blob: 7d35aa498d8b51058349ef04fe41d9c575dc7a3e [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"
#include "config/av1_rtcd.h"
#if CONFIG_IMPROVED_CFL
#include "av1/common/warped_motion.h"
#endif
void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) {
assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3));
memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3));
memset(&cfl->mhccp_ref_buf_q3, 0, sizeof(cfl->mhccp_ref_buf_q3));
cfl->subsampling_x = seq_params->subsampling_x;
cfl->subsampling_y = seq_params->subsampling_y;
cfl->are_parameters_computed = 0;
cfl->store_y = 0;
// The DC_PRED cache is disabled by default and is only enabled in
// cfl_rd_pick_alpha
cfl->use_dc_pred_cache = 0;
cfl->dc_pred_is_cached[CFL_PRED_U] = 0;
cfl->dc_pred_is_cached[CFL_PRED_V] = 0;
}
void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint16_t *input,
CFL_PRED_TYPE pred_plane, int width) {
assert(pred_plane < CFL_PRED_PLANES);
assert(width <= CFL_BUF_LINE);
memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width * sizeof(*input));
return;
}
static void cfl_load_dc_pred_hbd(const uint16_t *dc_pred_cache, uint16_t *dst,
int dst_stride, int width, int height) {
const size_t num_bytes = width * sizeof(*dst);
for (int j = 0; j < height; j++) {
memcpy(dst, dc_pred_cache, num_bytes);
dst += dst_stride;
}
}
void cfl_load_dc_pred(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride,
TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) {
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
assert(pred_plane < CFL_PRED_PLANES);
assert(width <= CFL_BUF_LINE);
assert(height <= CFL_BUF_LINE);
cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride,
width, height);
}
// Due to frame boundary issues, it is possible that the total area covered by
// chroma exceeds that of luma. When this happens, we fill the missing pixels by
// repeating the last columns and/or rows.
static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
const int diff_width = width - cfl->buf_width;
const int diff_height = height - cfl->buf_height;
uint16_t last_pixel;
if (diff_width > 0) {
const int min_height = height - diff_height;
uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width);
for (int j = 0; j < min_height; j++) {
last_pixel = recon_buf_q3[-1];
assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
for (int i = 0; i < diff_width; i++) {
recon_buf_q3[i] = last_pixel;
}
recon_buf_q3 += CFL_BUF_LINE;
}
cfl->buf_width = width;
}
if (diff_height > 0) {
uint16_t *recon_buf_q3 =
cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE);
for (int j = 0; j < diff_height; j++) {
const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE;
assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
for (int i = 0; i < width; i++) {
recon_buf_q3[i] = last_row_q3[i];
}
recon_buf_q3 += CFL_BUF_LINE;
}
cfl->buf_height = height;
}
}
static void subtract_average_c(const uint16_t *src, int16_t *dst, int width,
int height, int round_offset, int num_pel_log2) {
int sum = round_offset;
const uint16_t *recon = src;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
sum += recon[i];
}
recon += CFL_BUF_LINE;
}
const int avg = sum >> num_pel_log2;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] = src[i] - avg;
}
src += CFL_BUF_LINE;
dst += CFL_BUF_LINE;
}
}
CFL_SUB_AVG_FN(c)
static INLINE int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign,
CFL_PRED_TYPE pred_type) {
const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
: CFL_SIGN_V(joint_sign);
if (alpha_sign == CFL_SIGN_ZERO) return 0;
const int abs_alpha_q3 =
(pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
}
void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride,
int alpha_q3, int bit_depth, int width, int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] = clip_pixel_highbd(
get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth);
}
dst += dst_stride;
ac_buf_q3 += CFL_BUF_LINE;
}
}
CFL_PREDICT_FN(c, hbd)
#if !CONFIG_IMPROVED_CFL
static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
// Do not call cfl_compute_parameters multiple time on the same values.
assert(cfl->are_parameters_computed == 0);
cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
cfl_get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3);
cfl->are_parameters_computed = 1;
}
#endif
#if CONFIG_IMPROVED_CFL
// Subtract the average from neighoring pixels
static void subtract_average_neighbor(const uint16_t *src, int16_t *dst,
int width, int height, int avg) {
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
dst[i] = src[i] - avg;
}
src += CFL_BUF_LINE;
dst += CFL_BUF_LINE;
}
}
// Calculate luma AC values with neighbor DC
static void cfl_compute_parameters_alt(CFL_CTX *const cfl, TX_SIZE tx_size) {
cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
subtract_average_neighbor(cfl->recon_buf_q3, cfl->ac_buf_q3,
tx_size_wide[tx_size], tx_size_high[tx_size],
cfl->avg_l);
cfl->are_parameters_computed = 1;
}
void cfl_implicit_fetch_neighbor_luma(const AV1_COMMON *cm,
MACROBLOCKD *const xd, int row, int col,
TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
int input_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int row_start = ((xd->mi_row + row) << MI_SIZE_LOG2);
const int col_start = ((xd->mi_col + col) << MI_SIZE_LOG2);
#if CONFIG_EXT_RECUR_PARTITIONS
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_Y);
#else
const int have_top =
row || (sub_y ? xd->chroma_up_available : xd->up_available);
const int have_left =
col || (sub_x ? xd->chroma_left_available : xd->left_available);
#endif // CONFIG_EXT_RECUR_PARTITIONS
memset(cfl->recon_yuv_buf_above[0], 0, sizeof(cfl->recon_yuv_buf_above[0]));
memset(cfl->recon_yuv_buf_left[0], 0, sizeof(cfl->recon_yuv_buf_left[0]));
// top boundary
uint16_t *output_q3 = cfl->recon_yuv_buf_above[0];
if (have_top) {
if (sub_x && sub_y) {
uint16_t *input = dst - 2 * input_stride;
for (int i = 0; i < width; i += 2) {
const int bot = i + input_stride;
#if CONFIG_IMPROVED_CFL
const int filter_type = cm->seq_params.enable_cfl_ds_filter;
if (filter_type == 1) {
output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 2 * input[i] +
input[i + 1] + input[bot + AOMMAX(-1, -i)] +
2 * input[bot] + input[bot + 1];
} else if (filter_type == 2) {
const int top = i - input_stride;
output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 4 * input[i] +
input[i + 1] + input[top] + input[bot];
} else {
output_q3[i >> 1] =
(input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
}
#else
output_q3[i >> 1] =
(input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
#endif // CONFIG_IMPROVED_CFL
}
#if CONFIG_IMPROVED_CFL
} else if (sub_x) {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; i += 2) {
const int filter_type = cm->seq_params.enable_cfl_ds_filter;
if (filter_type == 1) {
output_q3[i >> 1] =
(input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1;
} else if (filter_type == 2) {
output_q3[i >> 1] = input[i] << 3;
} else {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
}
#endif // CONFIG_IMPROVED_CFL
} else if (sub_y) {
uint16_t *input = dst - 2 * input_stride;
for (int i = 0; i < width; ++i) {
const int bot = i + input_stride;
output_q3[i] = (input[i] + input[bot]) << 2;
}
} else {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; ++i) output_q3[i] = input[i] << 3;
}
if (col_start >= cm->width) {
assert(width <= MI_SIZE);
const uint16_t mid = (1 << xd->bd) >> 1;
for (int j = 0; j < width >> sub_x; ++j) {
output_q3[j] = mid;
}
} else if ((col_start + width) > cm->width) {
int temp = width - ((col_start + width) - cm->width);
assert(temp > 0 && temp < width);
for (int i = temp >> sub_x; i < width >> sub_x; ++i) {
output_q3[i] = output_q3[i - 1];
}
}
}
// left boundary
output_q3 = cfl->recon_yuv_buf_left[0];
if (have_left) {
if (sub_x && sub_y) {
uint16_t *input = dst - 2;
for (int j = 0; j < height; j += 2) {
const int bot = input_stride;
#if CONFIG_IMPROVED_CFL
const int filter_type = cm->seq_params.enable_cfl_ds_filter;
if (filter_type == 1) {
output_q3[j >> 1] = input[-1] + 2 * input[0] + input[1] +
input[bot - 1] + 2 * input[bot] + input[bot + 1];
} else if (filter_type == 2) {
const int top = (j == 0) ? 0 : (0 - input_stride);
output_q3[j >> 1] =
input[-1] + 4 * input[0] + input[1] + input[top] + input[bot];
} else {
output_q3[j >> 1] =
(input[0] + input[1] + input[bot] + input[bot + 1]) << 1;
}
#else
output_q3[j >> 1] = (input[0] + input[1] + input[bot] + input[bot + 1])
<< 1;
#endif // CONFIG_IMPROVED_CFL
input += input_stride * 2;
}
#if CONFIG_IMPROVED_CFL
} else if (sub_x) {
uint16_t *input = dst - 2;
for (int j = 0; j < height; ++j) {
const int filter_type = cm->seq_params.enable_cfl_ds_filter;
if (filter_type == 1) {
output_q3[j] = (input[-1] + 2 * input[0] + input[1]) << 1;
} else if (filter_type == 2) {
output_q3[j] = input[0] << 3;
} else {
output_q3[j] = (input[0] + input[1]) << 2;
}
input += input_stride;
}
#endif // CONFIG_IMPROVED_CFL
} else if (sub_y) {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j) {
output_q3[j] = (input[0] + input[input_stride]) << 2;
input += input_stride * 2;
}
} else {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j)
output_q3[j] = input[j * input_stride] << 3;
}
if (row_start >= cm->height) {
assert(height <= MI_SIZE);
const uint16_t mid = (1 << xd->bd) >> 1;
for (int j = 0; j < height >> sub_y; ++j) {
output_q3[j] = mid;
}
} else if ((row_start + height) > cm->height) {
int temp = height - ((row_start + height) - cm->height);
assert(temp > 0 && temp < height);
for (int j = temp >> sub_y; j < height >> sub_y; ++j) {
output_q3[j] = output_q3[j - 1];
}
}
}
}
void cfl_calc_luma_dc(MACROBLOCKD *const xd, int row, int col,
TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
#if CONFIG_EXT_RECUR_PARTITIONS
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_Y);
#else
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int have_top =
row || (sub_y ? xd->chroma_up_available : xd->up_available);
const int have_left =
col || (sub_x ? xd->chroma_left_available : xd->left_available);
#endif // CONFIG_EXT_RECUR_PARTITIONS
int count = 0;
int sum_x = 0;
uint16_t *l;
if (have_top) {
l = cfl->recon_yuv_buf_above[0];
for (int i = 0; i < width; ++i) {
sum_x += l[i];
}
count += width;
}
if (have_left) {
l = cfl->recon_yuv_buf_left[0];
for (int i = 0; i < height; ++i) {
sum_x += l[i];
}
count += height;
}
if (count > 0) {
cfl->avg_l = (sum_x + count / 2) / count;
} else {
cfl->avg_l = 8 << (xd->bd - 1);
}
}
void cfl_implicit_fetch_neighbor_chroma(const AV1_COMMON *cm,
MACROBLOCKD *const xd, int plane,
int row, int col, TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[plane];
int input_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
int pic_width_c = cm->width >> sub_x;
int pic_height_c = cm->height >> sub_y;
const int row_start = (((xd->mi_row >> sub_y) + row) << MI_SIZE_LOG2);
const int col_start = (((xd->mi_col >> sub_x) + col) << MI_SIZE_LOG2);
#if CONFIG_EXT_RECUR_PARTITIONS
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, plane);
#else
const int have_top =
row || (sub_y ? xd->chroma_up_available : xd->up_available);
const int have_left =
col || (sub_x ? xd->chroma_left_available : xd->left_available);
#endif // CONFIG_EXT_RECUR_PARTITIONS
memset(cfl->recon_yuv_buf_above[plane], 0,
sizeof(cfl->recon_yuv_buf_above[plane]));
memset(cfl->recon_yuv_buf_left[plane], 0,
sizeof(cfl->recon_yuv_buf_left[plane]));
// top boundary
uint16_t *output_q3 = cfl->recon_yuv_buf_above[plane];
if (have_top) {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; ++i) {
output_q3[i] = input[i];
}
if (col_start > pic_width_c) {
const uint16_t mid = (1 << xd->bd) >> 1;
for (int i = 0; i < width; ++i) {
output_q3[i] = mid;
}
} else if ((col_start + width) > pic_width_c) {
int temp = width - ((col_start + width) - pic_width_c);
assert(temp > 0 && temp < width);
for (int i = temp; i < width; ++i) {
output_q3[i] = output_q3[i - 1];
}
}
}
// left boundary
output_q3 = cfl->recon_yuv_buf_left[plane];
if (have_left) {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j) {
output_q3[j] = input[0];
input += input_stride;
}
if (row_start >= cm->height) {
const uint16_t mid = (1 << xd->bd) >> 1;
for (int i = 0; i < height; ++i) {
output_q3[i] = mid;
}
} else if ((row_start + height) > pic_height_c) {
int temp = height - ((row_start + height) - pic_height_c);
assert(temp > 0 && temp < height);
for (int j = temp; j < height; ++j) {
output_q3[j] = output_q3[j - 1];
}
}
}
}
void cfl_derive_implicit_scaling_factor(MACROBLOCKD *const xd, int plane,
int row, int col, TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
#if CONFIG_EXT_RECUR_PARTITIONS
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, plane);
#else
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int have_top =
row || (sub_y ? xd->chroma_up_available : xd->up_available);
const int have_left =
col || (sub_x ? xd->chroma_left_available : xd->left_available);
#endif // CONFIG_EXT_RECUR_PARTITIONS
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
uint16_t *l, *c;
if (have_top) {
l = cfl->recon_yuv_buf_above[0];
c = cfl->recon_yuv_buf_above[plane];
for (int i = 0; i < width; ++i) {
sum_x += l[i] >> 3;
sum_y += c[i];
sum_xy += (l[i] >> 3) * c[i];
sum_xx += (l[i] >> 3) * (l[i] >> 3);
}
count += width;
}
if (have_left) {
l = cfl->recon_yuv_buf_left[0];
c = cfl->recon_yuv_buf_left[plane];
for (int i = 0; i < height; ++i) {
sum_x += l[i] >> 3;
sum_y += c[i];
sum_xy += (l[i] >> 3) * c[i];
sum_xx += (l[i] >> 3) * (l[i] >> 3);
}
count += height;
}
if (count > 0) {
const int32_t der = sum_xx - (int32_t)((int64_t)sum_x * sum_x / count);
const int32_t nor = sum_xy - (int32_t)((int64_t)sum_x * sum_y / count);
const int16_t shift = 3 + CFL_ADD_BITS_ALPHA;
mbmi->cfl_implicit_alpha[plane - 1] =
resolve_divisor_32_CfL(nor, der, shift);
} else {
mbmi->cfl_implicit_alpha[plane - 1] = 0;
}
}
#endif
#if CONFIG_IMPROVED_CFL
void cfl_derive_block_implicit_scaling_factor(uint16_t *l, const uint16_t *c,
const int width, const int height,
const int stride,
const int chroma_stride,
int *alpha) {
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
sum_x += l[i + j * stride] >> 3;
sum_y += c[i + j * chroma_stride];
sum_xy += (l[i + j * stride] >> 3) * c[i + j * chroma_stride];
sum_xx += (l[i + j * stride] >> 3) * (l[i + j * stride] >> 3);
}
count += width;
}
if (count > 0) {
const int32_t der = sum_xx - (int32_t)((int64_t)sum_x * sum_x / count);
const int32_t nor = sum_xy - (int32_t)((int64_t)sum_x * sum_y / count);
const int16_t shift = 3 + CFL_ADD_BITS_ALPHA;
*alpha = resolve_divisor_32_CfL(nor, der, shift);
} else {
*alpha = 0;
}
}
#endif // CONFIG_IMPROVED_CFL
void cfl_predict_block(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride,
TX_SIZE tx_size, int plane, bool have_top,
bool have_left, int above_lines, int left_lines) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(is_cfl_allowed(xd));
#if CONFIG_IMPROVED_CFL
cfl_compute_parameters_alt(cfl, tx_size);
int alpha_q3;
#if CONFIG_ENABLE_MHCCP
if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 0) {
mhccp_predict_hv_hbd_c(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines +
(uint16_t)above_lines * CFL_BUF_LINE * 2,
dst, have_top, have_left, dst_stride,
mbmi->mhccp_implicit_param[plane - 1], xd->bd,
tx_size_wide[tx_size], tx_size_high[tx_size], 0);
return;
} else if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 1) {
mhccp_predict_hv_hbd_c(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines +
(uint16_t)above_lines * CFL_BUF_LINE * 2,
dst, have_top, have_left, dst_stride,
mbmi->mhccp_implicit_param[plane - 1], xd->bd,
tx_size_wide[tx_size], tx_size_high[tx_size], 1);
return;
} else
#endif // CONFIG_ENABLE_MHCCP
if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) {
alpha_q3 = mbmi->cfl_implicit_alpha[plane - 1];
} else {
alpha_q3 = cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs,
plane - 1);
alpha_q3 *= (1 << CFL_ADD_BITS_ALPHA);
}
#else
if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size);
const int alpha_q3 =
cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
#endif
assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <=
CFL_BUF_SQUARE);
cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3,
xd->bd);
}
static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
for (int i = 0; i < width; i += 2) {
const int bot = i + input_stride;
output_q3[i >> 1] =
(input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
#if CONFIG_IMPROVED_CFL
void cfl_luma_subsampling_420_hbd_colocated(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
for (int i = 0; i < width; i += 2) {
const int top = (j == 0) ? i : (i - input_stride);
const int bot = i + input_stride;
output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 4 * input[i] +
input[i + 1] + input[top] + input[bot];
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
void cfl_luma_subsampling_420_hbd_121_c(const uint16_t *input, int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
output_q3[0] = 3 * input[0] + input[1] + 3 * input[input_stride] +
input[input_stride + 1];
for (int i = 2; i < width; i += 2) {
const int bot = i + input_stride;
output_q3[i >> 1] = input[i - 1] + 2 * input[i] + input[i + 1] +
input[bot - 1] + 2 * input[bot] + input[bot + 1];
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
#endif // CONFIG_IMPROVED_CFL
static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 2) {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
#if CONFIG_IMPROVED_CFL
void cfl_adaptive_luma_subsampling_422_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height, int filter_type) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 2) {
if (filter_type == 1) {
output_q3[i >> 1] =
(input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1;
} else if (filter_type == 2) {
output_q3[i >> 1] = (input[i]) << 3;
} else {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
#endif // CONFIG_IMPROVED_CFL
static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
output_q3[i] = input[i] << 3;
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
CFL_GET_SUBSAMPLE_FUNCTION(c)
static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size,
int sub_x, int sub_y) {
if (sub_x == 1) {
if (sub_y == 1) {
return cfl_get_luma_subsampling_420_hbd(tx_size);
}
return cfl_get_luma_subsampling_422_hbd(tx_size);
}
return cfl_get_luma_subsampling_444_hbd(tx_size);
}
static void cfl_store(MACROBLOCKD *const xd, CFL_CTX *cfl,
const uint16_t *input, int input_stride, int row, int col,
TX_SIZE tx_size
#if CONFIG_IMPROVED_CFL
,
int filter_type
#endif // CONFIG_IMPROVED_CFL
) {
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int tx_off_log2 = MI_SIZE_LOG2;
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int store_row = row << (tx_off_log2 - sub_y);
const int store_col = col << (tx_off_log2 - sub_x);
const int store_height = height >> sub_y;
const int store_width = width >> sub_x;
// Invalidate current parameters
cfl->are_parameters_computed = 0;
// Store the surface of the pixel buffer that was written to, this way we
// can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
// frame boundary)
if (col == 0 && row == 0) {
cfl->buf_width = store_width;
cfl->buf_height = store_height;
} else {
cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
}
if (xd->tree_type == CHROMA_PART) {
const struct macroblockd_plane *const pd = &xd->plane[PLANE_TYPE_UV];
if (xd->mb_to_right_edge < 0)
cfl->buf_width += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
if (xd->mb_to_bottom_edge < 0)
cfl->buf_height += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
}
// Check that we will remain inside the pixel buffer.
assert(store_row + store_height <= CFL_BUF_LINE);
assert(store_col + store_width <= CFL_BUF_LINE);
// Store the input into the CfL pixel buffer
uint16_t *recon_buf_q3 =
cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col);
#if CONFIG_IMPROVED_CFL
if (sub_x == 1 && sub_y == 0) {
cfl_adaptive_luma_subsampling_422_hbd_c(input, input_stride, recon_buf_q3,
width, height, filter_type);
} else if (filter_type == 1) {
if (sub_x && sub_y)
cfl_luma_subsampling_420_hbd_121_c(input, input_stride, recon_buf_q3,
width, height);
else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
} else if (filter_type == 2) {
if (sub_x && sub_y)
cfl_luma_subsampling_420_hbd_colocated(input, input_stride, recon_buf_q3,
width, height);
else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
} else {
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
}
#else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, recon_buf_q3);
#endif // CONFIG_IMPROVED_CFL
}
void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size
#if CONFIG_IMPROVED_CFL
,
int filter_type
#endif // CONFIG_IMPROVED_CFL
) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
#if CONFIG_IMPROVED_CFL
cfl_store(xd, cfl, dst, pd->dst.stride, row + row_offset, col + col_offset,
tx_size, filter_type);
#else
cfl_store(xd, cfl, dst, pd->dst.stride, row + row_offset, col + col_offset,
tx_size);
#endif // CONFIG_IMPROVED_CFL
}
#if !CONFIG_FLEX_PARTITION
static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
<< MI_SIZE_LOG2;
return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
}
static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
<< MI_SIZE_LOG2;
return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
}
#endif // !CONFIG_FLEX_PARTITION
void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size
#if CONFIG_IMPROVED_CFL
,
int filter_type
#endif // CONFIG_IMPROVED_CFL
) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
#if CONFIG_FLEX_PARTITION
// Always store full block, even if partially outside frame boundary.
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
#else
// Only store part of the block,inside frame boundary. The block width/heigh
// inside the frame boundary is guaranteed to give a valid tx size in
// get_tx_size(width, height) below.
const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
#endif // CONFIG_FLEX_PARTITION
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
tx_size = get_tx_size(width, height);
assert(tx_size != TX_INVALID);
#if CONFIG_IMPROVED_CFL
cfl_store(xd, cfl, pd->dst.buf, pd->dst.stride, row_offset, col_offset,
tx_size, filter_type);
#else
cfl_store(xd, cfl, pd->dst.buf, pd->dst.stride, row_offset, col_offset,
tx_size);
#endif // CONFIG_IMPROVED_CFL
}
#if CONFIG_ENABLE_MHCCP
#define NON_LINEAR(V, M, BD) ((V * V + M) >> BD)
void mhccp_derive_multi_param_hv(MACROBLOCKD *const xd, int plane,
int above_lines, int left_lines, int ref_width,
int ref_height, int dir) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
int count = 0;
// Collect reference data to input matrix A and target vector Y
int16_t A[MHCCP_NUM_PARAMS][MHCCP_MAX_REF_SAMPLES];
uint16_t YCb[MHCCP_MAX_REF_SAMPLES];
const int16_t mid = (1 << (xd->bd - 1));
if (above_lines || left_lines) {
uint16_t *l = cfl->mhccp_ref_buf_q3[0];
uint16_t *c = cfl->mhccp_ref_buf_q3[plane];
int ref_stride = CFL_BUF_LINE * 2;
for (int j = 1; j < ref_height - 1; ++j) {
for (int i = 1; i < ref_width - 1; ++i) {
if ((i >= left_lines && j >= above_lines)) continue;
// 7-tap cross
A[0][count] = (l[i + j * ref_stride] >> 3); // C
if (dir == 0) {
A[1][count] = (l[i + (j - 1) * ref_stride] >> 3); // N 1, -1
A[2][count] = (i >= left_lines && j + 1 >= above_lines)
? (l[i + (j)*ref_stride] >> 3)
: (l[i + (j + 1) * ref_stride] >> 3); // S 1, 1
} else {
A[1][count] = (l[(i - 1) + j * ref_stride] >> 3); // W 1, -1
A[2][count] = (i + 1 >= left_lines && j >= above_lines)
? (l[(i) + j * ref_stride] >> 3)
: (l[(i + 1) + j * ref_stride] >> 3); // E 1, 1
}
A[3][count] = NON_LINEAR((l[i + j * ref_stride] >> 3), mid, xd->bd);
A[4][count] = mid;
YCb[count] = c[i + j * ref_stride];
++count;
}
}
}
if (count > 0) {
int64_t ATA[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS];
int64_t Ty[MHCCP_NUM_PARAMS];
memset(ATA, 0x00,
sizeof(int64_t) * (MHCCP_NUM_PARAMS) * (MHCCP_NUM_PARAMS));
memset(Ty, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS));
for (int coli0 = 0; coli0 < (MHCCP_NUM_PARAMS); ++coli0) {
for (int coli1 = coli0; coli1 < (MHCCP_NUM_PARAMS); ++coli1) {
int16_t *col0 = A[coli0];
int16_t *col1 = A[coli1];
for (int rowi = 0; rowi < count; ++rowi) {
ATA[coli0][coli1] += col0[rowi] * col1[rowi];
}
}
}
for (int coli = 0; coli < (MHCCP_NUM_PARAMS); ++coli) {
int16_t *col = A[coli];
for (int rowi = 0; rowi < count; ++rowi) {
Ty[coli] += col[rowi] * YCb[rowi];
}
}
// Scale the matrix and vector to selected dynamic range
int matrixShift = 28 - 2 * xd->bd - (int)ceil(log2(count));
if (matrixShift > 0) {
for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++)
for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++)
ATA[coli0][coli1] <<= matrixShift;
for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++)
Ty[coli] <<= matrixShift;
} else if (matrixShift < 0) {
matrixShift = -matrixShift;
for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++)
for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++)
ATA[coli0][coli1] >>= matrixShift;
for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++)
Ty[coli] >>= matrixShift;
}
int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS];
int64_t diag[MHCCP_NUM_PARAMS];
memset(U, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS) * (MHCCP_NUM_PARAMS));
memset(diag, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS));
bool decompOk = ldl_decompose(ATA, U, diag, MHCCP_NUM_PARAMS);
ldl_solve(U, diag, Ty, mbmi->mhccp_implicit_param[plane - 1],
MHCCP_NUM_PARAMS, decompOk);
} else {
for (int i = 0; i < MHCCP_NUM_PARAMS - 1; ++i) {
mbmi->mhccp_implicit_param[plane - 1][i] = 0;
}
mbmi->mhccp_implicit_param[plane - 1][MHCCP_NUM_PARAMS - 1] =
1 << MHCCP_DECIM_BITS;
}
}
bool ldl_decomp(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t diag[MHCCP_NUM_PARAMS], int numEq) {
for (int i = 0; i < numEq; i++) {
diag[i] = A[i][i];
for (int k = i - 1; k >= 0; k--) {
int64_t tmp = FIXED_MULT(U[k][i], U[k][i]);
diag[i] -= FIXED_MULT(tmp, diag[k]);
}
if (diag[i] <= 0) {
return false;
}
for (int j = i + 1; j < numEq; j++) {
int64_t scale = A[i][j];
for (int k = i - 1; k >= 0; k--) {
int64_t tmp = FIXED_MULT(U[k][j], U[k][i]);
scale -= FIXED_MULT(tmp, diag[k]);
}
U[i][j] = FIXED_DIV(AOMMAX(scale, 0), diag[i]);
}
}
return true;
}
void ldl_transpose_back_substitution(
int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], int64_t *y, int64_t *z,
int numEq) {
z[0] = y[0];
for (int i = 1; i < numEq; i++) {
int64_t sum = 0;
for (int j = 0; j < i; j++) {
sum += FIXED_MULT(z[j], U[j][i]);
}
z[i] = y[i] - sum;
}
}
void ldl_back_substitution(int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t *z, int64_t *x, int numEq) {
x[numEq - 1] = z[numEq - 1];
for (int i = numEq - 2; i >= 0; i--) {
int64_t sum = 0;
for (int j = i + 1; j < numEq; j++) {
sum += FIXED_MULT(U[i][j], x[j]);
}
x[i] = z[i] - sum;
}
}
bool ldl_decompose(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t diag[MHCCP_NUM_PARAMS], int numEq) {
for (int i = 0; i < numEq; i++) {
A[i][i] += 1;
}
return ldl_decomp(A, U, diag, numEq);
}
void ldl_solve(int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t diag[MHCCP_NUM_PARAMS], int64_t *y, int64_t *x,
int numEq, bool decomp_ok) {
if (decomp_ok) {
int64_t aux[MHCCP_NUM_PARAMS];
ldl_transpose_back_substitution(U, y, aux, numEq);
for (int i = 0; i < numEq; i++) {
aux[i] = FIXED_DIV(AOMMAX(aux[i], 0), diag[i]);
}
ldl_back_substitution(U, aux, x, numEq);
} else {
memset(x, 0, sizeof(int64_t) * numEq);
}
}
static int16_t convolve(int64_t *params, uint16_t *vector, int16_t numParams) {
int64_t sum = 0;
for (int i = 0; i < numParams; i++) {
sum += params[i] * vector[i];
}
return (int16_t)((sum + MHCCP_DECIM_ROUND) >> MHCCP_DECIM_BITS);
}
void mhccp_predict_hv_hbd_c(const uint16_t *input, uint16_t *dst, bool have_top,
bool have_left, int dst_stride, int64_t *alpha_q3,
int bit_depth, int width, int height, int dir) {
const uint16_t mid = (1 << (bit_depth - 1));
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
uint16_t vector[MHCCP_NUM_PARAMS];
vector[0] = input[i] >> 3; // C
uint16_t a =
(j - 1 < 0 && !have_top ? input[i] : input[i - CFL_BUF_LINE * 2]) >>
3; // above
uint16_t b = (j + 1 >= height ? input[i] : input[i + CFL_BUF_LINE * 2]) >>
3; // below
uint16_t c =
(i - 1 < 0 && !have_left ? input[i] : input[i - 1]) >> 3; // left
uint16_t d = (i + 1 >= width ? input[i] : input[i + 1]) >> 3; // right
if (dir == 0) {
vector[1] = a;
vector[2] = b;
} else {
vector[1] = c;
vector[2] = d;
}
vector[3] = NON_LINEAR((input[i] >> 3), mid, bit_depth);
vector[4] = mid;
dst[i] = clip_pixel_highbd(convolve(alpha_q3, vector, MHCCP_NUM_PARAMS),
bit_depth);
}
dst += dst_stride;
input += CFL_BUF_LINE * 2;
}
}
#undef NON_LINEAR
#endif // CONFIG_ENABLE_MHCCP