| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <immintrin.h> |
| #include "config/aom_dsp_rtcd.h" |
| #include "aom/aom_integer.h" |
| #include "av1/encoder/av1_quantize.h" |
| #include "aom_dsp/x86/quantize_x86.h" |
| |
| static INLINE void load_b_values_avx2(const int32_t *zbin_ptr, __m256i *zbin, |
| const int32_t *round_ptr, __m256i *round, |
| const int32_t *quant_ptr, __m256i *quant, |
| const int32_t *dequant_ptr, |
| __m256i *dequant, |
| const int32_t *shift_ptr, |
| __m256i *shift) { |
| *zbin = _mm256_castsi128_si256(_mm_load_si128((const __m128i *)zbin_ptr)); |
| *zbin = _mm256_permute4x64_epi64(*zbin, 0x54); |
| *zbin = _mm256_sub_epi16(*zbin, _mm256_set1_epi16(1)); |
| *round = _mm256_castsi128_si256(_mm_load_si128((const __m128i *)round_ptr)); |
| *round = _mm256_permute4x64_epi64(*round, 0x54); |
| *quant = _mm256_castsi128_si256(_mm_load_si128((const __m128i *)quant_ptr)); |
| *quant = _mm256_permute4x64_epi64(*quant, 0x54); |
| *dequant = |
| _mm256_castsi128_si256(_mm_load_si128((const __m128i *)dequant_ptr)); |
| *dequant = _mm256_permute4x64_epi64(*dequant, 0x54); |
| *shift = _mm256_castsi128_si256(_mm_load_si128((const __m128i *)shift_ptr)); |
| *shift = _mm256_permute4x64_epi64(*shift, 0x54); |
| } |
| |
| static INLINE __m256i load_coefficients_avx2(const tran_low_t *coeff_ptr) { |
| const __m256i coeff1 = _mm256_load_si256((__m256i *)(coeff_ptr)); |
| const __m256i coeff2 = _mm256_load_si256((__m256i *)(coeff_ptr + 8)); |
| return _mm256_packs_epi32(coeff1, coeff2); |
| } |
| |
| static INLINE void update_mask1_avx2(__m256i *cmp_mask, |
| const int16_t *iscan_ptr, int *is_found, |
| __m256i *mask) { |
| __m256i temp_mask = _mm256_setzero_si256(); |
| if (_mm256_movemask_epi8(*cmp_mask)) { |
| __m256i iscan = _mm256_loadu_si256((const __m256i *)(iscan_ptr)); |
| temp_mask = _mm256_and_si256(*cmp_mask, iscan); |
| *is_found = 1; |
| } |
| *mask = _mm256_max_epi16(temp_mask, *mask); |
| } |
| |
| static INLINE void update_mask0_avx2(__m256i *qcoeff, __m256i *threshold, |
| const int16_t *iscan_ptr, int *is_found, |
| __m256i *mask) { |
| __m256i zero = _mm256_setzero_si256(); |
| __m256i coeff[2], cmp_mask0, cmp_mask1; |
| coeff[0] = _mm256_unpacklo_epi16(*qcoeff, zero); |
| coeff[1] = _mm256_unpackhi_epi16(*qcoeff, zero); |
| coeff[0] = _mm256_slli_epi32(coeff[0], AOM_QM_BITS); |
| cmp_mask0 = _mm256_cmpgt_epi32(coeff[0], threshold[0]); |
| coeff[1] = _mm256_slli_epi32(coeff[1], AOM_QM_BITS); |
| cmp_mask1 = _mm256_cmpgt_epi32(coeff[1], threshold[1]); |
| cmp_mask0 = |
| _mm256_permute4x64_epi64(_mm256_packs_epi32(cmp_mask0, cmp_mask1), 0xd8); |
| update_mask1_avx2(&cmp_mask0, iscan_ptr, is_found, mask); |
| } |
| |
| static INLINE void calculate_qcoeff_avx2(__m256i *coeff, const __m256i *round, |
| const __m256i *quant, |
| const __m256i *shift) { |
| __m256i tmp, qcoeff; |
| qcoeff = _mm256_adds_epi16(*coeff, *round); |
| tmp = _mm256_mulhi_epi16(qcoeff, *quant); |
| qcoeff = _mm256_add_epi16(tmp, qcoeff); |
| *coeff = _mm256_mulhi_epi16(qcoeff, *shift); |
| } |
| |
| static INLINE __m256i calculate_dqcoeff_avx2(__m256i qcoeff, __m256i dequant) { |
| return _mm256_mullo_epi16(qcoeff, dequant); |
| } |
| |
| static INLINE void store_coefficients_avx2(__m256i coeff_vals, |
| tran_low_t *coeff_ptr) { |
| __m256i coeff_sign = _mm256_srai_epi16(coeff_vals, 15); |
| __m256i coeff_vals_lo = _mm256_unpacklo_epi16(coeff_vals, coeff_sign); |
| __m256i coeff_vals_hi = _mm256_unpackhi_epi16(coeff_vals, coeff_sign); |
| _mm256_store_si256((__m256i *)(coeff_ptr), coeff_vals_lo); |
| _mm256_store_si256((__m256i *)(coeff_ptr + 8), coeff_vals_hi); |
| } |
| |
| void aom_quantize_b_adaptive_avx2( |
| const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr, |
| const int32_t *round_ptr, const int32_t *quant_ptr, |
| const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, |
| tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr, |
| const int16_t *scan, const int16_t *iscan) { |
| int index = 16; |
| int non_zero_count = 0; |
| int non_zero_count_prescan_add_zero = 0; |
| int is_found0 = 0, is_found1 = 0; |
| int eob = -1; |
| const __m256i zero = _mm256_setzero_si256(); |
| __m256i zbin, round, quant, dequant, shift; |
| __m256i coeff, qcoeff; |
| __m256i cmp_mask, mask0 = zero, mask1 = zero; |
| __m128i temp_mask0, temp_mask1; |
| int prescan_add[2]; |
| int thresh[2]; |
| const qm_val_t wt = (1 << AOM_QM_BITS); |
| for (int i = 0; i < 2; ++i) { |
| prescan_add[i] = |
| ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS); |
| thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; |
| } |
| __m256i threshold[2]; |
| threshold[0] = _mm256_set1_epi32(thresh[0]); |
| threshold[1] = _mm256_set1_epi32(thresh[1]); |
| threshold[0] = _mm256_blend_epi32(threshold[0], threshold[1], 0xfe); |
| |
| #if SKIP_EOB_FACTOR_ADJUST |
| int first = -1; |
| #endif |
| |
| // Setup global values. |
| load_b_values_avx2(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, |
| dequant_ptr, &dequant, quant_shift_ptr, &shift); |
| |
| // Do DC and first 15 AC. |
| coeff = load_coefficients_avx2(coeff_ptr); |
| qcoeff = _mm256_abs_epi16(coeff); |
| update_mask0_avx2(&qcoeff, threshold, iscan, &is_found0, &mask0); |
| __m256i temp0 = _mm256_cmpgt_epi16(qcoeff, zbin); |
| zbin = _mm256_unpackhi_epi64(zbin, zbin); |
| cmp_mask = _mm256_permute4x64_epi64(temp0, 0xd8); |
| update_mask1_avx2(&cmp_mask, iscan, &is_found1, &mask1); |
| threshold[0] = threshold[1]; |
| if (_mm256_movemask_epi8(cmp_mask) == 0) { |
| _mm256_store_si256((__m256i *)(qcoeff_ptr), zero); |
| _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), zero); |
| _mm256_store_si256((__m256i *)(dqcoeff_ptr), zero); |
| _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), zero); |
| round = _mm256_unpackhi_epi64(round, round); |
| quant = _mm256_unpackhi_epi64(quant, quant); |
| shift = _mm256_unpackhi_epi64(shift, shift); |
| dequant = _mm256_unpackhi_epi64(dequant, dequant); |
| } else { |
| calculate_qcoeff_avx2(&qcoeff, &round, &quant, &shift); |
| round = _mm256_unpackhi_epi64(round, round); |
| quant = _mm256_unpackhi_epi64(quant, quant); |
| shift = _mm256_unpackhi_epi64(shift, shift); |
| // Reinsert signs |
| qcoeff = _mm256_sign_epi16(qcoeff, coeff); |
| // Mask out zbin threshold coeffs |
| qcoeff = _mm256_and_si256(qcoeff, temp0); |
| store_coefficients_avx2(qcoeff, qcoeff_ptr); |
| coeff = calculate_dqcoeff_avx2(qcoeff, dequant); |
| dequant = _mm256_unpackhi_epi64(dequant, dequant); |
| store_coefficients_avx2(coeff, dqcoeff_ptr); |
| } |
| |
| // AC only loop. |
| while (index < n_coeffs) { |
| coeff = load_coefficients_avx2(coeff_ptr + index); |
| qcoeff = _mm256_abs_epi16(coeff); |
| update_mask0_avx2(&qcoeff, threshold, iscan + index, &is_found0, &mask0); |
| temp0 = _mm256_cmpgt_epi16(qcoeff, zbin); |
| cmp_mask = _mm256_permute4x64_epi64(temp0, 0xd8); |
| update_mask1_avx2(&cmp_mask, iscan + index, &is_found1, &mask1); |
| if (_mm256_movemask_epi8(cmp_mask) == 0) { |
| _mm256_store_si256((__m256i *)(qcoeff_ptr + index), zero); |
| _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), zero); |
| _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), zero); |
| _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), zero); |
| index += 16; |
| continue; |
| } |
| calculate_qcoeff_avx2(&qcoeff, &round, &quant, &shift); |
| qcoeff = _mm256_sign_epi16(qcoeff, coeff); |
| qcoeff = _mm256_and_si256(qcoeff, temp0); |
| store_coefficients_avx2(qcoeff, qcoeff_ptr + index); |
| coeff = calculate_dqcoeff_avx2(qcoeff, dequant); |
| store_coefficients_avx2(coeff, dqcoeff_ptr + index); |
| index += 16; |
| } |
| if (is_found0) { |
| temp_mask0 = _mm_max_epi16(_mm256_castsi256_si128(mask0), |
| _mm256_extracti128_si256(mask0, 1)); |
| non_zero_count = calculate_non_zero_count(temp_mask0); |
| } |
| if (is_found1) { |
| temp_mask1 = _mm_max_epi16(_mm256_castsi256_si128(mask1), |
| _mm256_extracti128_si256(mask1, 1)); |
| non_zero_count_prescan_add_zero = calculate_non_zero_count(temp_mask1); |
| } |
| |
| for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { |
| const int rc = scan[i]; |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| } |
| |
| for (int i = non_zero_count - 1; i >= 0; i--) { |
| const int rc = scan[i]; |
| if (qcoeff_ptr[rc]) { |
| eob = i; |
| break; |
| } |
| } |
| |
| *eob_ptr = eob + 1; |
| #if SKIP_EOB_FACTOR_ADJUST |
| // TODO(Aniket): Experiment the following loop with intrinsic by combining |
| // with the quantization loop above |
| for (int i = 0; i < non_zero_count; i++) { |
| const int rc = scan[i]; |
| const int qcoeff0 = qcoeff_ptr[rc]; |
| if (qcoeff0) { |
| first = i; |
| break; |
| } |
| } |
| if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { |
| const int rc = scan[(*eob_ptr - 1)]; |
| if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { |
| const int coeff0 = coeff_ptr[rc] * wt; |
| const int coeff_sign = AOMSIGN(coeff0); |
| const int abs_coeff = (coeff0 ^ coeff_sign) - coeff_sign; |
| const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; |
| const int prescan_add_val = ROUND_POWER_OF_TWO( |
| dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS); |
| if (abs_coeff < |
| (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| *eob_ptr = 0; |
| } |
| } |
| } |
| #endif |
| } |