| }, |
| { |
| 5.256905, |
| 81.997240, |
| -1.321771, |
| 17.694216, |
| }, |
| { |
| -74.193045, |
| 72.431868, |
| -19.033152, |
| 15.407276, |
| }, |
| { |
| 416.770113, |
| 14.794188, |
| 167.686830, |
| -6.997756, |
| }, |
| { |
| 378.511276, |
| 9.558376, |
| 154.658843, |
| -6.635663, |
| }, |
| { |
| 277.818787, |
| 4.413180, |
| 150.317637, |
| -9.893038, |
| }, |
| { |
| 142.212132, |
| 11.542038, |
| 94.393964, |
| -5.518517, |
| }, |
| { |
| 219.100256, |
| 4.007421, |
| 108.932852, |
| -6.981310, |
| }, |
| { |
| 222.261971, |
| 3.251049, |
| 95.972916, |
| -5.609789, |
| }, |
| }; |
| |
| static const double surffit_dist_params[7] = { 1.475844, 4.328362, -5.680233, |
| -0.500994, 0.554585, 4.839478, |
| -0.695837 }; |
| |
| static void rate_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, |
| double *rpar) { |
| const int cat = bsize_surffit_model_cat_lookup[bsize]; |
| rpar[0] = surffit_rate_params[cat][0] + surffit_rate_params[cat][1] * xm; |
| rpar[1] = surffit_rate_params[cat][2] + surffit_rate_params[cat][3] * xm; |
| } |
| |
| static void dist_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, |
| double *dpar) { |
| (void)bsize; |
| const double *params = surffit_dist_params; |
| dpar[0] = params[0] + params[1] / (1 + exp((xm + params[2]) * params[3])); |
| dpar[1] = params[4] + params[5] * exp(params[6] * xm); |
| } |
| |
| void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm, |
| double yl, double *rate_f, double *distbysse_f) { |
| (void)sse_norm; |
| double rpar[2], dpar[2]; |
| rate_surffit_model_params_lookup(bsize, xm, rpar); |
| dist_surffit_model_params_lookup(bsize, xm, dpar); |
| |
| *rate_f = get_rate_clamplinear(yl, rpar[0], rpar[1]); |
| *distbysse_f = get_dbysse_logistic(yl, dpar[0], dpar[1]); |
| } |
| |
| static const double interp_rgrid_curv[4][65] = { |
| { |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 118.257702, 120.210658, 121.434853, 122.100487, |
| 122.377758, 122.436865, 72.290102, 96.974289, 101.652727, |
| 126.830141, 140.417377, 157.644879, 184.315291, 215.823873, |
| 262.300169, 335.919859, 420.624173, 519.185032, 619.854243, |
| 726.053595, 827.663369, 933.127475, 1037.988755, 1138.839609, |
| 1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052, |
| 1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680, |
| 2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011, |
| 2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827, |
| 2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773, |
| 3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000, |
| }, |
| { |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 13.087244, 15.919735, 25.930313, 24.412411, |
| 28.567417, 29.924194, 30.857010, 32.742979, 36.382570, |
| 39.210386, 42.265690, 47.378572, 57.014850, 82.740067, |
| 137.346562, 219.968084, 316.781856, 415.643773, 516.706538, |
| 614.914364, 714.303763, 815.512135, 911.210485, 1008.501528, |
| 1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641, |
| 1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309, |
| 1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824, |
| 2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694, |
| 2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660, |
| 3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000, |
| }, |
| { |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 4.656893, 5.123633, 5.594132, 6.162376, |
| 6.918433, 7.768444, 8.739415, 10.105862, 11.477328, |
| 13.236604, 15.421030, 19.093623, 25.801871, 46.724612, |
| 98.841054, 181.113466, 272.586364, 359.499769, 445.546343, |
| 525.944439, 605.188743, 681.793483, 756.668359, 838.486885, |
| 926.950356, 1015.482542, 1113.353926, 1204.897193, 1288.871992, |
| 1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771, |
| 1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872, |
| 2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216, |
| 2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436, |
| 3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000, |
| }, |
| { |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 0.000000, 0.337370, 0.391916, 0.468839, 0.566334, |
| 0.762564, 1.069225, 1.384361, 1.787581, 2.293948, |
| 3.251909, 4.412991, 8.050068, 11.606073, 27.668092, |
| 65.227758, 128.463938, 202.097653, 262.715851, 312.464873, |
| 355.601398, 400.609054, 447.201352, 495.761568, 552.871938, |
| 619.067625, 691.984883, 773.753288, 860.628503, 946.262808, |
| 1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987, |
| 1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823, |
| 1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119, |
| 2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754, |
| 3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000, |
| }, |
| }; |
| |
| static const double interp_dgrid_curv[3][65] = { |
| { |
| 16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770, |
| 15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870, |
| 15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387, |
| 13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790, |
| 7.487633, 5.688649, 4.267515, 3.196300, 2.434201, 1.834064, |
| 1.369920, 1.035921, 0.775279, 0.574895, 0.427232, 0.314123, |
| 0.233236, 0.171440, 0.128188, 0.092762, 0.067569, 0.049324, |
| 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, |
| 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, |
| 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, |
| 0.000348, 0.000193, 0.000085, 0.000021, 0.000000, |
| }, |
| { |
| 16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501, |
| 15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967, |
| 15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212, |
| 13.073692, 12.222005, 11.237799, 9.985848, 8.898823, 7.423519, |
| 5.995325, 4.773152, 3.744032, 2.938217, 2.294526, 1.762412, |
| 1.327145, 1.020728, 0.765535, 0.570548, 0.425833, 0.313825, |
| 0.232959, 0.171324, 0.128174, 0.092750, 0.067558, 0.049319, |
| 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, |
| 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, |
| 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, |
| 0.000348, 0.000193, 0.000085, 0.000021, -0.000000, |
| }, |
| }; |
| |
| void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr, |
| double *rate_f, double *distbysse_f) { |
| const double x_start = -15.5; |
| const double x_end = 16.5; |
| const double x_step = 0.5; |
| const double epsilon = 1e-6; |
| const int rcat = bsize_curvfit_model_cat_lookup[bsize]; |
| const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm); |
| (void)x_end; |
| |
| xqr = AOMMAX(xqr, x_start + x_step + epsilon); |
| xqr = AOMMIN(xqr, x_end - x_step - epsilon); |
| const double x = (xqr - x_start) / x_step; |
| const int xi = (int)floor(x); |
| const double xo = x - xi; |
| |
| assert(xi > 0); |
| |
| const double *prate = &interp_rgrid_curv[rcat][(xi - 1)]; |
| *rate_f = interp_cubic(prate, xo); |
| const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)]; |
| *distbysse_f = interp_cubic(pdist, xo); |
| } |
| |
| static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize, |
| const struct macroblockd_plane *pd, |
| ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], |
| ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { |
| const int num_4x4_w = mi_size_wide[plane_bsize]; |
| const int num_4x4_h = mi_size_high[plane_bsize]; |
| const ENTROPY_CONTEXT *const above = pd->above_entropy_context; |
| const ENTROPY_CONTEXT *const left = pd->left_entropy_context; |
| |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| } |
| |
| void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize, |
| const struct macroblockd_plane *pd, |
| ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], |
| ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left); |
| } |
| |
| void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint16_t *ref_y_buffer, |
| int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { |
| #if CONFIG_TIP |
| // When the tip buffer is invalid, for example for frames that |
| // have only one reference, ref_y_buffer is invalid and should |
| // not be used for computing x->pred_mv_sad. |
| if (ref_frame == TIP_FRAME) { |
| if (cpi->common.features.tip_frame_mode == TIP_FRAME_DISABLED) { |
| const int ref_frame_idx = COMPACT_INDEX0_NRS(ref_frame); |
| x->max_mv_context[ref_frame_idx] = 0; |
| x->pred_mv_sad[ref_frame_idx] = INT_MAX; |
| return; |
| } |
| } |
| #endif // CONFIG_TIP |
| const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; |
| const int_mv ref_mv = |
| av1_get_ref_mv_from_stack(0, ref_frames, 0, x->mbmi_ext); |
| const int_mv ref_mv1 = |
| av1_get_ref_mv_from_stack(0, ref_frames, 1, x->mbmi_ext); |
| MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; |
| int num_mv_refs = 0; |
| pred_mv[num_mv_refs++] = ref_mv.as_mv; |
| if (ref_mv.as_int != ref_mv1.as_int) { |
| pred_mv[num_mv_refs++] = ref_mv1.as_mv; |
| } |
| |
| assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); |
| |
| const uint16_t *const src_y_ptr = x->plane[0].src.buf; |
| int zero_seen = 0; |
| int best_sad = INT_MAX; |
| int max_mv = 0; |
| // Get the sad for each candidate reference mv. |
| for (int i = 0; i < num_mv_refs; ++i) { |
| const MV *this_mv = &pred_mv[i]; |
| const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; |
| const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; |
| max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); |
| |
| if (fp_row == 0 && fp_col == 0 && zero_seen) continue; |
| zero_seen |= (fp_row == 0 && fp_col == 0); |
| |
| const uint16_t *const ref_y_ptr = |
| &ref_y_buffer[ref_y_stride * fp_row + fp_col]; |
| // Find sad for current vector. |
| const int this_sad = cpi->fn_ptr[block_size].sdf( |
| src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride); |
| // Note if it is the best so far. |
| if (this_sad < best_sad) { |
| best_sad = this_sad; |
| } |
| } |
| |
| // Note the index of the mv that worked best in the reference list. |
| const int ref_frame_idx = COMPACT_INDEX0_NRS(ref_frame); |
| x->max_mv_context[ref_frame_idx] = max_mv; |
| x->pred_mv_sad[ref_frame_idx] = best_sad; |
| } |
| |
| void av1_setup_pred_block(const MACROBLOCKD *xd, |
| struct buf_2d dst[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, |
| const struct scale_factors *scale, |
| const struct scale_factors *scale_uv, |
| const int num_planes) { |
| dst[0].buf = src->y_buffer; |
| dst[0].stride = src->y_stride; |
| dst[1].buf = src->u_buffer; |
| dst[2].buf = src->v_buffer; |
| dst[1].stride = dst[2].stride = src->uv_stride; |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| for (int i = 0; i < num_planes; ++i) { |
| setup_pred_plane( |
| dst + i, dst[i].buf, i ? src->uv_crop_width : src->y_crop_width, |
| i ? src->uv_crop_height : src->y_crop_height, dst[i].stride, mi_row, |
| mi_col, i ? scale_uv : scale, xd->plane[i].subsampling_x, |
| xd->plane[i].subsampling_y, &xd->mi[0]->chroma_ref_info); |
| } |
| } |
| |
| YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, |
| MV_REFERENCE_FRAME ref_frame) { |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(ref_frame)) { |
| return NULL; |
| } |
| #endif // CONFIG_TIP |
| |
| assert(ref_frame < cpi->common.ref_frames_info.num_total_refs); |
| RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame]; |
| const RefCntBuffer *const ref_buf = |
| get_ref_frame_buf(&cpi->common, ref_frame); |
| return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf |
| : NULL; |
| } |
| |
| int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd, |
| InterpFilter interp_filter) { |
| if (interp_filter == SWITCHABLE) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| assert(mbmi->mode < NEAR_NEARMV_OPTFLOW); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| const int ctx = av1_get_pred_context_switchable_interp(xd, 0); |
| const int inter_filter_cost = |
| x->mode_costs.switchable_interp_costs[ctx][mbmi->interp_fltr]; |
| return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; |
| } else { |
| return 0; |
| } |
| } |
| |
| void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { |
| RD_OPT *const rd = &cpi->rd; |
| |
| // Set baseline threshold values. |
| av1_zero(rd->thresh_mult); |
| |
| rd->thresh_mult[NEWMV] = 1000; |
| rd->thresh_mult[NEARMV] = 1000; |
| rd->thresh_mult[GLOBALMV] = 2200; |
| rd->thresh_mult[NEAR_NEARMV] = 1500; |
| rd->thresh_mult[NEAR_NEWMV] = 1500; |
| rd->thresh_mult[NEW_NEARMV] = 1500; |
| rd->thresh_mult[NEW_NEWMV] = 1500; |
| rd->thresh_mult[GLOBAL_GLOBALMV] = 1500; |
| rd->thresh_mult[DC_PRED] = 1000; |
| rd->thresh_mult[PAETH_PRED] = 1000; |
| rd->thresh_mult[SMOOTH_PRED] = 2200; |
| rd->thresh_mult[SMOOTH_V_PRED] = 2000; |
| rd->thresh_mult[SMOOTH_H_PRED] = 2000; |
| rd->thresh_mult[H_PRED] = 2000; |
| rd->thresh_mult[V_PRED] = 1800; |
| rd->thresh_mult[D135_PRED] = 2500; |
| rd->thresh_mult[D203_PRED] = 2000; |
| rd->thresh_mult[D157_PRED] = 2500; |
| rd->thresh_mult[D67_PRED] = 2000; |
| rd->thresh_mult[D113_PRED] = 2500; |
| rd->thresh_mult[D45_PRED] = 2500; |
| } |
| |
| void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, |
| int (*factor_buf)[MB_MODE_COUNT], |
| int use_adaptive_rd_thresh, BLOCK_SIZE bsize, |
| PREDICTION_MODE best_mode) { |
| assert(use_adaptive_rd_thresh > 0); |
| const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT; |
| |
| const int bsize_is_1_to_4 = bsize > cm->seq_params.sb_size; |
| BLOCK_SIZE min_size, max_size; |
| if (bsize_is_1_to_4) { |
| // This part handles block sizes with 1:4 and 4:1 aspect ratios |
| // TODO(any): Experiment with threshold update for parent/child blocks |
| min_size = bsize; |
| max_size = bsize; |
| } else { |
| min_size = AOMMAX(bsize - 2, BLOCK_4X4); |
| max_size = AOMMIN(bsize + 2, (int)cm->seq_params.sb_size); |
| } |
| |
| for (PREDICTION_MODE mode = 0; mode < MB_MODE_COUNT; ++mode) { |
| for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) { |
| int *const fact = &factor_buf[bs][mode]; |
| if (mode == best_mode) { |
| *fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR); |
| } else { |
| *fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor); |
| } |
| } |
| } |
| } |
| |
| #define INTRA_COST_PENALTY_Q_FACTOR 8 |
| |
| int av1_get_intra_cost_penalty(int qindex, int qdelta, int base_y_dc_delta_q, |
| aom_bit_depth_t bit_depth) { |
| const int q = av1_dc_quant_QTX(qindex, qdelta, base_y_dc_delta_q, bit_depth); |
| switch (bit_depth) { |
| case AOM_BITS_8: |
| return ROUND_POWER_OF_TWO(INTRA_COST_PENALTY_Q_FACTOR * q, |
| 0 + QUANT_TABLE_BITS); |
| case AOM_BITS_10: |
| return ROUND_POWER_OF_TWO(INTRA_COST_PENALTY_Q_FACTOR * q, |
| 2 + QUANT_TABLE_BITS); |
| case AOM_BITS_12: |
| return ROUND_POWER_OF_TWO(INTRA_COST_PENALTY_Q_FACTOR * q, |
| 4 + QUANT_TABLE_BITS); |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| } |