blob: fc22e0b097434ddbaddab19ea281cc4d11ac1014 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
static INLINE void accumulate_sse_sum(__m256i regx_sum, __m256i regx2_sum,
int *x_sum, int64_t *x2_sum) {
__m256i sum_buffer, sse_buffer;
__m128i out_buffer;
// Accumulate the various elements of register into first element.
sum_buffer = _mm256_permute2f128_si256(regx_sum, regx_sum, 1);
regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 8));
regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 4));
sse_buffer = _mm256_permute2f128_si256(regx2_sum, regx2_sum, 1);
regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);
regx2_sum = _mm256_add_epi64(regx2_sum, _mm256_srli_si256(regx2_sum, 8));
out_buffer = _mm256_castsi256_si128(regx_sum);
*x_sum += _mm_cvtsi128_si32(out_buffer);
out_buffer = _mm256_castsi256_si128(regx2_sum);
#if ARCH_X86_64
*x2_sum += _mm_cvtsi128_si64(out_buffer);
#else
{
int64_t tmp;
_mm_storel_epi64((__m128i *)&tmp, out_buffer);
*x2_sum += tmp;
}
#endif
}
static INLINE void sse_sum_wd4_avx2(const int16_t *data, int stride, int bh,
int *x_sum, int64_t *x2_sum) {
__m128i row1, row2, row3;
__m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
const int16_t *data_tmp = data;
__m256i one = _mm256_set1_epi16(1);
regx_sum = _mm256_setzero_si256();
regx2_sum = regx_sum;
sum_buffer = _mm256_setzero_si256();
sse_buffer = sum_buffer;
for (int j = 0; j < (bh >> 2); ++j) {
// Load 4 rows at a time.
row1 = _mm_loadl_epi64((__m128i const *)(data_tmp));
row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + stride));
row1 = _mm_unpacklo_epi64(row1, row2);
row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + 2 * stride));
row3 = _mm_loadl_epi64((__m128i const *)(data_tmp + 3 * stride));
row2 = _mm_unpacklo_epi64(row2, row3);
load_pixels =
_mm256_insertf128_si256(_mm256_castsi128_si256(row1), row2, 1);
row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
data_tmp += 4 * stride;
}
// To prevent 32-bit variable overflow, unpack the elements to 64-bit.
temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);
accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}
static INLINE void sse_sum_wd8_avx2(const int16_t *data, int stride, int bh,
int *x_sum, int64_t *x2_sum) {
__m128i load_128bit, load_next_128bit;
__m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
const int16_t *data_tmp = data;
__m256i one = _mm256_set1_epi16(1);
regx_sum = _mm256_setzero_si256();
regx2_sum = regx_sum;
sum_buffer = _mm256_setzero_si256();
sse_buffer = sum_buffer;
for (int j = 0; j < (bh >> 1); ++j) {
// Load 2 rows at a time.
load_128bit = _mm_loadu_si128((__m128i const *)(data_tmp));
load_next_128bit = _mm_loadu_si128((__m128i const *)(data_tmp + stride));
load_pixels = _mm256_insertf128_si256(_mm256_castsi128_si256(load_128bit),
load_next_128bit, 1);
row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
data_tmp += 2 * stride;
}
temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);
accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}
static INLINE void sse_sum_wd16_avx2(const int16_t *data, int stride, int bh,
int *x_sum, int64_t *x2_sum,
int loop_count) {
__m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
const int16_t *data_tmp = data;
__m256i one = _mm256_set1_epi16(1);
regx_sum = _mm256_setzero_si256();
regx2_sum = regx_sum;
sum_buffer = _mm256_setzero_si256();
sse_buffer = sum_buffer;
for (int i = 0; i < loop_count; ++i) {
data_tmp = data + 16 * i;
for (int j = 0; j < bh; ++j) {
load_pixels = _mm256_lddqu_si256((__m256i const *)(data_tmp));
row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
data_tmp += stride;
}
}
temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);
accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}
void aom_get_blk_sse_sum_avx2(const int16_t *data, int stride, int bw, int bh,
int *x_sum, int64_t *x2_sum) {
*x_sum = 0;
*x2_sum = 0;
if ((bh & 3) == 0) {
switch (bw) {
// For smaller block widths, compute multiple rows simultaneously.
case 4: sse_sum_wd4_avx2(data, stride, bh, x_sum, x2_sum); break;
case 8: sse_sum_wd8_avx2(data, stride, bh, x_sum, x2_sum); break;
case 16:
case 32:
sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4);
break;
case 64:
// 32-bit variables will overflow for 64 rows at a single time, so
// compute 32 rows at a time.
if (bh <= 32) {
sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4);
} else {
sse_sum_wd16_avx2(data, stride, 32, x_sum, x2_sum, bw >> 4);
sse_sum_wd16_avx2(data + 32 * stride, stride, 32, x_sum, x2_sum,
bw >> 4);
}
break;
default: aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum);
}
} else {
aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum);
}
}