blob: bb00718a096635e288d23e08589f3e9d138192ef [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <string.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const int16_t *x_filters, int x0_qn,
int x_step_qn, int bd) {
src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter =
&x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS];
int sum = 0;
for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k)
sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_2d_sobel_y_c(const uint8_t *src, int src_stride, double *dst,
int dst_stride, int w, int h, int dir,
double norm) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
DECLARE_ALIGNED(256, static const int16_t, sobel_a[3]) = { 1, 0, -1 };
DECLARE_ALIGNED(256, static const int16_t, sobel_b[3]) = { 1, 2, 1 };
const int taps = 3;
int im_h = h + taps - 1;
int im_stride = w;
const int fo_vert = 1;
const int fo_horiz = 1;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = dir ? sobel_a : sobel_b;
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int16_t sum = 0;
for (int k = 0; k < taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
im_block[y * im_stride + x] = sum;
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = dir ? sobel_b : sobel_a;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int16_t sum = 0;
for (int k = 0; k < taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
dst[y * dst_stride + x] = sum * norm;
}
}
}
void av1_highbd_convolve_x_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
assert(bits >= 0);
assert((FILTER_BITS - conv_params->round_1) >= 0 ||
((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS));
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
void av1_highbd_convolve_y_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn, int bd) {
const int fo_vert = filter_params_y->taps / 2 - 1;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, FILTER_BITS), bd);
}
}
}
void av1_highbd_convolve_2d_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE);
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
void av1_highbd_dist_wtd_convolve_2d_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
int x, y, k;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (y = 0; y < im_h; ++y) {
for (x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
(void)bd;
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (use_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_x_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
assert(round_bits >= 0);
assert(bits >= 0);
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (use_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_y_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
assert(round_bits >= 0);
assert(bits >= 0);
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (use_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_2d_copy_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride,
int w, int h,
ConvolveParams *conv_params,
int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
assert(bits >= 0);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (use_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
assert(bits >= 0);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx);
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->is_compound) {
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (use_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
/* Subtract round offset and convolve round */
tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
} else {
/* Subtract round offset and convolve round */
int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
}
}
src_vert++;
}
}
static void highbd_convolve_2d_facade_compound(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
const int w, const int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
if (!need_x && !need_y) {
av1_highbd_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h,
conv_params, bd);
} else if (need_x && !need_y) {
av1_highbd_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params,
bd);
} else if (!need_x && need_y) {
av1_highbd_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, conv_params,
bd);
} else {
assert(need_x && need_y);
av1_highbd_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
subpel_x_qn, subpel_y_qn, conv_params, bd);
}
}
static void highbd_convolve_2d_facade_single(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
const int w, const int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
// Filters with taps > 8 are only for encoder side use.
const int filter_x_taps_gt8 =
(filter_params_x == NULL) ? 0 : ((filter_params_x->taps > 8) ? 1 : 0);
const int filter_y_taps_gt8 =
(filter_params_y == NULL) ? 0 : ((filter_params_y->taps > 8) ? 1 : 0);
if (!need_x && !need_y) {
aom_highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h);
} else if (need_x && !need_y) {
// TODO(any): need SIMD for > 8 taps filters
if (filter_x_taps_gt8 || filter_y_taps_gt8) {
av1_highbd_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params, bd);
} else {
av1_highbd_convolve_x_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params, bd);
}
} else if (!need_x && need_y) {
if (filter_x_taps_gt8 || filter_y_taps_gt8) {
av1_highbd_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, bd);
} else {
av1_highbd_convolve_y_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, bd);
}
} else {
assert(need_x && need_y);
if (filter_x_taps_gt8 || filter_y_taps_gt8) {
av1_highbd_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params, bd);
} else {
av1_highbd_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params, bd);
}
}
}
void av1_highbd_convolve_2d_facade(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *interp_filters[2],
const int subpel_x_qn, int x_step_q4,
const int subpel_y_qn, int y_step_q4,
int scaled, ConvolveParams *conv_params,
int bd) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst_stride;
const int need_filter_params_x = (subpel_x_qn != 0) | scaled;
const int need_filter_params_y = (subpel_y_qn != 0) | scaled;
const InterpFilterParams *filter_params_x =
need_filter_params_x ? interp_filters[0] : NULL;
const InterpFilterParams *filter_params_y =
need_filter_params_y ? interp_filters[1] : NULL;
if (scaled) {
if (conv_params->is_compound) {
assert(conv_params->dst != NULL);
}
av1_highbd_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_q4, subpel_y_qn, y_step_q4, conv_params,
bd);
} else if (conv_params->is_compound) {
highbd_convolve_2d_facade_compound(
src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd);
} else {
highbd_convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
subpel_x_qn, subpel_y_qn, conv_params, bd);
}
}
// Note: Fixed size intermediate buffers, place limits on parameters
// of some functions. 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 128x128 pixels.
// --128 rows in the downscaled frame span a distance of (128 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((128 - 1) * 32 + 15) >> 4 + 8 = 263.
#define WIENER_MAX_EXT_SIZE 263
static INLINE int highbd_horz_scalar_product(const uint16_t *a,
const int16_t *b) {
int sum = 0;
for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k];
return sum;
}
static INLINE int highbd_vert_scalar_product(const uint16_t *a,
ptrdiff_t a_stride,
const int16_t *b) {
int sum = 0;
for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k * a_stride] * b[k];
return sum;
}
static const InterpKernel *get_filter_base(const int16_t *filter) {
// NOTE: This assumes that the filter table is 256-byte aligned.
// TODO(agrange) Modify to make independent of table alignment.
return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF));
}
static int get_filter_offset(const int16_t *f, const InterpKernel *base) {
return (int)((const InterpKernel *)(intptr_t)f - base);
}
static void highbd_convolve_add_src_horiz_hip(
const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst,
ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h, int round0_bits, int bd) {
const int extraprec_clamp_limit = WIENER_CLAMP_LIMIT(round0_bits, bd);
src -= SUBPEL_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) +
(1 << (bd + FILTER_BITS - 1));
const int sum = highbd_horz_scalar_product(src_x, x_filter) + rounding;
dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0,
extraprec_clamp_limit - 1);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_add_src_vert_hip(
const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst,
ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h, int round1_bits, int bd) {
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (int y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
const int rounding =
((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) -
(1 << (bd + round1_bits - 1));
const int sum =
highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding;
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, round1_bits), bd);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
void av1_highbd_wiener_convolve_add_src_c(
const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w, int h,
const WienerConvolveParams *conv_params, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE];
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
assert(bd + FILTER_BITS - conv_params->round_0 + 2 <= 16);
highbd_convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, MAX_SB_SIZE, filters_x,
x0_q4, x_step_q4, w, intermediate_height,
conv_params->round_0, bd);
highbd_convolve_add_src_vert_hip(
temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst, dst_stride,
filters_y, y0_q4, y_step_q4, w, h, conv_params->round_1, bd);
}
#if CONFIG_LR_IMPROVEMENTS
#define USE_CONV_SYM_VERSIONS 1
// Convolves a block of pixels with origin-symmetric, non-separable filters.
// This routine is intended as a starting point for SIMD and other acceleration
// work. The filters are assumed to have num_sym_taps unique taps if they sum to
// zero. Otherwise num_sym_taps + 1 unique taps where the extra tap is the
// unconstrained center tap.
//
// Usage:
// - For CONFIG_WIENER_NONSEP filters sum to zero. This constrains the
// center-tap:
// singleton_tap = (1 << filter_config->prec_bits) and
// num_sym_taps = filter_config->num_pixels / 2
// - For CONFIG_PC_WIENER center tap is unconstrained:
// const int singleton_tap_index =
// filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS];
// singleton_tap = (1 << filter_config->prec_bits)
// + filter[singleton_tap_index] and
// num_sym_taps = (filter_config->num_pixels - 1) / 2.
//
// Implementation Notes:
// - The filter taps have precision < 16 bits but the filter multiply
// filter[pos] * compute_buffer[k] has to be 32-bit, i.e., the result will not
// fit into a 16-bit register. Any acceleration code needs to ensure the
// multiply is carried out in 32-bits. The filter tap precisions should
// guarantee that the result of the convolution, i.e., the result of the entire
// multiply-add, fits into 32-bits prior to the down-shit and round.
// - Calling av1_convolve_symmetric_subtract_center_highbd_c allows passing the
// difference wrto the center pixel through a nonlinearity if one wishes to do
// so.
// - Current NonsepFilterConfig supports arbitrary filters and hence the loop
// over every other tap, e.g., filter_config->config[2 * k].
void av1_convolve_symmetric_highbd_c(const uint16_t *dgd, int stride,
const NonsepFilterConfig *filter_config,
const int16_t *filter, uint16_t *dst,
int dst_stride, int bit_depth,
int block_row_begin, int block_row_end,
int block_col_begin, int block_col_end) {
assert(!filter_config->subtract_center);
const int num_sym_taps = filter_config->num_pixels / 2;
int32_t singleton_tap = 1 << filter_config->prec_bits;
if (filter_config->num_pixels % 2) {
// Center-tap is unconstrained.
const int singleton_tap_index =
filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS];
singleton_tap += filter[singleton_tap_index];
}
// Begin compute conveniences.
// Based on filter_config allocate/compute once. Relocate elsewhere as needed.
// filter_config will change rarely and the core-functionality block will be
// called many times with the same filter_config. If any compute conveniences
// are utilzied it is advisable to put them elsewhere to be called when
// filter_config changes.
assert(num_sym_taps <= 24);
int16_t compute_buffer[24];
int pixel_offset_diffs[24];
for (int k = 0; k < num_sym_taps; ++k) {
const int r = filter_config->config[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config[2 * k][NONSEP_COL_ID];
const int diff = r * stride + c;
pixel_offset_diffs[k] = diff;
}
// End compute conveniences.
// Begin core-functionality that will be called many times.
for (int r = block_row_begin; r < block_row_end; ++r) {
for (int c = block_col_begin; c < block_col_end; ++c) {
int dgd_id = r * stride + c;
// Two loops for a potential data cache miss.
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
const int16_t tmp_sum = dgd[dgd_id - diff];
compute_buffer[k] = tmp_sum; // 16-bit
}
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
const int16_t tmp_sum = dgd[dgd_id + diff];
compute_buffer[k] += tmp_sum; // 16-bit arithmetic.
}
// Handle singleton tap.
int32_t tmp = singleton_tap * dgd[dgd_id];
for (int k = 0; k < num_sym_taps; ++k) {
const int pos = filter_config->config[2 * k][NONSEP_BUF_POS];
tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic.
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits);
int dst_id = r * dst_stride + c;
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
// End core-functionality.
}
// Same as av1_convolve_symmetric_highbd_c except for the subtraction of the
// center-pixel and the addition of an offset.
void av1_convolve_symmetric_subtract_center_highbd_c(
const uint16_t *dgd, int stride, const NonsepFilterConfig *filter_config,
const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth,
int block_row_begin, int block_row_end, int block_col_begin,
int block_col_end) {
assert(filter_config->subtract_center);
const int num_sym_taps = filter_config->num_pixels / 2;
int32_t singleton_tap = 1 << filter_config->prec_bits;
int32_t dc_offset = 0;
if (filter_config->num_pixels % 2) {
const int dc_offset_tap_index =
filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS];
dc_offset = filter[dc_offset_tap_index];
}
assert(num_sym_taps <= 24);
int16_t compute_buffer[24];
int pixel_offset_diffs[24];
for (int k = 0; k < num_sym_taps; ++k) {
const int r = filter_config->config[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config[2 * k][NONSEP_COL_ID];
const int diff = r * stride + c;
pixel_offset_diffs[k] = diff;
}
for (int r = block_row_begin; r < block_row_end; ++r) {
for (int c = block_col_begin; c < block_col_end; ++c) {
int dgd_id = r * stride + c;
// Two loops for a potential data cache miss.
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
// Subtract center pixel and pass through a fn.
const int16_t tmp_sum =
clip_base(dgd[dgd_id - diff] - dgd[dgd_id], bit_depth);
compute_buffer[k] = tmp_sum; // 16-bit
}
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
// Subtract center pixel and pass through a fn.
const int16_t tmp_sum =
clip_base(dgd[dgd_id + diff] - dgd[dgd_id], bit_depth);
compute_buffer[k] += tmp_sum; // 16-bit arithmetic.
}
// Handle singleton tap.
int32_t tmp = singleton_tap * dgd[dgd_id] + dc_offset;
for (int k = 0; k < num_sym_taps; ++k) {
const int pos = filter_config->config[2 * k][NONSEP_BUF_POS];
tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic.
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits);
int dst_id = r * dst_stride + c;
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
}
void av1_convolve_nonsep_highbd(const uint16_t *dgd, int width, int height,
int stride, const NonsepFilterConfig *nsfilter,
const int16_t *filter, uint16_t *dst,
int dst_stride, int bit_depth) {
#if USE_CONV_SYM_VERSIONS
assert(nsfilter->strict_bounds == false);
if (nsfilter->subtract_center)
av1_convolve_symmetric_subtract_center_highbd(dgd, stride, nsfilter, filter,
dst, dst_stride, bit_depth, 0,
height, 0, width);
else
av1_convolve_symmetric_highbd(dgd, stride, nsfilter, filter, dst,
dst_stride, bit_depth, 0, height, 0, width);
#else
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
int dgd_id = i * stride + j;
int dst_id = i * dst_stride + j;
int32_t tmp = (int32_t)dgd[dgd_id] * (1 << nsfilter->prec_bits);
for (int k = 0; k < nsfilter->num_pixels; ++k) {
const int pos = nsfilter->config[k][NONSEP_BUF_POS];
const int r = nsfilter->config[k][NONSEP_ROW_ID];
const int c = nsfilter->config[k][NONSEP_COL_ID];
if (r == 0 && c == 0) {
tmp += filter[pos];
continue;
}
const int ir = nsfilter->strict_bounds
? AOMMAX(AOMMIN(i + r, height - 1), 0)
: i + r;
const int jc = nsfilter->strict_bounds
? AOMMAX(AOMMIN(j + c, width - 1), 0)
: j + c;
int16_t diff = clip_base(
(int16_t)dgd[(ir)*stride + (jc)] - (int16_t)dgd[dgd_id], bit_depth);
tmp += filter[pos] * diff;
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, nsfilter->prec_bits);
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
#endif // USE_CONV_SYM_VERSIONS
}
void prepare_feature_sum_bufs_c(int *feature_sum_buffers[],
int16_t *feature_line_buffers[],
int feature_length, int buffer_row,
int col_begin, int col_end, int buffer_col) {
const int buffer_row_0 = buffer_row;
const int buffer_row_1 = buffer_row_0 + feature_length;
const int buffer_row_2 = buffer_row_1 + feature_length;
const int buffer_row_3 = buffer_row_2 + feature_length;
#if defined(__GCC__)
#pragma GCC ivdep
#endif
for (int col = col_begin; col < col_end; ++col, ++buffer_col) {
feature_sum_buffers[0][buffer_col] -=
feature_line_buffers[buffer_row_0][buffer_col];
feature_sum_buffers[1][buffer_col] -=
feature_line_buffers[buffer_row_1][buffer_col];
feature_sum_buffers[2][buffer_col] -=
feature_line_buffers[buffer_row_2][buffer_col];
feature_sum_buffers[3][buffer_col] -=
feature_line_buffers[buffer_row_3][buffer_col];
}
}
void calc_gradient_in_various_directions_c(int16_t *feature_line_buffers[],
int row, int buffer_row,
const uint16_t *dgd, int dgd_stride,
int width, int col_begin,
int col_end, int feature_length,
int buffer_col) {
const int buffer_row_0 = buffer_row;
const int buffer_row_1 = buffer_row_0 + feature_length;
const int buffer_row_2 = buffer_row_1 + feature_length;
const int buffer_row_3 = buffer_row_2 + feature_length;
#if defined(__GCC__)
#pragma GCC ivdep
#endif
for (int col = col_begin; col < col_end; ++col, ++buffer_col) {
// Fix an issue with odd-sized rows/columns. (If the right/lower extension
// of the frame is extended by 4 pixels instead of the current 3 AOMMIN can
// be discarded.
const int dgd_col = AOMMIN(col, width + 3 - 2);
const int dgd_id = row * dgd_stride + dgd_col;
const int prev_row = dgd_id - dgd_stride;
const int next_row = dgd_id + dgd_stride;
// D V A
// H O H
// A V D
const int16_t base_value = 2 * dgd[dgd_id]; // O.
const int16_t horizontal_diff =
dgd[dgd_id + 1] + dgd[dgd_id - 1] - base_value; // H.
int16_t vertical_diff = dgd[prev_row] - base_value; // V.
int16_t anti_diagonal_diff = dgd[prev_row + 1] - base_value; // A.
int16_t diagonal_diff = dgd[prev_row - 1] - base_value; // D.
vertical_diff += dgd[next_row];
anti_diagonal_diff += dgd[next_row - 1];
diagonal_diff += dgd[next_row + 1];
feature_line_buffers[buffer_row_0][buffer_col] =
abs(horizontal_diff); // fo
feature_line_buffers[buffer_row_1][buffer_col] = abs(vertical_diff); // f1
feature_line_buffers[buffer_row_2][buffer_col] =
abs(anti_diagonal_diff); // f2
feature_line_buffers[buffer_row_3][buffer_col] = abs(diagonal_diff); // f3
}
}
void update_feature_sum_bufs_c(int *feature_sum_buffers[],
int16_t *feature_line_buffers[],
int feature_length, int buffer_row,
int col_begin, int col_end, int buffer_col) {
const int buffer_row_0 = buffer_row;
const int buffer_row_1 = buffer_row_0 + feature_length;
const int buffer_row_2 = buffer_row_1 + feature_length;
const int buffer_row_3 = buffer_row_2 + feature_length;
#if defined(__GCC__)
#pragma GCC ivdep
#endif
for (int col = col_begin; col < col_end; ++col, ++buffer_col) {
feature_sum_buffers[0][buffer_col] +=
feature_line_buffers[buffer_row_0][buffer_col];
feature_sum_buffers[1][buffer_col] +=
feature_line_buffers[buffer_row_1][buffer_col];
feature_sum_buffers[2][buffer_col] +=
feature_line_buffers[buffer_row_2][buffer_col];
feature_sum_buffers[3][buffer_col] +=
feature_line_buffers[buffer_row_3][buffer_col];
}
}
// Calculates and accumulates the gradients over a window around row. If
// use_strict_bounds is false dgd must have valid data on this column extending
// for rows from [row_begin, row_end) where,
// row_begin = row - PC_WIENER_FEATURE_LENGTH / 2
// row_end = row + PC_WIENER_FEATURE_LENGTH / 2 + 1.
// This version of the routine assumes use_strict_bounds is false.
void fill_directional_feature_buffers_highbd_c(
int *feature_sum_bufs[], int16_t *feature_line_bufs[], int row,
int buffer_row, const uint16_t *dgd, int dgd_stride, int width,
int feature_lead, int feature_lag) {
const int feature_length = feature_lead + feature_lag + 1;
const int col_begin = -feature_lead;
const int col_end = width + feature_lag;
int buffer_col = 0;
// Preparation of feature sum buffers by subtracting the feature line buffers.
prepare_feature_sum_bufs_c(feature_sum_bufs, feature_line_bufs,
feature_length, buffer_row, col_begin, col_end,
buffer_col);
// Compute the gradient across different directions.
calc_gradient_in_various_directions_c(feature_line_bufs, row, buffer_row, dgd,
dgd_stride, width, col_begin, col_end,
feature_length, buffer_col);
// Update the feature sum buffers with updated feature line buffers.
update_feature_sum_bufs_c(feature_sum_bufs, feature_line_bufs, feature_length,
buffer_row, col_begin, col_end, buffer_col);
}
// Implements box filtering of directional features using feature_sum_bufs. Each
// feature is obtained by taking the previous box-filtered value, subtracting
// the contribution of the out-of-scop column on the left and adding the
// contribution of the newly in-scope column on the right.
void av1_fill_directional_feature_accumulators_c(
int dir_feature_accum[NUM_PC_WIENER_FEATURES][PC_WIENER_FEATURE_ACC_SIZE],
int *feature_sum_bufs[NUM_PC_WIENER_FEATURES], int width, int col_offset,
int feature_lead, int feature_lag) {
int col = 0;
const int feature_length = feature_lead + feature_lag + 1;
int col_base = col + col_offset + feature_lead;
// For width equals to zero case.
for (int k = 0; k < NUM_PC_WIENER_FEATURES; k++) {
dir_feature_accum[k][0] += feature_sum_bufs[k][col_base];
}
// For the remaining width.
col_base++;
for (col = 1; col < width; ++col, ++col_base) {
// Use cur_idx and prev_idx to update accumulate buffer appropriately.
const int cl = col_base - feature_length;
// Currently, the buffer 'directional_feature_accumulator' is used to hold
// the accumulated (from the 0th to start of the block position) gradient
// values corresponds to each direction. These accumulated values are used
// to derive a different filter index for each PC_WIENER_BLOCK_SIZE. Hence,
// the accumulated result is kept once for each PC_WIENER_BLOCK_SIZE
// samples. Here, cur_idx and prev_idx are used to update this accumulate
// buffer appropriately.
const int cur_idx = (col + PC_WIENER_BLOCK_SIZE - 1) / PC_WIENER_BLOCK_SIZE;
const int prev_idx =
(col + PC_WIENER_BLOCK_SIZE - 2) / PC_WIENER_BLOCK_SIZE;
for (int k = 0; k < NUM_PC_WIENER_FEATURES; ++k) {
const int cur_diff =
feature_sum_bufs[k][col_base] - feature_sum_bufs[k][cl];
dir_feature_accum[k][cur_idx] = dir_feature_accum[k][prev_idx] + cur_diff;
}
}
}
// Implements box filtering of tskip features using tskip_sum_buf. Each
// feature is obtained by taking the previous box-filtered value, subtracting
// the contribution of the out-of-scop column on the left and adding the
// contribution of the newly in-scope column on the right.
void av1_fill_tskip_feature_accumulator_c(
int16_t tskip_feature_accum[PC_WIENER_FEATURE_ACC_SIZE],
int8_t *tskip_sum_buf, int width, int col_offset, int tskip_lead,
int tskip_lag) {
const int tskip_length = tskip_lead + tskip_lag + 1;
int col = 0;
// Add tskip_lead to ensure buffer access is from >=0.
int col_base = col + col_offset + tskip_lead;
assert(col_base >= 0);
// For width equals to zero case.
tskip_feature_accum[0] += tskip_sum_buf[col_base];
// For the remaining width.
col_base++;
for (col = 1; col < width; ++col, ++col_base) {
// Use cur_idx and prev_idx to update accumulate buffer appropriately.
const int cl = col_base - tskip_length;
// Currently, the buffer 'directional_feature_accumulator' is used to hold
// the accumulated (from the 0th to start of the block position) gradient
// values corresponds to each direction. These accumulated values are used
// to derive a different filter index for each PC_WIENER_BLOCK_SIZE. Hence,
// the accumulated result is kept once for each PC_WIENER_BLOCK_SIZE
// samples. Here, cur_idx and prev_idx are used to update this accumulate
// buffer appropriately.
const int cur_idx = (col + PC_WIENER_BLOCK_SIZE - 1) / PC_WIENER_BLOCK_SIZE;
const int prev_idx =
(col + PC_WIENER_BLOCK_SIZE - 2) / PC_WIENER_BLOCK_SIZE;
const int cur_diff = tskip_sum_buf[col_base] - tskip_sum_buf[cl];
tskip_feature_accum[cur_idx] = tskip_feature_accum[prev_idx] + cur_diff;
}
}
// Accumulates tskip over a window of rows centered at row. If use_strict_bounds
// is false tskip must have valid data extending for rows from
// [row_begin, row_end) where,
// row_begin = row - PC_WIENER_TSKIP_LENGTH / 2
// row_end = row + PC_WIENER_TSKIP_LENGTH / 2 + 1.
// This version of the routine assumes use_strict_bounds is true.
void av1_fill_tskip_sum_buffer_c(int row, const uint8_t *tskip,
int tskip_stride, int8_t *tx_skip_sum_buffer,
int width, int height, int tskip_lead,
int tskip_lag, bool use_strict_bounds) {
// TODO(oguleryuz): tskip needs boundary extension.
assert(use_strict_bounds == true);
(void)use_strict_bounds;
const int tskip_length = tskip_lead + tskip_lag + 1;
// The buffer 'tskip' holds binary values (0, 1) and 'tskip_sum_buffer'
// accumulates the values in 'tskip' buffer for 'height + tskip_length - 1'
// times. Thus, the highest positive value possible in 'tskip_sum_buffer' is
// 'height + tskip_length - 1'. As 'tskip_sum_buffer' is 8-bit signed integer
// type 'height + tskip_length - 1' should be less than 127.
assert((tskip_length + height) <= 127);
const int col_begin = -tskip_lead;
const int col_end = width + tskip_lag;
const int clamped_row = AOMMAX(AOMMIN(row, height - 1), 0);
int buffer_col = 0;
int tskip_id_base = (clamped_row >> MI_SIZE_LOG2) * tskip_stride;
int left_tskip_id = tskip_id_base + (0 >> MI_SIZE_LOG2);
for (int col = col_begin; col < 0; ++col) {
tx_skip_sum_buffer[buffer_col] += tskip[left_tskip_id];
++buffer_col;
}
#if defined(__GCC__)
#pragma GCC ivdep
#endif
for (int col = 0; col < (width >> MI_SIZE_LOG2); ++col) {
const uint8_t tskip_val = tskip[tskip_id_base + col];
for (int i = 0; i < (1 << MI_SIZE_LOG2); ++i) {
tx_skip_sum_buffer[buffer_col] += tskip_val;
++buffer_col;
}
}
for (int col = (width >> MI_SIZE_LOG2) << MI_SIZE_LOG2; col < width; ++col) {
int tskip_id = tskip_id_base + (col >> MI_SIZE_LOG2);
tx_skip_sum_buffer[buffer_col] += tskip[tskip_id];
++buffer_col;
}
int right_tskip_id = tskip_id_base + ((width - 1) >> MI_SIZE_LOG2);
for (int col = width; col < col_end; ++col) {
tx_skip_sum_buffer[buffer_col] += tskip[right_tskip_id];
++buffer_col;
}
int subtract_row = row - tskip_length;
if (subtract_row >= -tskip_lead) {
assert(subtract_row <= height - 1);
subtract_row = subtract_row >= 0 ? subtract_row : 0;
buffer_col = 0;
tskip_id_base = (subtract_row >> MI_SIZE_LOG2) * tskip_stride;
left_tskip_id = tskip_id_base + (0 >> MI_SIZE_LOG2);
for (int col = col_begin; col < 0; ++col) {
tx_skip_sum_buffer[buffer_col] -= tskip[left_tskip_id];
++buffer_col;
}
#if defined(__GCC__)
#pragma GCC ivdep
#endif
for (int col = 0; col < (width >> MI_SIZE_LOG2); ++col) {
const uint8_t tskip_val = tskip[tskip_id_base + col];
for (int i = 0; i < (1 << MI_SIZE_LOG2); ++i) {
tx_skip_sum_buffer[buffer_col] -= tskip_val;
++buffer_col;
}
}
for (int col = (width >> MI_SIZE_LOG2) << MI_SIZE_LOG2; col < width;
++col) {
int tskip_id = tskip_id_base + (col >> MI_SIZE_LOG2);
tx_skip_sum_buffer[buffer_col] -= tskip[tskip_id];
++buffer_col;
}
right_tskip_id = tskip_id_base + ((width - 1) >> MI_SIZE_LOG2);
for (int col = width; col < col_end; ++col) {
tx_skip_sum_buffer[buffer_col] -= tskip[right_tskip_id];
++buffer_col;
}
}
}
void av1_convolve_symmetric_dual_highbd_c(
const uint16_t *dgd, int dgd_stride, const uint16_t *dgd_dual,
int dgd_dual_stride, const NonsepFilterConfig *filter_config,
const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth,
int block_row_begin, int block_row_end, int block_col_begin,
int block_col_end) {
assert(!filter_config->subtract_center);
const int num_sym_taps = filter_config->num_pixels / 2;
const int num_sym_taps_dual = filter_config->num_pixels2 / 2;
int32_t singleton_tap = 1 << filter_config->prec_bits;
if (filter_config->num_pixels % 2) {
// Center-tap is unconstrained.
const int singleton_tap_index =
filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS];
singleton_tap += filter[singleton_tap_index];
}
// Begin compute conveniences.
// Based on filter_config allocate/compute once. Relocate elsewhere as needed.
// filter_config will change rarely and the core-functionality block will be
// called many times with the same filter_config. If any compute conveniences
// are utilzied it is advisable to put them elsewhere to be called when
// filter_config changes.
assert(num_sym_taps <= 24);
int16_t compute_buffer[24];
int pixel_offset_diffs[24];
for (int k = 0; k < num_sym_taps; ++k) {
const int r = filter_config->config[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config[2 * k][NONSEP_COL_ID];
const int diff = r * dgd_stride + c;
pixel_offset_diffs[k] = diff;
}
assert(num_sym_taps_dual <= 24);
int16_t compute_buffer_dual[24];
int pixel_offset_diffs_dual[24];
for (int k = 0; k < num_sym_taps_dual; ++k) {
const int r = filter_config->config2[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config2[2 * k][NONSEP_COL_ID];
const int diff = r * dgd_dual_stride + c;
pixel_offset_diffs_dual[k] = diff;
}
// The dual channel may have a (0, 0) offset, in which case it must be the
// last one.
int32_t singleton_tap_dual = 0;
if (filter_config->num_pixels2 % 2) {
const int last_config = filter_config->num_pixels2 - 1;
assert(filter_config->config2[last_config][NONSEP_ROW_ID] == 0 &&
filter_config->config2[last_config][NONSEP_COL_ID] == 0);
const int singleton_tap_index =
filter_config->config2[last_config][NONSEP_BUF_POS];
singleton_tap_dual += filter[singleton_tap_index];
}
// End compute conveniences.
// Begin core-functionality that will be called many times.
for (int r = block_row_begin; r < block_row_end; ++r) {
for (int c = block_col_begin; c < block_col_end; ++c) {
int dgd_id = r * dgd_stride + c;
int dgd_dual_id = r * dgd_dual_stride + c;
// Two loops for a potential data cache miss.
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
const int16_t tmp_sum = dgd[dgd_id - diff];
compute_buffer[k] = tmp_sum; // 16-bit
}
for (int k = 0; k < num_sym_taps; ++k) {
const int diff = pixel_offset_diffs[k];
const int16_t tmp_sum = dgd[dgd_id + diff];
compute_buffer[k] += tmp_sum; // 16-bit arithmetic.
}
// Two loops for a potential data cache miss.
for (int k = 0; k < num_sym_taps_dual; ++k) {
const int diff = pixel_offset_diffs_dual[k];
const int16_t tmp_sum = dgd_dual[dgd_dual_id - diff];
compute_buffer_dual[k] = tmp_sum; // 16-bit
}
for (int k = 0; k < num_sym_taps_dual; ++k) {
const int diff = pixel_offset_diffs_dual[k];
const int16_t tmp_sum = dgd_dual[dgd_dual_id + diff];
compute_buffer_dual[k] += tmp_sum; // 16-bit arithmetic.
}
// Handle singleton tap.
int32_t tmp = singleton_tap * dgd[dgd_id];
for (int k = 0; k < num_sym_taps; ++k) {
const int pos = filter_config->config[2 * k][NONSEP_BUF_POS];
tmp += (int32_t)filter[pos] * compute_buffer[k]; // 32-bit arithmetic.
}
tmp += singleton_tap_dual * dgd_dual[dgd_dual_id];
for (int k = 0; k < num_sym_taps_dual; ++k) {
const int pos = filter_config->config2[2 * k][NONSEP_BUF_POS];
tmp += (int32_t)filter[pos] *
compute_buffer_dual[k]; // 32-bit arithmetic.
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits);
int dst_id = r * dst_stride + c;
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
}
// Nonseparable convolution with dual input planes - used for cross component
// filtering.
//
// Implements origin-symmetric linear filtering of dgd and dgd_dual using two
// filters and composes a final filtered value as the sum of the two. Each
// filter is constrained to have taps that sum to zero. This is established by
// calculating the contribution of a tap-at-zero that establishes the zero-sum
// constraint. Suppose the tap at zero is f_0 = 0 - \sum_{i=1}^{N} f_i, and
// the filtered pixel at zero is x_0. Then f_0 * x_0 can be implemented by
// subtracting the center pixel during filtering with non-zero taps only.
// Subtracting the center-pixel also allows for the use of nonlinearities that
// can regulate differences from the center-pixel during filtering.
void av1_convolve_symmetric_dual_subtract_center_highbd_c(
const uint16_t *dgd, int dgd_stride, const uint16_t *dgd_dual,
int dgd_dual_stride, const NonsepFilterConfig *filter_config,
const int16_t *filter, uint16_t *dst, int dst_stride, int bit_depth,
int block_row_begin, int block_row_end, int block_col_begin,
int block_col_end) {
assert(filter_config->subtract_center);
const int num_sym_taps = filter_config->num_pixels / 2;
const int num_sym_taps_dual = filter_config->num_pixels2 / 2;
int32_t singleton_tap = 1 << filter_config->prec_bits;
int32_t dc_offset = 0;
if (filter_config->num_pixels % 2) {
const int dc_offset_tap_index =
filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS];
dc_offset = filter[dc_offset_tap_index];
}
for (int i = block_row_begin; i < block_row_end; ++i) {
for (int j = block_col_begin; j < block_col_end; ++j) {
int dgd_id = i * dgd_stride + j;
int dgd_dual_id = i * dgd_dual_stride + j;
int dst_id = i * dst_stride + j;
int32_t tmp = (int32_t)dgd[dgd_id] * singleton_tap + dc_offset;
for (int k = 0; k < num_sym_taps; ++k) {
const int pos = filter_config->config[2 * k][NONSEP_BUF_POS];
const int r = filter_config->config[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config[2 * k][NONSEP_COL_ID];
const int diff = r * dgd_stride + c;
int16_t tmp_sum =
clip_base(dgd[i * dgd_stride + j + diff] - dgd[dgd_id], bit_depth);
tmp_sum +=
clip_base(dgd[i * dgd_stride + j - diff] - dgd[dgd_id], bit_depth);
tmp += filter[pos] * tmp_sum;
}
for (int k = 0; k < num_sym_taps_dual; ++k) {
const int pos = filter_config->config2[2 * k][NONSEP_BUF_POS];
const int r = filter_config->config2[2 * k][NONSEP_ROW_ID];
const int c = filter_config->config2[2 * k][NONSEP_COL_ID];
const int diff = r * dgd_dual_stride + c;
int16_t tmp_sum = clip_base(
dgd_dual[i * dgd_dual_stride + j + diff] - dgd_dual[dgd_dual_id],
bit_depth);
tmp_sum += clip_base(
dgd_dual[i * dgd_dual_stride + j - diff] - dgd_dual[dgd_dual_id],
bit_depth);
tmp += filter[pos] * tmp_sum;
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits);
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
}
// Nonseparable convolution with dual input planes - used for cross component
// filtering.
//
// Depending on the filter configuration:
// (i) Calls av1_convolve_symmetric_dual_subtract_center_highbd(), i.e.,
// filtering with zero-sum filters implemented by subtracting the center-pixel
// value.
// (ii) Calls av1_convolve_symmetric_dual_highbd(), i.e.,
// filtering with potentially unconstrained filters implemented by using a
// center-tap.
// (iii) Implements general non-symmetric filtering.
void av1_convolve_nonsep_dual_highbd(const uint16_t *dgd, int width, int height,
int stride, const uint16_t *dgd2,
int stride2,
const NonsepFilterConfig *nsfilter,
const int16_t *filter, uint16_t *dst,
int dst_stride, int bit_depth) {
#if USE_CONV_SYM_VERSIONS
assert(nsfilter->strict_bounds == false);
if (nsfilter->subtract_center)
av1_convolve_symmetric_dual_subtract_center_highbd(
dgd, stride, dgd2, stride2, nsfilter, filter, dst, dst_stride,
bit_depth, 0, height, 0, width);
else
av1_convolve_symmetric_dual_highbd(dgd, stride, dgd2, stride2, nsfilter,
filter, dst, dst_stride, bit_depth, 0,
height, 0, width);
#else
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
int dgd_id = i * stride + j;
int dgd2_id = i * stride2 + j;
int dst_id = i * dst_stride + j;
int32_t tmp = (int32_t)dgd[dgd_id] * (1 << nsfilter->prec_bits);
for (int k = 0; k < nsfilter->num_pixels; ++k) {
const int pos = nsfilter->config[k][NONSEP_BUF_POS];
const int r = nsfilter->config[k][NONSEP_ROW_ID];
const int c = nsfilter->config[k][NONSEP_COL_ID];
if (r == 0 && c == 0) {
tmp += filter[pos];
continue;
}
const int ir = nsfilter->strict_bounds
? AOMMAX(AOMMIN(i + r, height - 1), 0)
: i + r;
const int jc = nsfilter->strict_bounds
? AOMMAX(AOMMIN(j + c, width - 1), 0)
: j + c;
int16_t diff = clip_base(
(int16_t)dgd[(ir)*stride + (jc)] - (int16_t)dgd[dgd_id], bit_depth);
tmp += filter[pos] * diff;
}
for (int k = 0; k < nsfilter->num_pixels2; ++k) {
const int pos = nsfilter->config2[k][NONSEP_BUF_POS];
const int r = nsfilter->config2[k][NONSEP_ROW_ID];
const int c = nsfilter->config2[k][NONSEP_COL_ID];
const int ir = nsfilter->strict_bounds
? AOMMAX(AOMMIN(i + r, height - 1), 0)
: i + r;
const int jc = nsfilter->strict_bounds
? AOMMAX(AOMMIN(j + c, width - 1), 0)
: j + c;
int16_t diff = clip_base(
(int16_t)dgd2[(ir)*stride2 + (jc)] - (int16_t)dgd2[dgd2_id],
bit_depth);
tmp += filter[pos] * diff;
}
tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, nsfilter->prec_bits);
dst[dst_id] = (uint16_t)clip_pixel_highbd(tmp, bit_depth);
}
}
#endif // USE_CONV_SYM_VERSIONS
}
#endif // CONFIG_LR_IMPROVEMENTS