| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include "aom_dsp/txfm_common.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { |
| // The 2D transform is done with two passes which are actually pretty |
| // similar. In the first one, we transform the columns and transpose |
| // the results. In the second one, we transform the rows. To achieve that, |
| // as the first pass results are transposed, we transpose the columns (that |
| // is the transposed rows) and transpose the results (so that it goes back |
| // in normal/row positions). |
| // We need an intermediate buffer between passes. |
| tran_low_t intermediate[4 * 4]; |
| const tran_low_t *in_low = NULL; |
| tran_low_t *out = intermediate; |
| // Do the two transform/transpose passes |
| for (int pass = 0; pass < 2; ++pass) { |
| tran_high_t in_high[4]; // canbe16 |
| tran_high_t step[4]; // canbe16 |
| tran_high_t temp1, temp2; // needs32 |
| for (int i = 0; i < 4; ++i) { |
| // Load inputs. |
| if (pass == 0) { |
| in_high[0] = input[0 * stride] * 16; |
| in_high[1] = input[1 * stride] * 16; |
| in_high[2] = input[2 * stride] * 16; |
| in_high[3] = input[3 * stride] * 16; |
| if (i == 0 && in_high[0]) { |
| ++in_high[0]; |
| } |
| } else { |
| assert(in_low != NULL); |
| in_high[0] = in_low[0 * 4]; |
| in_high[1] = in_low[1 * 4]; |
| in_high[2] = in_low[2 * 4]; |
| in_high[3] = in_low[3 * 4]; |
| ++in_low; |
| } |
| // Transform. |
| step[0] = in_high[0] + in_high[3]; |
| step[1] = in_high[1] + in_high[2]; |
| step[2] = in_high[1] - in_high[2]; |
| step[3] = in_high[0] - in_high[3]; |
| temp1 = (step[0] + step[1]) * cospi_16_64; |
| temp2 = (step[0] - step[1]) * cospi_16_64; |
| out[0] = (tran_low_t)fdct_round_shift(temp1); |
| out[2] = (tran_low_t)fdct_round_shift(temp2); |
| temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; |
| out[1] = (tran_low_t)fdct_round_shift(temp1); |
| out[3] = (tran_low_t)fdct_round_shift(temp2); |
| // Do next column (which is a transposed row in second/horizontal pass) |
| ++input; |
| out += 4; |
| } |
| // Setup in/out for next pass. |
| in_low = intermediate; |
| out = output; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) |
| output[j + i * 4] = (output[j + i * 4] + 1) >> 2; |
| } |
| } |
| |
| void aom_fdct4x4_lp_c(const int16_t *input, int16_t *output, int stride) { |
| // The 2D transform is done with two passes which are actually pretty |
| // similar. In the first one, we transform the columns and transpose |
| // the results. In the second one, we transform the rows. To achieve that, |
| // as the first pass results are transposed, we transpose the columns (that |
| // is the transposed rows) and transpose the results (so that it goes back |
| // in normal/row positions). |
| // We need an intermediate buffer between passes. |
| int16_t intermediate[4 * 4]; |
| const int16_t *in_low = NULL; |
| int16_t *out = intermediate; |
| // Do the two transform/transpose passes |
| for (int pass = 0; pass < 2; ++pass) { |
| int32_t in_high[4]; // canbe16 |
| int32_t step[4]; // canbe16 |
| int32_t temp1, temp2; // needs32 |
| for (int i = 0; i < 4; ++i) { |
| // Load inputs. |
| if (pass == 0) { |
| in_high[0] = input[0 * stride] * 16; |
| in_high[1] = input[1 * stride] * 16; |
| in_high[2] = input[2 * stride] * 16; |
| in_high[3] = input[3 * stride] * 16; |
| if (i == 0 && in_high[0]) { |
| ++in_high[0]; |
| } |
| } else { |
| assert(in_low != NULL); |
| in_high[0] = in_low[0 * 4]; |
| in_high[1] = in_low[1 * 4]; |
| in_high[2] = in_low[2 * 4]; |
| in_high[3] = in_low[3 * 4]; |
| ++in_low; |
| } |
| // Transform. |
| step[0] = in_high[0] + in_high[3]; |
| step[1] = in_high[1] + in_high[2]; |
| step[2] = in_high[1] - in_high[2]; |
| step[3] = in_high[0] - in_high[3]; |
| temp1 = (step[0] + step[1]) * (int32_t)cospi_16_64; |
| temp2 = (step[0] - step[1]) * (int32_t)cospi_16_64; |
| out[0] = (int16_t)fdct_round_shift(temp1); |
| out[2] = (int16_t)fdct_round_shift(temp2); |
| temp1 = step[2] * (int32_t)cospi_24_64 + step[3] * (int32_t)cospi_8_64; |
| temp2 = -step[2] * (int32_t)cospi_8_64 + step[3] * (int32_t)cospi_24_64; |
| out[1] = (int16_t)fdct_round_shift(temp1); |
| out[3] = (int16_t)fdct_round_shift(temp2); |
| // Do next column (which is a transposed row in second/horizontal pass) |
| ++input; |
| out += 4; |
| } |
| // Setup in/out for next pass. |
| in_low = intermediate; |
| out = output; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) |
| output[j + i * 4] = (output[j + i * 4] + 1) >> 2; |
| } |
| } |
| |
| void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, |
| int stride) { |
| int i, j; |
| tran_low_t intermediate[64]; |
| int pass; |
| tran_low_t *output = intermediate; |
| const tran_low_t *in = NULL; |
| |
| // Transform columns |
| for (pass = 0; pass < 2; ++pass) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 |
| tran_high_t t0, t1, t2, t3; // needs32 |
| tran_high_t x0, x1, x2, x3; // canbe16 |
| |
| for (i = 0; i < 8; i++) { |
| // stage 1 |
| if (pass == 0) { |
| s0 = (input[0 * stride] + input[7 * stride]) * 4; |
| s1 = (input[1 * stride] + input[6 * stride]) * 4; |
| s2 = (input[2 * stride] + input[5 * stride]) * 4; |
| s3 = (input[3 * stride] + input[4 * stride]) * 4; |
| s4 = (input[3 * stride] - input[4 * stride]) * 4; |
| s5 = (input[2 * stride] - input[5 * stride]) * 4; |
| s6 = (input[1 * stride] - input[6 * stride]) * 4; |
| s7 = (input[0 * stride] - input[7 * stride]) * 4; |
| ++input; |
| } else { |
| s0 = in[0 * 8] + in[7 * 8]; |
| s1 = in[1 * 8] + in[6 * 8]; |
| s2 = in[2 * 8] + in[5 * 8]; |
| s3 = in[3 * 8] + in[4 * 8]; |
| s4 = in[3 * 8] - in[4 * 8]; |
| s5 = in[2 * 8] - in[5 * 8]; |
| s6 = in[1 * 8] - in[6 * 8]; |
| s7 = in[0 * 8] - in[7 * 8]; |
| ++in; |
| } |
| |
| // fdct4(step, step); |
| x0 = s0 + s3; |
| x1 = s1 + s2; |
| x2 = s1 - s2; |
| x3 = s0 - s3; |
| t0 = (x0 + x1) * cospi_16_64; |
| t1 = (x0 - x1) * cospi_16_64; |
| t2 = x2 * cospi_24_64 + x3 * cospi_8_64; |
| t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; |
| output[0] = (tran_low_t)fdct_round_shift(t0); |
| output[2] = (tran_low_t)fdct_round_shift(t2); |
| output[4] = (tran_low_t)fdct_round_shift(t1); |
| output[6] = (tran_low_t)fdct_round_shift(t3); |
| |
| // Stage 2 |
| t0 = (s6 - s5) * cospi_16_64; |
| t1 = (s6 + s5) * cospi_16_64; |
| t2 = fdct_round_shift(t0); |
| t3 = fdct_round_shift(t1); |
| |
| // Stage 3 |
| x0 = s4 + t2; |
| x1 = s4 - t2; |
| x2 = s7 - t3; |
| x3 = s7 + t3; |
| |
| // Stage 4 |
| t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
| t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
| t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
| t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
| output[1] = (tran_low_t)fdct_round_shift(t0); |
| output[3] = (tran_low_t)fdct_round_shift(t2); |
| output[5] = (tran_low_t)fdct_round_shift(t1); |
| output[7] = (tran_low_t)fdct_round_shift(t3); |
| output += 8; |
| } |
| in = intermediate; |
| output = final_output; |
| } |
| |
| // Rows |
| for (i = 0; i < 8; ++i) { |
| for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; |
| } |
| } |