| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_ |
| #define AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_ |
| |
| #include <emmintrin.h> |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| static INLINE __m256i pair_set_w16_epi16(int16_t a, int16_t b) { |
| return _mm256_set1_epi32( |
| (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); |
| } |
| |
| #if CONFIG_ADST_TUNED |
| void iadst_matrix_mult_avx2(__m256i *in, __m256i *out, int bit, int do_cols, |
| int bd, int out_shift, const int32_t *kernel, |
| int kernel_size, int num_cols); |
| |
| static INLINE void round_shift_avx2(__m256i *in, const __m256i _r, |
| const int bit) { |
| __m256i a0 = _mm256_add_epi32(*in, _r); |
| *in = _mm256_srai_epi32(a0, bit); |
| } |
| |
| static INLINE __m256i interleave_coefs_avx2(const int32_t a, const int32_t b) { |
| const __m128i coef1 = _mm_set1_epi16(a); |
| const __m128i coef2 = _mm_set1_epi16(b); |
| const __m256i coef = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(coef1), coef2, 0x1); |
| return coef; |
| } |
| |
| static INLINE void matrix_coef_mult_avx2(const __m256i w0, const __m256i w1, |
| const __m256i in0, const __m256i in1, |
| __m256i *out0, __m256i *out1) { |
| __m256i t0 = _mm256_unpacklo_epi16(in0, in1); |
| __m256i t1 = _mm256_unpackhi_epi16(in0, in1); |
| |
| __m256i v0 = _mm256_unpacklo_epi16(w0, w1); |
| __m256i v1 = _mm256_unpackhi_epi16(w0, w1); |
| |
| *out0 = _mm256_madd_epi16(t0, v0); |
| *out1 = _mm256_madd_epi16(t1, v1); |
| } |
| #endif // CONFIG_ADST_TUNED |
| |
| static INLINE void btf_16_w16_avx2(const __m256i w0, const __m256i w1, |
| __m256i *in0, __m256i *in1, const __m256i _r, |
| const int32_t cos_bit) { |
| __m256i t0 = _mm256_unpacklo_epi16(*in0, *in1); |
| __m256i t1 = _mm256_unpackhi_epi16(*in0, *in1); |
| __m256i u0 = _mm256_madd_epi16(t0, w0); |
| __m256i u1 = _mm256_madd_epi16(t1, w0); |
| __m256i v0 = _mm256_madd_epi16(t0, w1); |
| __m256i v1 = _mm256_madd_epi16(t1, w1); |
| |
| __m256i a0 = _mm256_add_epi32(u0, _r); |
| __m256i a1 = _mm256_add_epi32(u1, _r); |
| __m256i b0 = _mm256_add_epi32(v0, _r); |
| __m256i b1 = _mm256_add_epi32(v1, _r); |
| |
| __m256i c0 = _mm256_srai_epi32(a0, cos_bit); |
| __m256i c1 = _mm256_srai_epi32(a1, cos_bit); |
| __m256i d0 = _mm256_srai_epi32(b0, cos_bit); |
| __m256i d1 = _mm256_srai_epi32(b1, cos_bit); |
| |
| *in0 = _mm256_packs_epi32(c0, c1); |
| *in1 = _mm256_packs_epi32(d0, d1); |
| } |
| |
| static INLINE void btf_16_adds_subs_avx2(__m256i *in0, __m256i *in1) { |
| const __m256i _in0 = *in0; |
| const __m256i _in1 = *in1; |
| *in0 = _mm256_adds_epi16(_in0, _in1); |
| *in1 = _mm256_subs_epi16(_in0, _in1); |
| } |
| |
| static INLINE void btf_32_add_sub_avx2(__m256i *in0, __m256i *in1) { |
| const __m256i _in0 = *in0; |
| const __m256i _in1 = *in1; |
| *in0 = _mm256_add_epi32(_in0, _in1); |
| *in1 = _mm256_sub_epi32(_in0, _in1); |
| } |
| |
| static INLINE void btf_16_adds_subs_out_avx2(__m256i *out0, __m256i *out1, |
| __m256i in0, __m256i in1) { |
| const __m256i _in0 = in0; |
| const __m256i _in1 = in1; |
| *out0 = _mm256_adds_epi16(_in0, _in1); |
| *out1 = _mm256_subs_epi16(_in0, _in1); |
| } |
| |
| static INLINE void btf_32_add_sub_out_avx2(__m256i *out0, __m256i *out1, |
| __m256i in0, __m256i in1) { |
| const __m256i _in0 = in0; |
| const __m256i _in1 = in1; |
| *out0 = _mm256_add_epi32(_in0, _in1); |
| *out1 = _mm256_sub_epi32(_in0, _in1); |
| } |
| |
| static INLINE __m256i load_16bit_to_16bit_avx2(const int16_t *a) { |
| return _mm256_load_si256((const __m256i *)a); |
| } |
| |
| static INLINE void load_buffer_16bit_to_16bit_avx2(const int16_t *in, |
| int stride, __m256i *out, |
| int out_size) { |
| for (int i = 0; i < out_size; ++i) { |
| out[i] = load_16bit_to_16bit_avx2(in + i * stride); |
| } |
| } |
| |
| static INLINE void load_buffer_16bit_to_16bit_flip_avx2(const int16_t *in, |
| int stride, |
| __m256i *out, |
| int out_size) { |
| for (int i = 0; i < out_size; ++i) { |
| out[out_size - i - 1] = load_16bit_to_16bit_avx2(in + i * stride); |
| } |
| } |
| |
| static INLINE __m256i load_32bit_to_16bit_w16_avx2(const int32_t *a) { |
| const __m256i a_low = _mm256_lddqu_si256((const __m256i *)a); |
| const __m256i b = _mm256_packs_epi32(a_low, *(const __m256i *)(a + 8)); |
| return _mm256_permute4x64_epi64(b, 0xD8); |
| } |
| |
| static INLINE void load_buffer_32bit_to_16bit_w16_avx2(const int32_t *in, |
| int stride, __m256i *out, |
| int out_size) { |
| for (int i = 0; i < out_size; ++i) { |
| out[i] = load_32bit_to_16bit_w16_avx2(in + i * stride); |
| } |
| } |
| |
| static INLINE void transpose2_8x8_avx2(const __m256i *const in, |
| __m256i *const out) { |
| __m256i t[16], u[16]; |
| // (1st, 2nd) ==> (lo, hi) |
| // (0, 1) ==> (0, 1) |
| // (2, 3) ==> (2, 3) |
| // (4, 5) ==> (4, 5) |
| // (6, 7) ==> (6, 7) |
| for (int i = 0; i < 4; i++) { |
| t[2 * i] = _mm256_unpacklo_epi16(in[2 * i], in[2 * i + 1]); |
| t[2 * i + 1] = _mm256_unpackhi_epi16(in[2 * i], in[2 * i + 1]); |
| } |
| |
| // (1st, 2nd) ==> (lo, hi) |
| // (0, 2) ==> (0, 2) |
| // (1, 3) ==> (1, 3) |
| // (4, 6) ==> (4, 6) |
| // (5, 7) ==> (5, 7) |
| for (int i = 0; i < 2; i++) { |
| u[i] = _mm256_unpacklo_epi32(t[i], t[i + 2]); |
| u[i + 2] = _mm256_unpackhi_epi32(t[i], t[i + 2]); |
| |
| u[i + 4] = _mm256_unpacklo_epi32(t[i + 4], t[i + 6]); |
| u[i + 6] = _mm256_unpackhi_epi32(t[i + 4], t[i + 6]); |
| } |
| |
| // (1st, 2nd) ==> (lo, hi) |
| // (0, 4) ==> (0, 1) |
| // (1, 5) ==> (4, 5) |
| // (2, 6) ==> (2, 3) |
| // (3, 7) ==> (6, 7) |
| for (int i = 0; i < 2; i++) { |
| out[2 * i] = _mm256_unpacklo_epi64(u[2 * i], u[2 * i + 4]); |
| out[2 * i + 1] = _mm256_unpackhi_epi64(u[2 * i], u[2 * i + 4]); |
| |
| out[2 * i + 4] = _mm256_unpacklo_epi64(u[2 * i + 1], u[2 * i + 5]); |
| out[2 * i + 5] = _mm256_unpackhi_epi64(u[2 * i + 1], u[2 * i + 5]); |
| } |
| } |
| |
| static INLINE void transpose_16bit_16x16_avx2(const __m256i *const in, |
| __m256i *const out) { |
| __m256i t[16]; |
| |
| #define LOADL(idx) \ |
| t[idx] = _mm256_castsi128_si256(_mm_load_si128((__m128i const *)&in[idx])); \ |
| t[idx] = _mm256_inserti128_si256( \ |
| t[idx], _mm_load_si128((__m128i const *)&in[idx + 8]), 1); |
| |
| #define LOADR(idx) \ |
| t[8 + idx] = \ |
| _mm256_castsi128_si256(_mm_load_si128((__m128i const *)&in[idx] + 1)); \ |
| t[8 + idx] = _mm256_inserti128_si256( \ |
| t[8 + idx], _mm_load_si128((__m128i const *)&in[idx + 8] + 1), 1); |
| |
| // load left 8x16 |
| LOADL(0) |
| LOADL(1) |
| LOADL(2) |
| LOADL(3) |
| LOADL(4) |
| LOADL(5) |
| LOADL(6) |
| LOADL(7) |
| |
| // load right 8x16 |
| LOADR(0) |
| LOADR(1) |
| LOADR(2) |
| LOADR(3) |
| LOADR(4) |
| LOADR(5) |
| LOADR(6) |
| LOADR(7) |
| |
| // get the top 16x8 result |
| transpose2_8x8_avx2(t, out); |
| // get the bottom 16x8 result |
| transpose2_8x8_avx2(&t[8], &out[8]); |
| } |
| |
| static INLINE void transpose_16bit_16x8_avx2(const __m256i *const in, |
| __m256i *const out) { |
| const __m256i a0 = _mm256_unpacklo_epi16(in[0], in[1]); |
| const __m256i a1 = _mm256_unpacklo_epi16(in[2], in[3]); |
| const __m256i a2 = _mm256_unpacklo_epi16(in[4], in[5]); |
| const __m256i a3 = _mm256_unpacklo_epi16(in[6], in[7]); |
| const __m256i a4 = _mm256_unpackhi_epi16(in[0], in[1]); |
| const __m256i a5 = _mm256_unpackhi_epi16(in[2], in[3]); |
| const __m256i a6 = _mm256_unpackhi_epi16(in[4], in[5]); |
| const __m256i a7 = _mm256_unpackhi_epi16(in[6], in[7]); |
| |
| const __m256i b0 = _mm256_unpacklo_epi32(a0, a1); |
| const __m256i b1 = _mm256_unpacklo_epi32(a2, a3); |
| const __m256i b2 = _mm256_unpacklo_epi32(a4, a5); |
| const __m256i b3 = _mm256_unpacklo_epi32(a6, a7); |
| const __m256i b4 = _mm256_unpackhi_epi32(a0, a1); |
| const __m256i b5 = _mm256_unpackhi_epi32(a2, a3); |
| const __m256i b6 = _mm256_unpackhi_epi32(a4, a5); |
| const __m256i b7 = _mm256_unpackhi_epi32(a6, a7); |
| |
| out[0] = _mm256_unpacklo_epi64(b0, b1); |
| out[1] = _mm256_unpackhi_epi64(b0, b1); |
| out[2] = _mm256_unpacklo_epi64(b4, b5); |
| out[3] = _mm256_unpackhi_epi64(b4, b5); |
| out[4] = _mm256_unpacklo_epi64(b2, b3); |
| out[5] = _mm256_unpackhi_epi64(b2, b3); |
| out[6] = _mm256_unpacklo_epi64(b6, b7); |
| out[7] = _mm256_unpackhi_epi64(b6, b7); |
| } |
| |
| static INLINE void flip_buf_avx2(__m256i *in, __m256i *out, int size) { |
| for (int i = 0; i < size; ++i) { |
| out[size - i - 1] = in[i]; |
| } |
| } |
| |
| static INLINE void round_shift_16bit_w16_avx2(__m256i *in, int size, int bit) { |
| if (bit < 0) { |
| bit = -bit; |
| __m256i round = _mm256_set1_epi16(1 << (bit - 1)); |
| for (int i = 0; i < size; ++i) { |
| in[i] = _mm256_adds_epi16(in[i], round); |
| in[i] = _mm256_srai_epi16(in[i], bit); |
| } |
| } else if (bit > 0) { |
| for (int i = 0; i < size; ++i) { |
| in[i] = _mm256_slli_epi16(in[i], bit); |
| } |
| } |
| } |
| |
| static INLINE __m256i av1_round_shift_32_avx2(__m256i vec, int bit) { |
| __m256i tmp, round; |
| round = _mm256_set1_epi32(1 << (bit - 1)); |
| tmp = _mm256_add_epi32(vec, round); |
| return _mm256_srai_epi32(tmp, bit); |
| } |
| |
| static INLINE void av1_round_shift_array_32_avx2(__m256i *input, |
| __m256i *output, |
| const int size, |
| const int bit) { |
| if (bit > 0) { |
| int i; |
| for (i = 0; i < size; i++) { |
| output[i] = av1_round_shift_32_avx2(input[i], bit); |
| } |
| } else { |
| int i; |
| for (i = 0; i < size; i++) { |
| output[i] = _mm256_slli_epi32(input[i], -bit); |
| } |
| } |
| } |
| |
| static INLINE void av1_round_shift_rect_array_32_avx2(__m256i *input, |
| __m256i *output, |
| const int size, |
| const int bit, |
| const int val) { |
| const __m256i sqrt2 = _mm256_set1_epi32(val); |
| if (bit > 0) { |
| int i; |
| for (i = 0; i < size; i++) { |
| const __m256i r0 = av1_round_shift_32_avx2(input[i], bit); |
| const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0); |
| output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits); |
| } |
| } else { |
| int i; |
| for (i = 0; i < size; i++) { |
| const __m256i r0 = _mm256_slli_epi32(input[i], -bit); |
| const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0); |
| output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits); |
| } |
| } |
| } |
| |
| static INLINE __m256i scale_round_avx2(const __m256i a, const int scale) { |
| const __m256i scale_rounding = |
| pair_set_w16_epi16(scale, 1 << (NewSqrt2Bits - 1)); |
| const __m256i b = _mm256_madd_epi16(a, scale_rounding); |
| return _mm256_srai_epi32(b, NewSqrt2Bits); |
| } |
| |
| static INLINE void store_rect_16bit_to_32bit_w8_avx2(const __m256i a, |
| int32_t *const b) { |
| const __m256i one = _mm256_set1_epi16(1); |
| const __m256i a_lo = _mm256_unpacklo_epi16(a, one); |
| const __m256i a_hi = _mm256_unpackhi_epi16(a, one); |
| const __m256i b_lo = scale_round_avx2(a_lo, NewSqrt2); |
| const __m256i b_hi = scale_round_avx2(a_hi, NewSqrt2); |
| const __m256i temp = _mm256_permute2f128_si256(b_lo, b_hi, 0x31); |
| _mm_store_si128((__m128i *)b, _mm256_castsi256_si128(b_lo)); |
| _mm_store_si128((__m128i *)(b + 4), _mm256_castsi256_si128(b_hi)); |
| _mm256_store_si256((__m256i *)(b + 64), temp); |
| } |
| |
| static INLINE void store_rect_buffer_16bit_to_32bit_w8_avx2( |
| const __m256i *const in, int32_t *const out, const int stride, |
| const int out_size) { |
| for (int i = 0; i < out_size; ++i) { |
| store_rect_16bit_to_32bit_w8_avx2(in[i], out + i * stride); |
| } |
| } |
| |
| static INLINE void pack_reg(const __m128i *in1, const __m128i *in2, |
| __m256i *out) { |
| out[0] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[0]), in2[0], 0x1); |
| out[1] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[1]), in2[1], 0x1); |
| out[2] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[2]), in2[2], 0x1); |
| out[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[3]), in2[3], 0x1); |
| out[4] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[4]), in2[4], 0x1); |
| out[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[5]), in2[5], 0x1); |
| out[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[6]), in2[6], 0x1); |
| out[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(in1[7]), in2[7], 0x1); |
| } |
| |
| static INLINE void extract_reg(const __m256i *in, __m128i *out1) { |
| out1[0] = _mm256_castsi256_si128(in[0]); |
| out1[1] = _mm256_castsi256_si128(in[1]); |
| out1[2] = _mm256_castsi256_si128(in[2]); |
| out1[3] = _mm256_castsi256_si128(in[3]); |
| out1[4] = _mm256_castsi256_si128(in[4]); |
| out1[5] = _mm256_castsi256_si128(in[5]); |
| out1[6] = _mm256_castsi256_si128(in[6]); |
| out1[7] = _mm256_castsi256_si128(in[7]); |
| |
| out1[8] = _mm256_extracti128_si256(in[0], 0x01); |
| out1[9] = _mm256_extracti128_si256(in[1], 0x01); |
| out1[10] = _mm256_extracti128_si256(in[2], 0x01); |
| out1[11] = _mm256_extracti128_si256(in[3], 0x01); |
| out1[12] = _mm256_extracti128_si256(in[4], 0x01); |
| out1[13] = _mm256_extracti128_si256(in[5], 0x01); |
| out1[14] = _mm256_extracti128_si256(in[6], 0x01); |
| out1[15] = _mm256_extracti128_si256(in[7], 0x01); |
| } |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif // AOM_AOM_DSP_X86_TXFM_COMMON_AVX2_H_ |