| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/filter.h" |
| #include "av1/common/resize.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_ports/mem.h" |
| |
| void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const int16_t *x_filters, int x0_qn, |
| int x_step_qn, int bd) { |
| src -= UPSCALE_NORMATIVE_TAPS / 2 - 1; |
| for (int y = 0; y < h; ++y) { |
| int x_qn = x0_qn; |
| for (int x = 0; x < w; ++x) { |
| const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS]; |
| const int x_filter_idx = |
| (x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS; |
| assert(x_filter_idx <= RS_SUBPEL_MASK); |
| const int16_t *const x_filter = |
| &x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS]; |
| int sum = 0; |
| for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k) |
| sum += src_x[k] * x_filter[k]; |
| dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); |
| x_qn += x_step_qn; |
| } |
| src += src_stride; |
| dst += dst_stride; |
| } |
| } |
| |
| void av1_convolve_2d_sobel_y_c(const uint8_t *src, int src_stride, double *dst, |
| int dst_stride, int w, int h, int dir, |
| double norm) { |
| int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; |
| DECLARE_ALIGNED(256, static const int16_t, sobel_a[3]) = { 1, 0, -1 }; |
| DECLARE_ALIGNED(256, static const int16_t, sobel_b[3]) = { 1, 2, 1 }; |
| const int taps = 3; |
| int im_h = h + taps - 1; |
| int im_stride = w; |
| const int fo_vert = 1; |
| const int fo_horiz = 1; |
| |
| // horizontal filter |
| const uint8_t *src_horiz = src - fo_vert * src_stride; |
| const int16_t *x_filter = dir ? sobel_a : sobel_b; |
| for (int y = 0; y < im_h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int16_t sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; |
| } |
| im_block[y * im_stride + x] = sum; |
| } |
| } |
| |
| // vertical filter |
| int16_t *src_vert = im_block + fo_vert * im_stride; |
| const int16_t *y_filter = dir ? sobel_b : sobel_a; |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int16_t sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; |
| } |
| dst[y * dst_stride + x] = sum * norm; |
| } |
| } |
| } |
| |
| void av1_highbd_convolve_x_sr_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const int subpel_x_qn, |
| ConvolveParams *conv_params, int bd) { |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int bits = FILTER_BITS - conv_params->round_0; |
| |
| assert(bits >= 0); |
| assert((FILTER_BITS - conv_params->round_1) >= 0 || |
| ((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS)); |
| |
| // horizontal filter |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t res = 0; |
| for (int k = 0; k < filter_params_x->taps; ++k) { |
| res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; |
| } |
| res = ROUND_POWER_OF_TWO(res, conv_params->round_0); |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); |
| } |
| } |
| } |
| |
| void av1_highbd_convolve_y_sr_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_y_qn, int bd) { |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| // vertical filter |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t res = 0; |
| for (int k = 0; k < filter_params_y->taps; ++k) { |
| res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; |
| } |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(res, FILTER_BITS), bd); |
| } |
| } |
| } |
| |
| void av1_highbd_convolve_2d_sr_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, const int subpel_y_qn, |
| ConvolveParams *conv_params, int bd) { |
| int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; |
| int im_h = h + filter_params_y->taps - 1; |
| int im_stride = w; |
| assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int bits = |
| FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; |
| assert(bits >= 0); |
| |
| // horizontal filter |
| const uint16_t *src_horiz = src - fo_vert * src_stride; |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| for (int y = 0; y < im_h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t sum = (1 << (bd + FILTER_BITS - 1)); |
| for (int k = 0; k < filter_params_x->taps; ++k) { |
| sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; |
| } |
| assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))); |
| im_block[y * im_stride + x] = |
| ROUND_POWER_OF_TWO(sum, conv_params->round_0); |
| } |
| } |
| |
| // vertical filter |
| int16_t *src_vert = im_block + fo_vert * im_stride; |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t sum = 1 << offset_bits; |
| for (int k = 0; k < filter_params_y->taps; ++k) { |
| sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; |
| } |
| assert(0 <= sum && sum < (1 << (offset_bits + 2))); |
| int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) - |
| ((1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1))); |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd); |
| } |
| } |
| } |
| |
| void av1_highbd_dist_wtd_convolve_2d_c( |
| const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, |
| int h, const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, const int subpel_x_qn, |
| const int subpel_y_qn, ConvolveParams *conv_params, int bd) { |
| int x, y, k; |
| int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]; |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| int dst16_stride = conv_params->dst_stride; |
| int im_h = h + filter_params_y->taps - 1; |
| int im_stride = w; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| assert(round_bits >= 0); |
| const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); |
| |
| // horizontal filter |
| const uint16_t *src_horiz = src - fo_vert * src_stride; |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| for (y = 0; y < im_h; ++y) { |
| for (x = 0; x < w; ++x) { |
| int32_t sum = (1 << (bd + FILTER_BITS - 1)); |
| for (k = 0; k < filter_params_x->taps; ++k) { |
| sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k]; |
| } |
| assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))); |
| (void)bd; |
| im_block[y * im_stride + x] = |
| (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); |
| } |
| } |
| |
| // vertical filter |
| int16_t *src_vert = im_block + fo_vert * im_stride; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| for (y = 0; y < h; ++y) { |
| for (x = 0; x < w; ++x) { |
| int32_t sum = 1 << offset_bits; |
| for (k = 0; k < filter_params_y->taps; ++k) { |
| sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x]; |
| } |
| assert(0 <= sum && sum < (1 << (offset_bits + 2))); |
| CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); |
| if (conv_params->do_average) { |
| int32_t tmp = dst16[y * dst16_stride + x]; |
| if (use_wtd_comp_avg) { |
| tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; |
| tmp = tmp >> DIST_PRECISION_BITS; |
| } else { |
| tmp += res; |
| tmp = tmp >> 1; |
| } |
| tmp -= (1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1)); |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); |
| } else { |
| dst16[y * dst16_stride + x] = res; |
| } |
| } |
| } |
| } |
| |
| void av1_highbd_dist_wtd_convolve_x_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, |
| int h, |
| const InterpFilterParams *filter_params_x, |
| const int subpel_x_qn, |
| ConvolveParams *conv_params, int bd) { |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| int dst16_stride = conv_params->dst_stride; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int bits = FILTER_BITS - conv_params->round_1; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| const int round_offset = (1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1)); |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); |
| assert(round_bits >= 0); |
| assert(bits >= 0); |
| |
| // horizontal filter |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t res = 0; |
| for (int k = 0; k < filter_params_x->taps; ++k) { |
| res += x_filter[k] * src[y * src_stride + x - fo_horiz + k]; |
| } |
| res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0); |
| res += round_offset; |
| |
| if (conv_params->do_average) { |
| int32_t tmp = dst16[y * dst16_stride + x]; |
| if (use_wtd_comp_avg) { |
| tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; |
| tmp = tmp >> DIST_PRECISION_BITS; |
| } else { |
| tmp += res; |
| tmp = tmp >> 1; |
| } |
| tmp -= round_offset; |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); |
| } else { |
| dst16[y * dst16_stride + x] = res; |
| } |
| } |
| } |
| } |
| |
| void av1_highbd_dist_wtd_convolve_y_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, |
| int h, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_y_qn, |
| ConvolveParams *conv_params, int bd) { |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| int dst16_stride = conv_params->dst_stride; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int bits = FILTER_BITS - conv_params->round_0; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| const int round_offset = (1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1)); |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); |
| assert(round_bits >= 0); |
| assert(bits >= 0); |
| // vertical filter |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| int32_t res = 0; |
| for (int k = 0; k < filter_params_y->taps; ++k) { |
| res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x]; |
| } |
| res *= (1 << bits); |
| res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset; |
| |
| if (conv_params->do_average) { |
| int32_t tmp = dst16[y * dst16_stride + x]; |
| if (use_wtd_comp_avg) { |
| tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; |
| tmp = tmp >> DIST_PRECISION_BITS; |
| } else { |
| tmp += res; |
| tmp = tmp >> 1; |
| } |
| tmp -= round_offset; |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd); |
| } else { |
| dst16[y * dst16_stride + x] = res; |
| } |
| } |
| } |
| } |
| |
| void av1_highbd_dist_wtd_convolve_2d_copy_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, |
| int w, int h, |
| ConvolveParams *conv_params, |
| int bd) { |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| int dst16_stride = conv_params->dst_stride; |
| const int bits = |
| FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| const int round_offset = (1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1)); |
| const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); |
| assert(bits >= 0); |
| |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| CONV_BUF_TYPE res = src[y * src_stride + x] << bits; |
| res += round_offset; |
| if (conv_params->do_average) { |
| int32_t tmp = dst16[y * dst16_stride + x]; |
| if (use_wtd_comp_avg) { |
| tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; |
| tmp = tmp >> DIST_PRECISION_BITS; |
| } else { |
| tmp += res; |
| tmp = tmp >> 1; |
| } |
| tmp -= round_offset; |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); |
| } else { |
| dst16[y * dst16_stride + x] = res; |
| } |
| } |
| } |
| } |
| |
| void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, const int x_step_qn, |
| const int subpel_y_qn, const int y_step_qn, |
| ConvolveParams *conv_params, int bd) { |
| int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]; |
| int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + |
| filter_params_y->taps; |
| int im_stride = w; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| const int dst16_stride = conv_params->dst_stride; |
| const int bits = |
| FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; |
| const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); |
| assert(bits >= 0); |
| // horizontal filter |
| const uint16_t *src_horiz = src - fo_vert * src_stride; |
| for (int y = 0; y < im_h; ++y) { |
| int x_qn = subpel_x_qn; |
| for (int x = 0; x < w; ++x, x_qn += x_step_qn) { |
| const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)]; |
| const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; |
| assert(x_filter_idx < SUBPEL_SHIFTS); |
| const int16_t *x_filter = |
| av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx); |
| int32_t sum = (1 << (bd + FILTER_BITS - 1)); |
| for (int k = 0; k < filter_params_x->taps; ++k) { |
| sum += x_filter[k] * src_x[k - fo_horiz]; |
| } |
| assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))); |
| im_block[y * im_stride + x] = |
| (int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0); |
| } |
| src_horiz += src_stride; |
| } |
| |
| // vertical filter |
| int16_t *src_vert = im_block + fo_vert * im_stride; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| for (int x = 0; x < w; ++x) { |
| int y_qn = subpel_y_qn; |
| for (int y = 0; y < h; ++y, y_qn += y_step_qn) { |
| const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride]; |
| const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; |
| assert(y_filter_idx < SUBPEL_SHIFTS); |
| const int16_t *y_filter = |
| av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx); |
| int32_t sum = 1 << offset_bits; |
| for (int k = 0; k < filter_params_y->taps; ++k) { |
| sum += y_filter[k] * src_y[(k - fo_vert) * im_stride]; |
| } |
| assert(0 <= sum && sum < (1 << (offset_bits + 2))); |
| CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); |
| if (conv_params->is_compound) { |
| if (conv_params->do_average) { |
| int32_t tmp = dst16[y * dst16_stride + x]; |
| if (use_wtd_comp_avg) { |
| tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; |
| tmp = tmp >> DIST_PRECISION_BITS; |
| } else { |
| tmp += res; |
| tmp = tmp >> 1; |
| } |
| /* Subtract round offset and convolve round */ |
| tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1))); |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); |
| } else { |
| dst16[y * dst16_stride + x] = res; |
| } |
| } else { |
| /* Subtract round offset and convolve round */ |
| int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) + |
| (1 << (offset_bits - conv_params->round_1 - 1))); |
| dst[y * dst_stride + x] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); |
| } |
| } |
| src_vert++; |
| } |
| } |
| |
| static void highbd_convolve_2d_facade_compound( |
| const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| const int w, const int h, const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, const int subpel_x_qn, |
| const int subpel_y_qn, ConvolveParams *conv_params, int bd) { |
| const bool need_x = subpel_x_qn != 0; |
| const bool need_y = subpel_y_qn != 0; |
| if (!need_x && !need_y) { |
| av1_highbd_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h, |
| conv_params, bd); |
| } else if (need_x && !need_y) { |
| av1_highbd_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, subpel_x_qn, conv_params, |
| bd); |
| } else if (!need_x && need_y) { |
| av1_highbd_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h, |
| filter_params_y, subpel_y_qn, conv_params, |
| bd); |
| } else { |
| assert(need_x && need_y); |
| av1_highbd_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, |
| subpel_x_qn, subpel_y_qn, conv_params, bd); |
| } |
| } |
| |
| static void highbd_convolve_2d_facade_single( |
| const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| const int w, const int h, const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, const int subpel_x_qn, |
| const int subpel_y_qn, ConvolveParams *conv_params, int bd) { |
| const bool need_x = subpel_x_qn != 0; |
| const bool need_y = subpel_y_qn != 0; |
| // Filters with taps > 8 are only for encoder side use. |
| const int filter_x_taps_gt8 = |
| (filter_params_x == NULL) ? 0 : ((filter_params_x->taps > 8) ? 1 : 0); |
| const int filter_y_taps_gt8 = |
| (filter_params_y == NULL) ? 0 : ((filter_params_y->taps > 8) ? 1 : 0); |
| |
| if (!need_x && !need_y) { |
| aom_highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h); |
| } else if (need_x && !need_y) { |
| // TODO(any): need SIMD for > 8 taps filters |
| if (filter_x_taps_gt8 || filter_y_taps_gt8) { |
| av1_highbd_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, subpel_x_qn, conv_params, bd); |
| |
| } else { |
| av1_highbd_convolve_x_sr(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, subpel_x_qn, conv_params, bd); |
| } |
| } else if (!need_x && need_y) { |
| if (filter_x_taps_gt8 || filter_y_taps_gt8) { |
| av1_highbd_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_y, subpel_y_qn, bd); |
| } else { |
| av1_highbd_convolve_y_sr(src, src_stride, dst, dst_stride, w, h, |
| filter_params_y, subpel_y_qn, bd); |
| } |
| } else { |
| assert(need_x && need_y); |
| if (filter_x_taps_gt8 || filter_y_taps_gt8) { |
| av1_highbd_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| subpel_y_qn, conv_params, bd); |
| } else { |
| av1_highbd_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| subpel_y_qn, conv_params, bd); |
| } |
| } |
| } |
| |
| void av1_highbd_convolve_2d_facade(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *interp_filters[2], |
| const int subpel_x_qn, int x_step_q4, |
| const int subpel_y_qn, int y_step_q4, |
| int scaled, ConvolveParams *conv_params, |
| int bd) { |
| (void)x_step_q4; |
| (void)y_step_q4; |
| (void)dst_stride; |
| |
| const int need_filter_params_x = (subpel_x_qn != 0) | scaled; |
| const int need_filter_params_y = (subpel_y_qn != 0) | scaled; |
| const InterpFilterParams *filter_params_x = |
| need_filter_params_x ? interp_filters[0] : NULL; |
| const InterpFilterParams *filter_params_y = |
| need_filter_params_y ? interp_filters[1] : NULL; |
| |
| if (scaled) { |
| if (conv_params->is_compound) { |
| assert(conv_params->dst != NULL); |
| } |
| av1_highbd_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| x_step_q4, subpel_y_qn, y_step_q4, conv_params, |
| bd); |
| } else if (conv_params->is_compound) { |
| highbd_convolve_2d_facade_compound( |
| src, src_stride, dst, dst_stride, w, h, filter_params_x, |
| filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd); |
| } else { |
| highbd_convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, |
| subpel_x_qn, subpel_y_qn, conv_params, bd); |
| } |
| } |
| |
| // Note: Fixed size intermediate buffers, place limits on parameters |
| // of some functions. 2d filtering proceeds in 2 steps: |
| // (1) Interpolate horizontally into an intermediate buffer, temp. |
| // (2) Interpolate temp vertically to derive the sub-pixel result. |
| // Deriving the maximum number of rows in the temp buffer (135): |
| // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). |
| // --Largest block size is 128x128 pixels. |
| // --128 rows in the downscaled frame span a distance of (128 - 1) * 32 in the |
| // original frame (in 1/16th pixel units). |
| // --Must round-up because block may be located at sub-pixel position. |
| // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. |
| // --((128 - 1) * 32 + 15) >> 4 + 8 = 263. |
| #define WIENER_MAX_EXT_SIZE 263 |
| |
| static INLINE int highbd_horz_scalar_product(const uint16_t *a, |
| const int16_t *b) { |
| int sum = 0; |
| for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k]; |
| return sum; |
| } |
| |
| static INLINE int highbd_vert_scalar_product(const uint16_t *a, |
| ptrdiff_t a_stride, |
| const int16_t *b) { |
| int sum = 0; |
| for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k * a_stride] * b[k]; |
| return sum; |
| } |
| |
| static const InterpKernel *get_filter_base(const int16_t *filter) { |
| // NOTE: This assumes that the filter table is 256-byte aligned. |
| // TODO(agrange) Modify to make independent of table alignment. |
| return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF)); |
| } |
| |
| static int get_filter_offset(const int16_t *f, const InterpKernel *base) { |
| return (int)((const InterpKernel *)(intptr_t)f - base); |
| } |
| |
| static void highbd_convolve_add_src_horiz_hip( |
| const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, |
| ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4, |
| int x_step_q4, int w, int h, int round0_bits, int bd) { |
| const int extraprec_clamp_limit = WIENER_CLAMP_LIMIT(round0_bits, bd); |
| src -= SUBPEL_TAPS / 2 - 1; |
| for (int y = 0; y < h; ++y) { |
| int x_q4 = x0_q4; |
| for (int x = 0; x < w; ++x) { |
| const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; |
| const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) + |
| (1 << (bd + FILTER_BITS - 1)); |
| const int sum = highbd_horz_scalar_product(src_x, x_filter) + rounding; |
| dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0, |
| extraprec_clamp_limit - 1); |
| x_q4 += x_step_q4; |
| } |
| src += src_stride; |
| dst += dst_stride; |
| } |
| } |
| |
| static void highbd_convolve_add_src_vert_hip( |
| const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, |
| ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, |
| int y_step_q4, int w, int h, int round1_bits, int bd) { |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (int x = 0; x < w; ++x) { |
| int y_q4 = y0_q4; |
| for (int y = 0; y < h; ++y) { |
| const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| const int rounding = |
| ((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) - |
| (1 << (bd + round1_bits - 1)); |
| const int sum = |
| highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding; |
| dst[y * dst_stride] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, round1_bits), bd); |
| y_q4 += y_step_q4; |
| } |
| ++src; |
| ++dst; |
| } |
| } |
| |
| void av1_highbd_wiener_convolve_add_src_c( |
| const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, |
| ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, |
| const int16_t *filter_y, int y_step_q4, int w, int h, |
| const WienerConvolveParams *conv_params, int bd) { |
| const InterpKernel *const filters_x = get_filter_base(filter_x); |
| const int x0_q4 = get_filter_offset(filter_x, filters_x); |
| |
| const InterpKernel *const filters_y = get_filter_base(filter_y); |
| const int y0_q4 = get_filter_offset(filter_y, filters_y); |
| |
| uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE]; |
| const int intermediate_height = |
| (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; |
| |
| assert(w <= MAX_SB_SIZE); |
| assert(h <= MAX_SB_SIZE); |
| assert(y_step_q4 <= 32); |
| assert(x_step_q4 <= 32); |
| assert(bd + FILTER_BITS - conv_params->round_0 + 2 <= 16); |
| |
| highbd_convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, MAX_SB_SIZE, filters_x, |
| x0_q4, x_step_q4, w, intermediate_height, |
| conv_params->round_0, bd); |
| highbd_convolve_add_src_vert_hip( |
| temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst, dst_stride, |
| filters_y, y0_q4, y_step_q4, w, h, conv_params->round_1, bd); |
| } |
| |
| #if CONFIG_LR_IMPROVEMENTS |
| #define USE_CONV_SYM_VERSIONS 1 |
| |
| // Convolves a block of pixels with origin-symmetric, non-separable filters. |
| // This routine is intended as a starting point for SIMD and other acceleration |
| // work. The filters are assumed to have num_sym_taps unique taps if they sum to |
| // zero. Otherwise num_sym_taps + 1 unique taps where the extra tap is the |
| // unconstrained center tap. |
| // |
| // Usage: |
| // - For CONFIG_WIENER_NONSEP filters sum to zero. This constrains the |
| // center-tap: |
| // singleton_tap = (1 << filter_config->prec_bits) and |
| // num_sym_taps = filter_config->num_pixels / 2 |
| // - For CONFIG_PC_WIENER center tap is unconstrained: |
| // const int singleton_tap_index = |
| // filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; |
| // singleton_tap = (1 << filter_config->prec_bits) |
| // + filter[singleton_tap_index] and |
| // num_sym_taps = (filter_config->num_pixels - 1) / 2. |
| // |
| // Implementation Notes: |
| // - The filter taps have precision < 16 bits but the filter multiply |
| // filter[pos] * compute_buffer[k] has to be 32-bit, i.e., the result will not |
| // fit into a 16-bit register. Any acceleration code needs to ensure the |
| // multiply is carried out in 32-bits. The filter tap precisions should |
| // guarantee that the result of the convolution, i.e., the result of the entire |
| // multiply-add, fits into 32-bits prior to the down-shit and round. |
| // - Calling av1_convolve_symmetric_subtract_center_highbd_c allows passing the |
| // difference wrto the center pixel through a nonlinearity if one wishes to do |
| // so. |
| // - Current NonsepFilterConfig supports arbitrary filters and hence the loop |
| // over every other tap, e.g., filter_config->config[2 * k]. |
| void av1_convolve_symmetric_highbd_c(const uint16_t *dgd, int stride, |
| const NonsepFilterConfig *filter_config, |
| const int16_t *filter, uint16_t *dst, |
| int dst_stride, int bit_depth, |
| int block_row_begin, int block_row_end, |
| int block_col_begin, int block_col_end) { |
| assert(!filter_config->subtract_center); |
| const int num_sym_taps = filter_config->num_pixels / 2; |
| int32_t singleton_tap = 1 << filter_config->prec_bits; |
| |
| if (filter_config->num_pixels % 2) { |
| // Center-tap is unconstrained. |
| const int singleton_tap_index = |
| filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; |
| singleton_tap += filter[singleton_tap_index]; |
| } |
| |
| // Begin compute conveniences. |
| // Based on filter_config allocate/compute once. Relocate elsewhere as needed. |
| // filter_config will change rarely and the core-functionality block will be |
| // called many times with the same filter_config. If any compute conveniences |
| // are utilzied it is advisable to put them elsewhere to be called when |
| // filter_config changes. |
| assert(num_sym_taps <= 24); |
| int16_t compute_buffer[24]; |
| int pixel_offset_diffs[24]; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int r = filter_config->config[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config[2 * k][NONSEP_COL_ID]; |
| const int diff = r * stride + c; |
| pixel_offset_diffs[k] = diff; |
| } |
| // End compute conveniences. |
| |
| // Begin core-functionality that will be called many times. |
| for (int r = block_row_begin; r < block_row_end; ++r) { |
| for (int c = block_col_begin; c < block_col_end; ++c) { |
| int dgd_id = r * stride + c; |
| |
| // Two loops for a potential data cache miss. |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| const int16_t tmp_sum = dgd[dgd_id - diff]; |
| compute_buffer[k] = tmp_sum; // 16-bit |
| } |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| const int16_t tmp_sum = dgd[dgd_id + diff]; |
| compute_buffer[k] += tmp_sum; // 16-bit arithmetic. |
| } |
| |
| // Handle singleton tap. |
| int32_t tmp = singleton_tap * dgd[dgd_id]; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int pos = filter_config->config[2 * k][NONSEP_BUF_POS]; |
| tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic. |
| } |
| |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits); |
| |
| int dst_id = r * dst_stride + c; |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| // End core-functionality. |
| } |
| |
| // Same as av1_convolve_symmetric_highbd_c except for the subtraction of the |
| // center-pixel and the addition of an offset. |
| void av1_convolve_symmetric_subtract_center_highbd_c( |
| const uint16_t *dgd, int stride, const NonsepFilterConfig *filter_config, |
| const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth, |
| int block_row_begin, int block_row_end, int block_col_begin, |
| int block_col_end) { |
| assert(filter_config->subtract_center); |
| const int num_sym_taps = filter_config->num_pixels / 2; |
| int32_t singleton_tap = 1 << filter_config->prec_bits; |
| int32_t dc_offset = 0; |
| if (filter_config->num_pixels % 2) { |
| const int dc_offset_tap_index = |
| filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; |
| dc_offset = filter[dc_offset_tap_index]; |
| } |
| |
| assert(num_sym_taps <= 24); |
| int16_t compute_buffer[24]; |
| int pixel_offset_diffs[24]; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int r = filter_config->config[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config[2 * k][NONSEP_COL_ID]; |
| const int diff = r * stride + c; |
| pixel_offset_diffs[k] = diff; |
| } |
| |
| for (int r = block_row_begin; r < block_row_end; ++r) { |
| for (int c = block_col_begin; c < block_col_end; ++c) { |
| int dgd_id = r * stride + c; |
| |
| // Two loops for a potential data cache miss. |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| // Subtract center pixel and pass through a fn. |
| const int16_t tmp_sum = |
| clip_base(dgd[dgd_id - diff] - dgd[dgd_id], bit_depth); |
| compute_buffer[k] = tmp_sum; // 16-bit |
| } |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| // Subtract center pixel and pass through a fn. |
| const int16_t tmp_sum = |
| clip_base(dgd[dgd_id + diff] - dgd[dgd_id], bit_depth); |
| compute_buffer[k] += tmp_sum; // 16-bit arithmetic. |
| } |
| |
| // Handle singleton tap. |
| int32_t tmp = singleton_tap * dgd[dgd_id] + dc_offset; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int pos = filter_config->config[2 * k][NONSEP_BUF_POS]; |
| tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic. |
| } |
| |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits); |
| |
| int dst_id = r * dst_stride + c; |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| } |
| |
| void av1_convolve_nonsep_highbd(const uint16_t *dgd, int width, int height, |
| int stride, const NonsepFilterConfig *nsfilter, |
| const int16_t *filter, uint16_t *dst, |
| int dst_stride, int bit_depth) { |
| #if USE_CONV_SYM_VERSIONS |
| assert(nsfilter->strict_bounds == false); |
| if (nsfilter->subtract_center) |
| av1_convolve_symmetric_subtract_center_highbd(dgd, stride, nsfilter, filter, |
| dst, dst_stride, bit_depth, 0, |
| height, 0, width); |
| else |
| av1_convolve_symmetric_highbd(dgd, stride, nsfilter, filter, dst, |
| dst_stride, bit_depth, 0, height, 0, width); |
| #else |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| int dgd_id = i * stride + j; |
| int dst_id = i * dst_stride + j; |
| int32_t tmp = (int32_t)dgd[dgd_id] * (1 << nsfilter->prec_bits); |
| for (int k = 0; k < nsfilter->num_pixels; ++k) { |
| const int pos = nsfilter->config[k][NONSEP_BUF_POS]; |
| const int r = nsfilter->config[k][NONSEP_ROW_ID]; |
| const int c = nsfilter->config[k][NONSEP_COL_ID]; |
| if (r == 0 && c == 0) { |
| tmp += filter[pos]; |
| continue; |
| } |
| const int ir = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(i + r, height - 1), 0) |
| : i + r; |
| const int jc = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(j + c, width - 1), 0) |
| : j + c; |
| int16_t diff = clip_base( |
| (int16_t)dgd[(ir)*stride + (jc)] - (int16_t)dgd[dgd_id], bit_depth); |
| tmp += filter[pos] * diff; |
| } |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, nsfilter->prec_bits); |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| #endif // USE_CONV_SYM_VERSIONS |
| } |
| |
| void prepare_feature_sum_bufs_c(int *feature_sum_buffers[], |
| int16_t *feature_line_buffers[], |
| int feature_length, int buffer_row, |
| int col_begin, int col_end, int buffer_col) { |
| const int buffer_row_0 = buffer_row; |
| const int buffer_row_1 = buffer_row_0 + feature_length; |
| const int buffer_row_2 = buffer_row_1 + feature_length; |
| const int buffer_row_3 = buffer_row_2 + feature_length; |
| #if defined(__GCC__) |
| #pragma GCC ivdep |
| #endif |
| for (int col = col_begin; col < col_end; ++col, ++buffer_col) { |
| feature_sum_buffers[0][buffer_col] -= |
| feature_line_buffers[buffer_row_0][buffer_col]; |
| feature_sum_buffers[1][buffer_col] -= |
| feature_line_buffers[buffer_row_1][buffer_col]; |
| feature_sum_buffers[2][buffer_col] -= |
| feature_line_buffers[buffer_row_2][buffer_col]; |
| feature_sum_buffers[3][buffer_col] -= |
| feature_line_buffers[buffer_row_3][buffer_col]; |
| } |
| } |
| |
| void calc_gradient_in_various_directions_c(int16_t *feature_line_buffers[], |
| int row, int buffer_row, |
| const uint16_t *dgd, int dgd_stride, |
| int width, int col_begin, |
| int col_end, int feature_length, |
| int buffer_col) { |
| const int buffer_row_0 = buffer_row; |
| const int buffer_row_1 = buffer_row_0 + feature_length; |
| const int buffer_row_2 = buffer_row_1 + feature_length; |
| const int buffer_row_3 = buffer_row_2 + feature_length; |
| |
| #if defined(__GCC__) |
| #pragma GCC ivdep |
| #endif |
| for (int col = col_begin; col < col_end; ++col, ++buffer_col) { |
| // Fix an issue with odd-sized rows/columns. (If the right/lower extension |
| // of the frame is extended by 4 pixels instead of the current 3 AOMMIN can |
| // be discarded. |
| const int dgd_col = AOMMIN(col, width + 3 - 2); |
| const int dgd_id = row * dgd_stride + dgd_col; |
| const int prev_row = dgd_id - dgd_stride; |
| const int next_row = dgd_id + dgd_stride; |
| |
| // D V A |
| // H O H |
| // A V D |
| const int16_t base_value = 2 * dgd[dgd_id]; // O. |
| const int16_t horizontal_diff = |
| dgd[dgd_id + 1] + dgd[dgd_id - 1] - base_value; // H. |
| int16_t vertical_diff = dgd[prev_row] - base_value; // V. |
| int16_t anti_diagonal_diff = dgd[prev_row + 1] - base_value; // A. |
| int16_t diagonal_diff = dgd[prev_row - 1] - base_value; // D. |
| |
| vertical_diff += dgd[next_row]; |
| anti_diagonal_diff += dgd[next_row - 1]; |
| diagonal_diff += dgd[next_row + 1]; |
| |
| feature_line_buffers[buffer_row_0][buffer_col] = |
| abs(horizontal_diff); // fo |
| feature_line_buffers[buffer_row_1][buffer_col] = abs(vertical_diff); // f1 |
| feature_line_buffers[buffer_row_2][buffer_col] = |
| abs(anti_diagonal_diff); // f2 |
| feature_line_buffers[buffer_row_3][buffer_col] = abs(diagonal_diff); // f3 |
| } |
| } |
| |
| void update_feature_sum_bufs_c(int *feature_sum_buffers[], |
| int16_t *feature_line_buffers[], |
| int feature_length, int buffer_row, |
| int col_begin, int col_end, int buffer_col) { |
| const int buffer_row_0 = buffer_row; |
| const int buffer_row_1 = buffer_row_0 + feature_length; |
| const int buffer_row_2 = buffer_row_1 + feature_length; |
| const int buffer_row_3 = buffer_row_2 + feature_length; |
| #if defined(__GCC__) |
| #pragma GCC ivdep |
| #endif |
| for (int col = col_begin; col < col_end; ++col, ++buffer_col) { |
| feature_sum_buffers[0][buffer_col] += |
| feature_line_buffers[buffer_row_0][buffer_col]; |
| feature_sum_buffers[1][buffer_col] += |
| feature_line_buffers[buffer_row_1][buffer_col]; |
| feature_sum_buffers[2][buffer_col] += |
| feature_line_buffers[buffer_row_2][buffer_col]; |
| feature_sum_buffers[3][buffer_col] += |
| feature_line_buffers[buffer_row_3][buffer_col]; |
| } |
| } |
| |
| // Calculates and accumulates the gradients over a window around row. If |
| // use_strict_bounds is false dgd must have valid data on this column extending |
| // for rows from [row_begin, row_end) where, |
| // row_begin = row - PC_WIENER_FEATURE_LENGTH / 2 |
| // row_end = row + PC_WIENER_FEATURE_LENGTH / 2 + 1. |
| // This version of the routine assumes use_strict_bounds is false. |
| void fill_directional_feature_buffers_highbd_c( |
| int *feature_sum_bufs[], int16_t *feature_line_bufs[], int row, |
| int buffer_row, const uint16_t *dgd, int dgd_stride, int width, |
| int feature_lead, int feature_lag) { |
| const int feature_length = feature_lead + feature_lag + 1; |
| const int col_begin = -feature_lead; |
| const int col_end = width + feature_lag; |
| int buffer_col = 0; |
| |
| // Preparation of feature sum buffers by subtracting the feature line buffers. |
| prepare_feature_sum_bufs_c(feature_sum_bufs, feature_line_bufs, |
| feature_length, buffer_row, col_begin, col_end, |
| buffer_col); |
| |
| // Compute the gradient across different directions. |
| calc_gradient_in_various_directions_c(feature_line_bufs, row, buffer_row, dgd, |
| dgd_stride, width, col_begin, col_end, |
| feature_length, buffer_col); |
| |
| // Update the feature sum buffers with updated feature line buffers. |
| update_feature_sum_bufs_c(feature_sum_bufs, feature_line_bufs, feature_length, |
| buffer_row, col_begin, col_end, buffer_col); |
| } |
| |
| // Implements box filtering of directional features using feature_sum_bufs. Each |
| // feature is obtained by taking the previous box-filtered value, subtracting |
| // the contribution of the out-of-scop column on the left and adding the |
| // contribution of the newly in-scope column on the right. |
| void av1_fill_directional_feature_accumulators_c( |
| int dir_feature_accum[NUM_PC_WIENER_FEATURES][PC_WIENER_FEATURE_ACC_SIZE], |
| int *feature_sum_bufs[NUM_PC_WIENER_FEATURES], int width, int col_offset, |
| int feature_lead, int feature_lag) { |
| int col = 0; |
| const int feature_length = feature_lead + feature_lag + 1; |
| int col_base = col + col_offset + feature_lead; |
| |
| // For width equals to zero case. |
| for (int k = 0; k < NUM_PC_WIENER_FEATURES; k++) { |
| dir_feature_accum[k][0] += feature_sum_bufs[k][col_base]; |
| } |
| |
| // For the remaining width. |
| col_base++; |
| for (col = 1; col < width; ++col, ++col_base) { |
| // Use cur_idx and prev_idx to update accumulate buffer appropriately. |
| const int cl = col_base - feature_length; |
| // Currently, the buffer 'directional_feature_accumulator' is used to hold |
| // the accumulated (from the 0th to start of the block position) gradient |
| // values corresponds to each direction. These accumulated values are used |
| // to derive a different filter index for each PC_WIENER_BLOCK_SIZE. Hence, |
| // the accumulated result is kept once for each PC_WIENER_BLOCK_SIZE |
| // samples. Here, cur_idx and prev_idx are used to update this accumulate |
| // buffer appropriately. |
| const int cur_idx = (col + PC_WIENER_BLOCK_SIZE - 1) / PC_WIENER_BLOCK_SIZE; |
| const int prev_idx = |
| (col + PC_WIENER_BLOCK_SIZE - 2) / PC_WIENER_BLOCK_SIZE; |
| for (int k = 0; k < NUM_PC_WIENER_FEATURES; ++k) { |
| const int cur_diff = |
| feature_sum_bufs[k][col_base] - feature_sum_bufs[k][cl]; |
| dir_feature_accum[k][cur_idx] = dir_feature_accum[k][prev_idx] + cur_diff; |
| } |
| } |
| } |
| |
| // Implements box filtering of tskip features using tskip_sum_buf. Each |
| // feature is obtained by taking the previous box-filtered value, subtracting |
| // the contribution of the out-of-scop column on the left and adding the |
| // contribution of the newly in-scope column on the right. |
| void av1_fill_tskip_feature_accumulator_c( |
| int16_t tskip_feature_accum[PC_WIENER_FEATURE_ACC_SIZE], |
| int8_t *tskip_sum_buf, int width, int col_offset, int tskip_lead, |
| int tskip_lag) { |
| const int tskip_length = tskip_lead + tskip_lag + 1; |
| int col = 0; |
| // Add tskip_lead to ensure buffer access is from >=0. |
| int col_base = col + col_offset + tskip_lead; |
| assert(col_base >= 0); |
| // For width equals to zero case. |
| tskip_feature_accum[0] += tskip_sum_buf[col_base]; |
| |
| // For the remaining width. |
| col_base++; |
| for (col = 1; col < width; ++col, ++col_base) { |
| // Use cur_idx and prev_idx to update accumulate buffer appropriately. |
| const int cl = col_base - tskip_length; |
| // Currently, the buffer 'directional_feature_accumulator' is used to hold |
| // the accumulated (from the 0th to start of the block position) gradient |
| // values corresponds to each direction. These accumulated values are used |
| // to derive a different filter index for each PC_WIENER_BLOCK_SIZE. Hence, |
| // the accumulated result is kept once for each PC_WIENER_BLOCK_SIZE |
| // samples. Here, cur_idx and prev_idx are used to update this accumulate |
| // buffer appropriately. |
| const int cur_idx = (col + PC_WIENER_BLOCK_SIZE - 1) / PC_WIENER_BLOCK_SIZE; |
| const int prev_idx = |
| (col + PC_WIENER_BLOCK_SIZE - 2) / PC_WIENER_BLOCK_SIZE; |
| const int cur_diff = tskip_sum_buf[col_base] - tskip_sum_buf[cl]; |
| tskip_feature_accum[cur_idx] = tskip_feature_accum[prev_idx] + cur_diff; |
| } |
| } |
| |
| // Accumulates tskip over a window of rows centered at row. If use_strict_bounds |
| // is false tskip must have valid data extending for rows from |
| // [row_begin, row_end) where, |
| // row_begin = row - PC_WIENER_TSKIP_LENGTH / 2 |
| // row_end = row + PC_WIENER_TSKIP_LENGTH / 2 + 1. |
| // This version of the routine assumes use_strict_bounds is true. |
| void av1_fill_tskip_sum_buffer_c(int row, const uint8_t *tskip, |
| int tskip_stride, int8_t *tx_skip_sum_buffer, |
| int width, int height, int tskip_lead, |
| int tskip_lag, bool use_strict_bounds) { |
| // TODO(oguleryuz): tskip needs boundary extension. |
| assert(use_strict_bounds == true); |
| (void)use_strict_bounds; |
| const int tskip_length = tskip_lead + tskip_lag + 1; |
| // The buffer 'tskip' holds binary values (0, 1) and 'tskip_sum_buffer' |
| // accumulates the values in 'tskip' buffer for 'height + tskip_length - 1' |
| // times. Thus, the highest positive value possible in 'tskip_sum_buffer' is |
| // 'height + tskip_length - 1'. As 'tskip_sum_buffer' is 8-bit signed integer |
| // type 'height + tskip_length - 1' should be less than 127. |
| assert((tskip_length + height) <= 127); |
| const int col_begin = -tskip_lead; |
| const int col_end = width + tskip_lag; |
| const int clamped_row = AOMMAX(AOMMIN(row, height - 1), 0); |
| |
| int buffer_col = 0; |
| int tskip_id_base = (clamped_row >> MI_SIZE_LOG2) * tskip_stride; |
| int left_tskip_id = tskip_id_base + (0 >> MI_SIZE_LOG2); |
| for (int col = col_begin; col < 0; ++col) { |
| tx_skip_sum_buffer[buffer_col] += tskip[left_tskip_id]; |
| ++buffer_col; |
| } |
| #if defined(__GCC__) |
| #pragma GCC ivdep |
| #endif |
| for (int col = 0; col < (width >> MI_SIZE_LOG2); ++col) { |
| const uint8_t tskip_val = tskip[tskip_id_base + col]; |
| |
| for (int i = 0; i < (1 << MI_SIZE_LOG2); ++i) { |
| tx_skip_sum_buffer[buffer_col] += tskip_val; |
| ++buffer_col; |
| } |
| } |
| |
| for (int col = (width >> MI_SIZE_LOG2) << MI_SIZE_LOG2; col < width; ++col) { |
| int tskip_id = tskip_id_base + (col >> MI_SIZE_LOG2); |
| tx_skip_sum_buffer[buffer_col] += tskip[tskip_id]; |
| ++buffer_col; |
| } |
| int right_tskip_id = tskip_id_base + ((width - 1) >> MI_SIZE_LOG2); |
| for (int col = width; col < col_end; ++col) { |
| tx_skip_sum_buffer[buffer_col] += tskip[right_tskip_id]; |
| ++buffer_col; |
| } |
| |
| int subtract_row = row - tskip_length; |
| if (subtract_row >= -tskip_lead) { |
| assert(subtract_row <= height - 1); |
| subtract_row = subtract_row >= 0 ? subtract_row : 0; |
| buffer_col = 0; |
| tskip_id_base = (subtract_row >> MI_SIZE_LOG2) * tskip_stride; |
| left_tskip_id = tskip_id_base + (0 >> MI_SIZE_LOG2); |
| for (int col = col_begin; col < 0; ++col) { |
| tx_skip_sum_buffer[buffer_col] -= tskip[left_tskip_id]; |
| ++buffer_col; |
| } |
| #if defined(__GCC__) |
| #pragma GCC ivdep |
| #endif |
| for (int col = 0; col < (width >> MI_SIZE_LOG2); ++col) { |
| const uint8_t tskip_val = tskip[tskip_id_base + col]; |
| |
| for (int i = 0; i < (1 << MI_SIZE_LOG2); ++i) { |
| tx_skip_sum_buffer[buffer_col] -= tskip_val; |
| ++buffer_col; |
| } |
| } |
| for (int col = (width >> MI_SIZE_LOG2) << MI_SIZE_LOG2; col < width; |
| ++col) { |
| int tskip_id = tskip_id_base + (col >> MI_SIZE_LOG2); |
| tx_skip_sum_buffer[buffer_col] -= tskip[tskip_id]; |
| ++buffer_col; |
| } |
| right_tskip_id = tskip_id_base + ((width - 1) >> MI_SIZE_LOG2); |
| for (int col = width; col < col_end; ++col) { |
| tx_skip_sum_buffer[buffer_col] -= tskip[right_tskip_id]; |
| ++buffer_col; |
| } |
| } |
| } |
| |
| void av1_convolve_symmetric_dual_highbd_c( |
| const uint16_t *dgd, int dgd_stride, const uint16_t *dgd_dual, |
| int dgd_dual_stride, const NonsepFilterConfig *filter_config, |
| const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth, |
| int block_row_begin, int block_row_end, int block_col_begin, |
| int block_col_end) { |
| assert(!filter_config->subtract_center); |
| const int num_sym_taps = filter_config->num_pixels / 2; |
| const int num_sym_taps_dual = filter_config->num_pixels2 / 2; |
| int32_t singleton_tap = 1 << filter_config->prec_bits; |
| if (filter_config->num_pixels % 2) { |
| // Center-tap is unconstrained. |
| const int singleton_tap_index = |
| filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; |
| singleton_tap += filter[singleton_tap_index]; |
| } |
| |
| // Begin compute conveniences. |
| // Based on filter_config allocate/compute once. Relocate elsewhere as needed. |
| // filter_config will change rarely and the core-functionality block will be |
| // called many times with the same filter_config. If any compute conveniences |
| // are utilzied it is advisable to put them elsewhere to be called when |
| // filter_config changes. |
| assert(num_sym_taps <= 24); |
| int16_t compute_buffer[24]; |
| int pixel_offset_diffs[24]; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int r = filter_config->config[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config[2 * k][NONSEP_COL_ID]; |
| const int diff = r * dgd_stride + c; |
| pixel_offset_diffs[k] = diff; |
| } |
| assert(num_sym_taps_dual <= 24); |
| int16_t compute_buffer_dual[24]; |
| int pixel_offset_diffs_dual[24]; |
| for (int k = 0; k < num_sym_taps_dual; ++k) { |
| const int r = filter_config->config2[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config2[2 * k][NONSEP_COL_ID]; |
| const int diff = r * dgd_dual_stride + c; |
| pixel_offset_diffs_dual[k] = diff; |
| } |
| // The dual channel may have a (0, 0) offset, in which case it must be the |
| // last one. |
| int32_t singleton_tap_dual = 0; |
| if (filter_config->num_pixels2 % 2) { |
| const int last_config = filter_config->num_pixels2 - 1; |
| assert(filter_config->config2[last_config][NONSEP_ROW_ID] == 0 && |
| filter_config->config2[last_config][NONSEP_COL_ID] == 0); |
| const int singleton_tap_index = |
| filter_config->config2[last_config][NONSEP_BUF_POS]; |
| singleton_tap_dual += filter[singleton_tap_index]; |
| } |
| // End compute conveniences. |
| |
| // Begin core-functionality that will be called many times. |
| for (int r = block_row_begin; r < block_row_end; ++r) { |
| for (int c = block_col_begin; c < block_col_end; ++c) { |
| int dgd_id = r * dgd_stride + c; |
| int dgd_dual_id = r * dgd_dual_stride + c; |
| |
| // Two loops for a potential data cache miss. |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| const int16_t tmp_sum = dgd[dgd_id - diff]; |
| compute_buffer[k] = tmp_sum; // 16-bit |
| } |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int diff = pixel_offset_diffs[k]; |
| const int16_t tmp_sum = dgd[dgd_id + diff]; |
| compute_buffer[k] += tmp_sum; // 16-bit arithmetic. |
| } |
| // Two loops for a potential data cache miss. |
| for (int k = 0; k < num_sym_taps_dual; ++k) { |
| const int diff = pixel_offset_diffs_dual[k]; |
| const int16_t tmp_sum = dgd_dual[dgd_dual_id - diff]; |
| compute_buffer_dual[k] = tmp_sum; // 16-bit |
| } |
| for (int k = 0; k < num_sym_taps_dual; ++k) { |
| const int diff = pixel_offset_diffs_dual[k]; |
| const int16_t tmp_sum = dgd_dual[dgd_dual_id + diff]; |
| compute_buffer_dual[k] += tmp_sum; // 16-bit arithmetic. |
| } |
| |
| // Handle singleton tap. |
| int32_t tmp = singleton_tap * dgd[dgd_id]; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int pos = filter_config->config[2 * k][NONSEP_BUF_POS]; |
| tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic. |
| } |
| |
| tmp += singleton_tap_dual * dgd_dual[dgd_dual_id]; |
| for (int k = 0; k < num_sym_taps_dual; ++k) { |
| const int pos = filter_config->config2[2 * k][NONSEP_BUF_POS]; |
| tmp += (int32_t)filter[pos] * |
| compute_buffer_dual[k]; // 32-bit arithmetic. |
| } |
| |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits); |
| |
| int dst_id = r * dst_stride + c; |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| } |
| |
| // Nonseparable convolution with dual input planes - used for cross component |
| // filtering. |
| // |
| // Implements origin-symmetric linear filtering of dgd and dgd_dual using two |
| // filters and composes a final filtered value as the sum of the two. Each |
| // filter is constrained to have taps that sum to zero. This is established by |
| // calculating the contribution of a tap-at-zero that establishes the zero-sum |
| // constraint. Suppose the tap at zero is f_0 = 0 - \sum_{i=1}^{N} f_i, and |
| // the filtered pixel at zero is x_0. Then f_0 * x_0 can be implemented by |
| // subtracting the center pixel during filtering with non-zero taps only. |
| // Subtracting the center-pixel also allows for the use of nonlinearities that |
| // can regulate differences from the center-pixel during filtering. |
| void av1_convolve_symmetric_dual_subtract_center_highbd_c( |
| const uint16_t *dgd, int dgd_stride, const uint16_t *dgd_dual, |
| int dgd_dual_stride, const NonsepFilterConfig *filter_config, |
| const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth, |
| int block_row_begin, int block_row_end, int block_col_begin, |
| int block_col_end) { |
| assert(filter_config->subtract_center); |
| const int num_sym_taps = filter_config->num_pixels / 2; |
| const int num_sym_taps_dual = filter_config->num_pixels2 / 2; |
| int32_t singleton_tap = 1 << filter_config->prec_bits; |
| int32_t dc_offset = 0; |
| if (filter_config->num_pixels % 2) { |
| const int dc_offset_tap_index = |
| filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; |
| dc_offset = filter[dc_offset_tap_index]; |
| } |
| |
| for (int i = block_row_begin; i < block_row_end; ++i) { |
| for (int j = block_col_begin; j < block_col_end; ++j) { |
| int dgd_id = i * dgd_stride + j; |
| int dgd_dual_id = i * dgd_dual_stride + j; |
| int dst_id = i * dst_stride + j; |
| int32_t tmp = (int32_t)dgd[dgd_id] * singleton_tap + dc_offset; |
| for (int k = 0; k < num_sym_taps; ++k) { |
| const int pos = filter_config->config[2 * k][NONSEP_BUF_POS]; |
| const int r = filter_config->config[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config[2 * k][NONSEP_COL_ID]; |
| const int diff = r * dgd_stride + c; |
| int16_t tmp_sum = |
| clip_base(dgd[i * dgd_stride + j + diff] - dgd[dgd_id], bit_depth); |
| tmp_sum += |
| clip_base(dgd[i * dgd_stride + j - diff] - dgd[dgd_id], bit_depth); |
| tmp += filter[pos] * tmp_sum; |
| } |
| for (int k = 0; k < num_sym_taps_dual; ++k) { |
| const int pos = filter_config->config2[2 * k][NONSEP_BUF_POS]; |
| const int r = filter_config->config2[2 * k][NONSEP_ROW_ID]; |
| const int c = filter_config->config2[2 * k][NONSEP_COL_ID]; |
| const int diff = r * dgd_dual_stride + c; |
| int16_t tmp_sum = clip_base( |
| dgd_dual[i * dgd_dual_stride + j + diff] - dgd_dual[dgd_dual_id], |
| bit_depth); |
| tmp_sum += clip_base( |
| dgd_dual[i * dgd_dual_stride + j - diff] - dgd_dual[dgd_dual_id], |
| bit_depth); |
| |
| tmp += filter[pos] * tmp_sum; |
| } |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits); |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| } |
| |
| // Nonseparable convolution with dual input planes - used for cross component |
| // filtering. |
| // |
| // Depending on the filter configuration: |
| // (i) Calls av1_convolve_symmetric_dual_subtract_center_highbd(), i.e., |
| // filtering with zero-sum filters implemented by subtracting the center-pixel |
| // value. |
| // (ii) Calls av1_convolve_symmetric_dual_highbd(), i.e., |
| // filtering with potentially unconstrained filters implemented by using a |
| // center-tap. |
| // (iii) Implements general non-symmetric filtering. |
| void av1_convolve_nonsep_dual_highbd(const uint16_t *dgd, int width, int height, |
| int stride, const uint16_t *dgd2, |
| int stride2, |
| const NonsepFilterConfig *nsfilter, |
| const int16_t *filter, uint16_t *dst, |
| int dst_stride, int bit_depth) { |
| #if USE_CONV_SYM_VERSIONS |
| assert(nsfilter->strict_bounds == false); |
| if (nsfilter->subtract_center) |
| av1_convolve_symmetric_dual_subtract_center_highbd( |
| dgd, stride, dgd2, stride2, nsfilter, filter, dst, dst_stride, |
| bit_depth, 0, height, 0, width); |
| else |
| av1_convolve_symmetric_dual_highbd(dgd, stride, dgd2, stride2, nsfilter, |
| filter, dst, dst_stride, bit_depth, 0, |
| height, 0, width); |
| #else |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| int dgd_id = i * stride + j; |
| int dgd2_id = i * stride2 + j; |
| int dst_id = i * dst_stride + j; |
| int32_t tmp = (int32_t)dgd[dgd_id] * (1 << nsfilter->prec_bits); |
| for (int k = 0; k < nsfilter->num_pixels; ++k) { |
| const int pos = nsfilter->config[k][NONSEP_BUF_POS]; |
| const int r = nsfilter->config[k][NONSEP_ROW_ID]; |
| const int c = nsfilter->config[k][NONSEP_COL_ID]; |
| if (r == 0 && c == 0) { |
| tmp += filter[pos]; |
| continue; |
| } |
| const int ir = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(i + r, height - 1), 0) |
| : i + r; |
| const int jc = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(j + c, width - 1), 0) |
| : j + c; |
| int16_t diff = clip_base( |
| (int16_t)dgd[(ir)*stride + (jc)] - (int16_t)dgd[dgd_id], bit_depth); |
| tmp += filter[pos] * diff; |
| } |
| for (int k = 0; k < nsfilter->num_pixels2; ++k) { |
| const int pos = nsfilter->config2[k][NONSEP_BUF_POS]; |
| const int r = nsfilter->config2[k][NONSEP_ROW_ID]; |
| const int c = nsfilter->config2[k][NONSEP_COL_ID]; |
| const int ir = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(i + r, height - 1), 0) |
| : i + r; |
| const int jc = nsfilter->strict_bounds |
| ? AOMMAX(AOMMIN(j + c, width - 1), 0) |
| : j + c; |
| int16_t diff = clip_base( |
| (int16_t)dgd2[(ir)*stride2 + (jc)] - (int16_t)dgd2[dgd2_id], |
| bit_depth); |
| tmp += filter[pos] * diff; |
| } |
| tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, nsfilter->prec_bits); |
| dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth); |
| } |
| } |
| #endif // USE_CONV_SYM_VERSIONS |
| } |
| |
| #endif // CONFIG_LR_IMPROVEMENTS |