blob: e7943c4de8c60ceee1c13365686bf843c151e00d [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_COMMON_ENUMS_H_
#define AOM_AV1_COMMON_ENUMS_H_
#include "config/aom_config.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! @file */
/*!\cond */
#undef MAX_SB_SIZE
#define BAWP_BUGFIX 1
#if CONFIG_REFINEMV
#define SINGLE_STEP_SEARCH 0
#endif // CONFIG_REFINEMV
#if CONFIG_D071_IMP_MSK_BLD
#define DEFAULT_IMP_MSK_WT 0 // default implict masked blending weight
#endif // CONFIG_D071_IMP_MSK_BLD
#if CONFIG_WEDGE_MOD_EXT
/*WEDGE_0 is defined in the three o'clock direciton, the angles are defined in
* the anticlockwise.*/
enum {
WEDGE_0,
WEDGE_14,
WEDGE_27,
WEDGE_45,
WEDGE_63,
WEDGE_90,
WEDGE_117,
WEDGE_135,
WEDGE_153,
WEDGE_166,
WEDGE_180,
WEDGE_194,
WEDGE_207,
WEDGE_225,
WEDGE_243,
WEDGE_270,
WEDGE_297,
WEDGE_315,
WEDGE_333,
WEDGE_346,
WEDGE_ANGLES
} UENUM1BYTE(WedgeDirectionType);
#define H_WEDGE_ANGLES 10
#define NUM_WEDGE_DIST 4
#define MAX_WEDGE_TYPES 68
#define WEDGE_BLD_SIG 1 // 0 for linear blending, 1 for sigmoid blending
#define WEDGE_BLD_LUT_SIZE 128
#endif // CONFIG_WEDGE_MOD_EXT
#if CONFIG_EXTENDED_WARP_PREDICTION && CONFIG_MVP_IMPROVEMENT
#define WARP_CU_BANK 1
#else
#define WARP_CU_BANK 0
#endif // CONFIG_EXTENDED_WARP_PREDICTION && CONFIG_MVP_IMPROVEMENT
#if CONFIG_REFINEMV
#define REFINEMV_SUBBLOCK_WIDTH 16
#define REFINEMV_SUBBLOCK_HEIGHT 16
#endif // CONFIG_REFINEMV
// Cross-Component Sample Offset (CCSO)
#if CONFIG_CCSO
#define CCSO_BLK_SIZE 7
#define CCSO_PADDING_SIZE 5
#if CONFIG_CCSO_EXT
#if CONFIG_CCSO_BO_ONLY_OPTION
#define CCSO_BAND_NUM 128
#else
#define CCSO_BAND_NUM 8
#endif
#define CCSO_NUM_COMPONENTS 3
#else
#define CCSO_BAND_NUM 1
#define CCSO_NUM_COMPONENTS 2
#endif
#endif
#define BUGFIX_AMVD_AMVR 1
// Supported scale modes for JOINT_NEWMV
#define JOINT_NEWMV_SCALE_FACTOR_CNT 5
// Supoorted scale modes for JOINT_AMVDNEWMV
#define JOINT_AMVD_SCALE_FACTOR_CNT 3
// Max superblock size
#if CONFIG_BLOCK_256
#define MAX_SB_SIZE_LOG2 8
#else
#define MAX_SB_SIZE_LOG2 7
#endif // CONFIG_BLOCK_256
#define MAX_SB_SIZE (1 << MAX_SB_SIZE_LOG2)
#define MAX_SB_SQUARE (MAX_SB_SIZE * MAX_SB_SIZE)
#define BLOCK_128_MI_SIZE_LOG2 5
#if CONFIG_ENABLE_MHCCP
#define MHCCP_CONTEXT_GROUP_SIZE 7
#define LINE_NUM 3
#define MHCCP_MODE_NUM 2
#define MHCCP_NUM_PARAMS 5
#define MHCCP_WINDOW_SIZE 6
#define MHCCP_MAX_REF_SAMPLES \
(2 * MHCCP_WINDOW_SIZE * (2 * MAX_SB_SIZE + MHCCP_WINDOW_SIZE))
#define MHCCP_DECIM_BITS 22
#define MHCCP_DECIM_ROUND (1 << (MHCCP_DECIM_BITS - 1))
#define FIXED_MULT(x, y) (((x) * (y) + MHCCP_DECIM_ROUND) >> MHCCP_DECIM_BITS)
#define FIXED_DIV(x, y) (((x) << MHCCP_DECIM_BITS) / (y))
#endif // CONFIG_ENABLE_MHCCP
// Min superblock size
#define MIN_SB_SIZE_LOG2 6
// Pixels per Mode Info (MI) unit
#define MI_SIZE_LOG2 2
#define MI_SIZE (1 << MI_SIZE_LOG2)
// 1/8 pels per Mode Info (MI) unit
#define MI_SUBPEL_SIZE_LOG2 (MI_SIZE_LOG2 + 3)
#define MI_SUBPEL_SIZE (1 << MI_SUBPEL_SIZE_LOG2)
// MI-units per max superblock (MI Block - MIB)
#define MAX_MIB_SIZE_LOG2 (MAX_SB_SIZE_LOG2 - MI_SIZE_LOG2)
#define MAX_MIB_SIZE (1 << MAX_MIB_SIZE_LOG2)
#define MAX_MIB_SQUARE (MAX_MIB_SIZE * MAX_MIB_SIZE)
// MI-units per min superblock
#define MIN_MIB_SIZE_LOG2 (MIN_SB_SIZE_LOG2 - MI_SIZE_LOG2)
// Mask to extract MI offset within max MIB
#define MAX_MIB_MASK (MAX_MIB_SIZE - 1)
#if CONFIG_FLEX_PARTITION
// The largest block size where we need to construct chroma blocks separately
// from luma blocks is 64x32. With the four way partition, we can get 64x4
// block sizes. So we only need to track results for 16 mi units.
#define MAX_MI_LUMA_SIZE_FOR_SUB_8 (64 >> MI_SIZE_LOG2)
#define SUB_8_BITMASK_T uint16_t
#define SUB_8_BITMASK_SIZE (16)
#define SUB_8_BITMASK_ON (UINT16_MAX)
#else
// The largest block size where we need to construct chroma blocks separately
// from luma blocks is 32x16. With the four way partition, we can get 4x16
// block sizes. So we only need to track results for 8 mi units.
#define MAX_MI_LUMA_SIZE_FOR_SUB_8 (32 >> MI_SIZE_LOG2)
#define SUB_8_BITMASK_T uint8_t
#define SUB_8_BITMASK_SIZE (8)
#define SUB_8_BITMASK_ON (UINT8_MAX)
#endif // CONFIG_FLEX_PARTITION
// Maximum number of tile rows and tile columns
#define MAX_TILE_ROWS 64
#define MAX_TILE_COLS 64
#define MAX_VARTX_DEPTH 2
#define MI_SIZE_64X64 (64 >> MI_SIZE_LOG2)
#define MI_SIZE_128X128 (128 >> MI_SIZE_LOG2)
#define MI_SIZE_256X256 (256 >> MI_SIZE_LOG2)
#define MAX_PALETTE_SQUARE (64 * 64)
// Maximum number of colors in a palette.
#define PALETTE_MAX_SIZE 8
// Minimum number of colors in a palette.
#define PALETTE_MIN_SIZE 2
#define FRAME_OFFSET_BITS 5
#define MAX_FRAME_DISTANCE ((1 << FRAME_OFFSET_BITS) - 1)
// 4 frame filter levels: y plane vertical, y plane horizontal,
// u plane, and v plane
#define FRAME_LF_COUNT 4
#define DEFAULT_DELTA_LF_MULTI 0
#define MAX_MODE_LF_DELTAS 2
// Semi-Decoupled Partitioning
#define SHARED_PART_SIZE 128
#define PARTITION_STRUCTURE_NUM 2
// Multiple reference line selection for intra prediction
#define MRL_LINE_NUMBER 4
#if CONFIG_AIMC
#define FIRST_MODE_COUNT 13
#define SECOND_MODE_COUNT 16
#define Y_MODE_CONTEXTS 3
#define UV_MODE_CONTEXTS 2
#define INTRA_MODE_SETS 4
#define NON_DIRECTIONAL_MODES_COUNT 5
#if CONFIG_UV_CFL
#define CFL_CONTEXTS 3
#endif // CONFIG_UV_CFL
#endif // CONFIG_AIMC
// Intra Secondary Transform
#define IST_SET_SIZE 14 // IST kernel set size
#if CONFIG_IST_SET_FLAG
// Number of directional groups in IST kernels
#define IST_DIR_SIZE (IST_SET_SIZE >> 1)
#endif // CONFIG_IST_SET_FLAG
#define STX_TYPES 4 // 4 sec_tx_types including no IST
#define IST_4x4_WIDTH 16
#define IST_4x4_HEIGHT 8
#define IST_8x8_WIDTH 64
#define IST_8x8_HEIGHT 32
#define FSC_MODES 2
#define FSC_MAXWIDTH 32
#define FSC_MAXHEIGHT 32
#define FSC_MINWIDTH 4
#define FSC_MINHEIGHT 4
#define DIST_PRECISION_BITS 4
#define DIST_PRECISION (1 << DIST_PRECISION_BITS) // 16
#define PROFILE_BITS 3
// The following three profiles are currently defined.
// Profile 0. 8-bit and 10-bit 4:2:0 and 4:0:0 only.
// Profile 1. 8-bit and 10-bit 4:4:4
// Profile 2. 8-bit and 10-bit 4:2:2
// 12-bit 4:0:0, 4:2:2 and 4:4:4
// Since we have three bits for the profiles, it can be extended later.
enum {
PROFILE_0,
PROFILE_1,
PROFILE_2,
MAX_PROFILES,
} SENUM1BYTE(BITSTREAM_PROFILE);
#define OP_POINTS_CNT_MINUS_1_BITS 5
#define OP_POINTS_IDC_BITS 12
// Note: Some enums use the attribute 'packed' to use smallest possible integer
// type, so that we can save memory when they are used in structs/arrays.
typedef enum ATTRIBUTE_PACKED {
BLOCK_4X4,
BLOCK_4X8,
BLOCK_8X4,
BLOCK_8X8,
BLOCK_8X16,
BLOCK_16X8,
BLOCK_16X16,
BLOCK_16X32,
BLOCK_32X16,
BLOCK_32X32,
BLOCK_32X64,
BLOCK_64X32,
BLOCK_64X64,
BLOCK_64X128,
BLOCK_128X64,
BLOCK_128X128,
#if CONFIG_BLOCK_256
BLOCK_128X256,
BLOCK_256X128,
BLOCK_256X256,
#endif // CONFIG_BLOCK_256
BLOCK_4X16,
BLOCK_16X4,
BLOCK_8X32,
BLOCK_32X8,
BLOCK_16X64,
BLOCK_64X16,
#if CONFIG_FLEX_PARTITION
BLOCK_4X32,
BLOCK_32X4,
BLOCK_8X64,
BLOCK_64X8,
BLOCK_4X64,
BLOCK_64X4,
#endif // CONFIG_FLEX_PARTITION
BLOCK_SIZES_ALL,
#if CONFIG_BLOCK_256
BLOCK_MAX = BLOCK_256X256,
#else
BLOCK_MAX = BLOCK_128X128,
#endif // CONFIG_BLOCK_256
BLOCK_SIZES = BLOCK_4X16,
BLOCK_INVALID = 255,
BLOCK_LARGEST = (BLOCK_SIZES - 1)
} BLOCK_SIZE;
static AOM_INLINE BLOCK_SIZE get_larger_sqr_bsize(BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_4X4:
case BLOCK_4X8:
case BLOCK_8X4: return BLOCK_8X8;
case BLOCK_8X8:
case BLOCK_8X16:
case BLOCK_16X8:
case BLOCK_4X16:
case BLOCK_16X4: return BLOCK_16X16;
case BLOCK_16X16:
case BLOCK_16X32:
case BLOCK_32X16:
case BLOCK_8X32:
case BLOCK_32X8: return BLOCK_32X32;
case BLOCK_32X32:
case BLOCK_32X64:
case BLOCK_64X32:
case BLOCK_16X64:
case BLOCK_64X16: return BLOCK_64X64;
case BLOCK_64X64:
case BLOCK_64X128:
case BLOCK_128X64:
case BLOCK_128X128: return BLOCK_128X128;
default: return BLOCK_INVALID;
}
}
enum {
SHARED_PART = 0,
LUMA_PART = 1,
CHROMA_PART = 2,
TREES_TYPES,
} UENUM1BYTE(TREE_TYPE);
#if CONFIG_BLOCK_256
// 4X4, 8X8, 16X16, 32X32, 64X64, 128X128, 256X256
#define SQR_BLOCK_SIZES 7
#else
// 4X4, 8X8, 16X16, 32X32, 64X64, 128X128
#define SQR_BLOCK_SIZES 6
#endif // CONFIG_BLOCK_256
// Partition types. R: Recursive
//
// NONE HORZ VERT SPLIT
// +-------+ +-------+ +---+---+ +---+---+
// | | | | | | | | R | R |
// | | +-------+ | | | +---+---+
// | | | | | | | | R | R |
// +-------+ +-------+ +---+---+ +---+---+
//
#if CONFIG_EXT_RECUR_PARTITIONS
// HORZ_3 VERT_3
// +---------------+ +---+------+---+
// | | | | | |
// +---------------+ | | | |
// | | | | |______| |
// | | | | | | |
// +---------------+ | | | |
// | | | | | |
// +---------------+ +---+------+---+
// HORZ_4A HORZ_4B
// +---------------+ +---------------+
// | | | |
// +---------------+ +---------------+
// | | | |
// | | | |
// +---------------+ | |
// | | | |
// | | +---------------+
// | | | |
// | | | |
// +---------------+ +---------------+
// | | | |
// +---------------+ +---------------+
//
// VERT_4A VERT_4B
// +-------------------------+ +-------------------------+
// | | | | | | | | | |
// | | | | | | | | | |
// | | | | | | | | | |
// +-------------------------+ +-------------------------+
#else
// HORZ_A HORZ_B VERT_A VERT_B
// +---+---+ +-------+ +---+---+ +---+---+
// | | | | | | | | | | |
// +---+---+ +---+---+ +---+ | | +---+
// | | | | | | | | | | |
// +-------+ +---+---+ +---+---+ +---+---+
//
// HORZ_4 VERT_4
// +-----+ +-+-+-+
// +-----+ | | | |
// +-----+ | | | |
// +-----+ +-+-+-+
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
enum {
PARTITION_NONE,
PARTITION_HORZ,
PARTITION_VERT,
PARTITION_HORZ_3, // 3 horizontal sub-partitions with ratios 4:1, 2:1 and 4:1
PARTITION_VERT_3, // 3 vertical sub-partitions with ratios 4:1, 2:1 and 4:1
PARTITION_HORZ_4A, // 4 horizontal uneven sub-partitions (1:2:4:1).
PARTITION_HORZ_4B, // 4 horizontal uneven sub-partitions (1:4:2:1).
PARTITION_VERT_4A, // 4 vertical uneven sub-partitions (1:2:4:1).
PARTITION_VERT_4B, // 4 vertical uneven sub-partitions (1:4:2:1).
PARTITION_SPLIT,
EXT_PARTITION_TYPES = PARTITION_SPLIT,
ALL_PARTITION_TYPES = EXT_PARTITION_TYPES + 1,
PARTITION_TYPES = PARTITION_VERT + 1,
PARTITION_INVALID = 255
} UENUM1BYTE(PARTITION_TYPE);
#else // CONFIG_EXT_RECUR_PARTITIONS
enum {
PARTITION_NONE,
PARTITION_HORZ,
PARTITION_VERT,
PARTITION_SPLIT,
PARTITION_HORZ_A, // HORZ split and the top partition is split again
PARTITION_HORZ_B, // HORZ split and the bottom partition is split again
PARTITION_VERT_A, // VERT split and the left partition is split again
PARTITION_VERT_B, // VERT split and the right partition is split again
PARTITION_HORZ_4, // 4:1 horizontal partition
PARTITION_VERT_4, // 4:1 vertical partition
EXT_PARTITION_TYPES,
PARTITION_TYPES = PARTITION_SPLIT + 1,
PARTITION_INVALID = 255
} UENUM1BYTE(PARTITION_TYPE);
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Rectangular partition types.
enum {
HORZ = 0,
VERT,
NUM_RECT_PARTS,
RECT_INVALID = NUM_RECT_PARTS
} UENUM1BYTE(RECT_PART_TYPE);
#if CONFIG_EXT_RECUR_PARTITIONS
// Uneven 4-way partition types.
enum {
UNEVEN_4A = 0,
UNEVEN_4B,
NUM_UNEVEN_4WAY_PARTS,
} UENUM1BYTE(UNEVEN_4WAY_PART_TYPE);
#endif // CONFIG_EXT_RECUR_PARTITIONS
typedef char PARTITION_CONTEXT;
#define PARTITION_PLOFFSET 4 // number of probability models per block size
#if CONFIG_EXT_RECUR_PARTITIONS
#define PARTITION_BLOCK_SIZES BLOCK_SIZES
#define SQUARE_SPLIT_CONTEXTS (2 * PARTITION_PLOFFSET)
#else
#define PARTITION_BLOCK_SIZES 5
#endif // CONFIG_EXT_RECUR_PARTITIONS
#define PARTITION_CONTEXTS (PARTITION_BLOCK_SIZES * PARTITION_PLOFFSET)
// block transform size
enum {
TX_4X4, // 4x4 transform
TX_8X8, // 8x8 transform
TX_16X16, // 16x16 transform
TX_32X32, // 32x32 transform
TX_64X64, // 64x64 transform
TX_4X8, // 4x8 transform
TX_8X4, // 8x4 transform
TX_8X16, // 8x16 transform
TX_16X8, // 16x8 transform
TX_16X32, // 16x32 transform
TX_32X16, // 32x16 transform
TX_32X64, // 32x64 transform
TX_64X32, // 64x32 transform
TX_4X16, // 4x16 transform
TX_16X4, // 16x4 transform
TX_8X32, // 8x32 transform
TX_32X8, // 32x8 transform
TX_16X64, // 16x64 transform
TX_64X16, // 64x16 transform
#if CONFIG_FLEX_PARTITION
TX_4X32, // 4x32 transform
TX_32X4, // 32x4 transform
TX_8X64, // 8x64 transform
TX_64X8, // 64x8 transform
TX_4X64, // 4x64 transform
TX_64X4, // 64x4 transform
#endif // CONFIG_FLEX_PARTITION
TX_SIZES_ALL, // Includes rectangular transforms
TX_SIZES = TX_4X8, // Does NOT include rectangular transforms
TX_SIZES_LARGEST = TX_64X64,
TX_INVALID = 255 // Invalid transform size
} UENUM1BYTE(TX_SIZE);
#if CONFIG_NEW_TX_PARTITION
// Baseline transform partition types
//
// Square:
// NONE SPLIT
// +-------+ +---+---+
// | | | | |
// | | +---+---+
// | | | | |
// +-------+ +---+---+
//
//
// Rectangular:
// NONE SPLIT
// +--------------+ +-------+-------+
// | | | | |
// | | + + +
// | | | | |
// +--------------+ +-------+-------+
//
// Extended transform partition types (square and rect are the same)
//
// NONE SPLIT
// +-------+ +---+---+
// | | | | |
// | | +---+---+
// | | | | |
// +-------+ +---+---+
//
// HORZ VERT
// +-------+ +---+---+
// | | | | |
// +-------+ | | |
// | | | | |
// +-------+ +---+---+
//
enum {
TX_PARTITION_NONE,
TX_PARTITION_SPLIT,
TX_PARTITION_HORZ,
TX_PARTITION_VERT,
TX_PARTITION_TYPES,
TX_PARTITION_TYPES_INTRA = TX_PARTITION_TYPES,
TX_PARTITION_INVALID = 255
} UENUM1BYTE(TX_PARTITION_TYPE);
#endif // CONFIG_NEW_TX_PARTITION
#define TX_SIZE_LUMA_MIN (TX_4X4)
/* We don't need to code a transform size unless the allowed size is at least
one more than the minimum. */
#define TX_SIZE_CTX_MIN (TX_SIZE_LUMA_MIN + 1)
// Maximum tx_size categories
#define MAX_TX_CATS (TX_SIZES - TX_SIZE_CTX_MIN)
#define MAX_TX_DEPTH 2
#define MAX_TX_SIZE_LOG2 (6)
#define MAX_TX_SIZE (1 << MAX_TX_SIZE_LOG2)
#define MIN_TX_SIZE_LOG2 2
#define MIN_TX_SIZE (1 << MIN_TX_SIZE_LOG2)
#define MAX_TX_SQUARE (MAX_TX_SIZE * MAX_TX_SIZE)
#if CONFIG_DQ
#define MAX_TRELLIS MAX_TX_SQUARE
#endif
// Pad 4 extra columns to remove horizontal availability check.
#define TX_PAD_HOR_LOG2 2
#define TX_PAD_HOR 4
// Pad 6 extra rows (2 on top and 4 on bottom) to remove vertical availability
// check.
#define TX_PAD_LEFT 4
#define TX_PAD_RIGHT 4
#define TX_PAD_TOP 4
#define TX_PAD_BOTTOM 4
#define TX_PAD_VER (TX_PAD_TOP + TX_PAD_BOTTOM)
// Pad 16 extra bytes to avoid reading overflow in SIMD optimization.
#define TX_PAD_END 16
#define TX_PAD_2D ((32 + TX_PAD_HOR) * (32 + TX_PAD_VER) + TX_PAD_END)
// Number of maxium size transform blocks in the maximum size superblock
#define MAX_TX_BLOCKS_IN_MAX_SB_LOG2 ((MAX_SB_SIZE_LOG2 - MAX_TX_SIZE_LOG2) * 2)
#define MAX_TX_BLOCKS_IN_MAX_SB (1 << MAX_TX_BLOCKS_IN_MAX_SB_LOG2)
// frame transform mode
enum {
ONLY_4X4, // use only 4x4 transform
TX_MODE_LARGEST, // transform size is the largest possible for pu size
TX_MODE_SELECT, // transform specified for each block
TX_MODES,
} UENUM1BYTE(TX_MODE);
// 1D tx types
enum {
DCT_1D,
ADST_1D,
FLIPADST_1D,
IDTX_1D,
TX_TYPES_1D,
} UENUM1BYTE(TX_TYPE_1D);
enum {
DCT_DCT, // DCT in both horizontal and vertical
ADST_DCT, // ADST in vertical, DCT in horizontal
DCT_ADST, // DCT in vertical, ADST in horizontal
ADST_ADST, // ADST in both directions
FLIPADST_DCT, // FLIPADST in vertical, DCT in horizontal
DCT_FLIPADST, // DCT in vertical, FLIPADST in horizontal
FLIPADST_FLIPADST, // FLIPADST in both directions
ADST_FLIPADST, // ADST in vertical, FLIPADST in horizontal
FLIPADST_ADST, // FLIPADST in vertical, ADST in horizontal
IDTX, // Identity in both directions
V_DCT, // DCT in vertical, identity in horizontal
H_DCT, // Identity in vertical, DCT in horizontal
V_ADST, // ADST in vertical, identity in horizontal
H_ADST, // Identity in vertical, ADST in horizontal
V_FLIPADST, // FLIPADST in vertical, identity in horizontal
H_FLIPADST, // Identity in vertical, FLIPADST in horizontal
TX_TYPES,
DCT_ADST_TX_MASK = 0x000F, // Either DCT or ADST in each direction
} UENUM2BYTE(TX_TYPE);
#define CCTX_CONTEXTS 3
// Drop C2 channel for some cctx_types.
#define CCTX_C2_DROPPED 0
#if CCTX_C2_DROPPED
#define CCTX_DROP_30 1
#define CCTX_DROP_60 1
#define CCTX_DROP_45 1
#endif // CCTX_C2_DROPPED
enum {
CCTX_NONE, // No cross chroma transform
CCTX_45, // 45 degrees rotation (Haar transform)
CCTX_30, // 30 degrees rotation
CCTX_60, // 60 degrees rotation
CCTX_MINUS45, // -45 degrees rotation
CCTX_MINUS30, // -30 degrees rotation
CCTX_MINUS60, // -60 degrees rotation
CCTX_TYPES,
CCTX_START = CCTX_NONE + 1,
} UENUM1BYTE(CctxType);
#if CONFIG_ADST_TUNED
enum { FWD_TXFM, INV_TXFM, TXFM_DIRECTIONS } UENUM1BYTE(TXFM_DIRECTION);
#endif // CONFIG_ADST_TUNED
enum {
REG_REG,
REG_SMOOTH,
REG_SHARP,
SMOOTH_REG,
SMOOTH_SMOOTH,
SMOOTH_SHARP,
SHARP_REG,
SHARP_SMOOTH,
SHARP_SHARP,
} UENUM1BYTE(DUAL_FILTER_TYPE);
enum {
// DCT only
EXT_TX_SET_DCTONLY,
// DCT + Identity only
EXT_TX_SET_DCT_IDTX,
// Discrete Trig transforms w/o flip (4) + Identity (1)
EXT_TX_SET_DTT4_IDTX,
// Discrete Trig transforms w/o flip (4) + Identity (1) + 1D Hor/vert DCT (2)
EXT_TX_SET_DTT4_IDTX_1DDCT,
// Discrete Trig transforms w/ flip (9) + Identity (1) + 1D Hor/Ver DCT (2)
EXT_TX_SET_DTT9_IDTX_1DDCT,
// Discrete Trig transforms w/ flip (9) + Identity (1) + 1D Hor/Ver (6)
EXT_TX_SET_ALL16,
EXT_NEW_TX_SET,
EXT_TX_SET_TYPES
} UENUM1BYTE(TxSetType);
#define EOB_TX_CTXS 3
#define EXT_TX_SIZES 4 // number of sizes that use extended transforms
#define EXT_TX_SETS_INTER 4 // Sets of transform selections for INTER
#define EXT_TX_SETS_INTRA 3 // Sets of transform selections for INTRA
#define INTRA_TX_SET1 7
#define INTRA_TX_SET2 2
enum {
UNIDIR_COMP_REFERENCE,
BIDIR_COMP_REFERENCE,
COMP_REFERENCE_TYPES,
} UENUM1BYTE(COMP_REFERENCE_TYPE);
enum { PLANE_TYPE_Y, PLANE_TYPE_UV, PLANE_TYPES } UENUM1BYTE(PLANE_TYPE);
#if CONFIG_IMPROVED_CFL
#define CFL_ALPHABET_SIZE_LOG2 3
#else
#define CFL_ALPHABET_SIZE_LOG2 4
#endif // CONFIG_IMPROVED_CFL
#define CFL_ALPHABET_SIZE (1 << CFL_ALPHABET_SIZE_LOG2)
#define CFL_MAGS_SIZE ((2 << CFL_ALPHABET_SIZE_LOG2) + 1)
#define CFL_IDX_U(idx) (idx >> CFL_ALPHABET_SIZE_LOG2)
#define CFL_IDX_V(idx) (idx & (CFL_ALPHABET_SIZE - 1))
enum { CFL_PRED_U, CFL_PRED_V, CFL_PRED_PLANES } UENUM1BYTE(CFL_PRED_TYPE);
enum {
CFL_SIGN_ZERO,
CFL_SIGN_NEG,
CFL_SIGN_POS,
CFL_SIGNS
} UENUM1BYTE(CFL_SIGN_TYPE);
enum {
CFL_DISALLOWED,
CFL_ALLOWED,
CFL_ALLOWED_TYPES
} UENUM1BYTE(CFL_ALLOWED_TYPE);
// CFL_SIGN_ZERO,CFL_SIGN_ZERO is invalid
#define CFL_JOINT_SIGNS (CFL_SIGNS * CFL_SIGNS - 1)
// CFL_SIGN_U is equivalent to (js + 1) / 3 for js in 0 to 8
#define CFL_SIGN_U(js) (((js + 1) * 11) >> 5)
// CFL_SIGN_V is equivalent to (js + 1) % 3 for js in 0 to 8
#define CFL_SIGN_V(js) ((js + 1) - CFL_SIGNS * CFL_SIGN_U(js))
// There is no context when the alpha for a given plane is zero.
// So there are 2 fewer contexts than joint signs.
#define CFL_ALPHA_CONTEXTS (CFL_JOINT_SIGNS + 1 - CFL_SIGNS)
#define CFL_CONTEXT_U(js) (js + 1 - CFL_SIGNS)
// Also, the contexts are symmetric under swapping the planes.
#define CFL_CONTEXT_V(js) \
(CFL_SIGN_V(js) * CFL_SIGNS + CFL_SIGN_U(js) - CFL_SIGNS)
#if CONFIG_SEP_COMP_DRL
#define SEP_COMP_DRL_SIZE 3
#endif // CONFIG_SEP_COMP_DRL
enum {
PALETTE_MAP,
COLOR_MAP_TYPES,
} UENUM1BYTE(COLOR_MAP_TYPE);
enum {
TWO_COLORS,
THREE_COLORS,
FOUR_COLORS,
FIVE_COLORS,
SIX_COLORS,
SEVEN_COLORS,
EIGHT_COLORS,
PALETTE_SIZES
} UENUM1BYTE(PALETTE_SIZE);
enum {
PALETTE_COLOR_ONE,
PALETTE_COLOR_TWO,
PALETTE_COLOR_THREE,
PALETTE_COLOR_FOUR,
PALETTE_COLOR_FIVE,
PALETTE_COLOR_SIX,
PALETTE_COLOR_SEVEN,
PALETTE_COLOR_EIGHT,
PALETTE_COLORS
} UENUM1BYTE(PALETTE_COLOR);
// Note: All directional predictors must be between V_PRED and D67_PRED (both
// inclusive).
enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 degree
D135_PRED, // Directional 135 degree
D113_PRED, // Directional 113 degree
D157_PRED, // Directional 157 degree
D203_PRED, // Directional 203 degree
D67_PRED, // Directional 67 degree
SMOOTH_PRED, // Combination of horizontal and vertical interpolation
SMOOTH_V_PRED, // Vertical interpolation
SMOOTH_H_PRED, // Horizontal interpolation
PAETH_PRED, // Predict from the direction of smallest gradient
NEARMV,
GLOBALMV,
NEWMV,
AMVDNEWMV,
#if CONFIG_EXTENDED_WARP_PREDICTION
WARPMV, // WARPMV mode
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// Compound ref compound modes
NEAR_NEARMV,
NEAR_NEWMV,
NEW_NEARMV,
GLOBAL_GLOBALMV,
NEW_NEWMV,
JOINT_NEWMV,
JOINT_AMVDNEWMV,
#if CONFIG_OPTFLOW_REFINEMENT
NEAR_NEARMV_OPTFLOW,
NEAR_NEWMV_OPTFLOW,
NEW_NEARMV_OPTFLOW,
NEW_NEWMV_OPTFLOW,
JOINT_NEWMV_OPTFLOW,
JOINT_AMVDNEWMV_OPTFLOW,
#endif // CONFIG_OPTFLOW_REFINEMENT
MB_MODE_COUNT,
INTRA_MODE_START = DC_PRED,
INTRA_MODE_END = NEARMV,
DIR_MODE_START = V_PRED,
DIR_MODE_END = D67_PRED + 1,
INTRA_MODE_NUM = INTRA_MODE_END - INTRA_MODE_START,
SINGLE_INTER_MODE_START = NEARMV,
SINGLE_INTER_MODE_END = NEAR_NEARMV,
SINGLE_INTER_MODE_NUM = SINGLE_INTER_MODE_END - SINGLE_INTER_MODE_START,
COMP_INTER_MODE_START = NEAR_NEARMV,
COMP_INTER_MODE_END = MB_MODE_COUNT,
COMP_INTER_MODE_NUM = COMP_INTER_MODE_END - COMP_INTER_MODE_START,
#if CONFIG_OPTFLOW_REFINEMENT
COMP_OPTFLOW_MODE_START = NEAR_NEARMV_OPTFLOW,
INTER_COMPOUND_REF_TYPES = COMP_OPTFLOW_MODE_START - COMP_INTER_MODE_START,
#endif // CONFIG_OPTFLOW_REFINEMENT
INTER_MODE_START = NEARMV,
INTER_MODE_END = MB_MODE_COUNT,
INTRA_MODES = PAETH_PRED + 1, // PAETH_PRED has to be the last intra mode.
INTRA_INVALID = MB_MODE_COUNT, // For uv_mode in inter blocks
MODE_INVALID = 255
} UENUM1BYTE(PREDICTION_MODE);
// TODO(ltrudeau) Do we really want to pack this?
// TODO(ltrudeau) Do we match with PREDICTION_MODE?
enum {
UV_DC_PRED, // Average of above and left pixels
UV_V_PRED, // Vertical
UV_H_PRED, // Horizontal
UV_D45_PRED, // Directional 45 degree
UV_D135_PRED, // Directional 135 degree
UV_D113_PRED, // Directional 113 degree
UV_D157_PRED, // Directional 157 degree
UV_D203_PRED, // Directional 203 degree
UV_D67_PRED, // Directional 67 degree
UV_SMOOTH_PRED, // Combination of horizontal and vertical interpolation
UV_SMOOTH_V_PRED, // Vertical interpolation
UV_SMOOTH_H_PRED, // Horizontal interpolation
UV_PAETH_PRED, // Predict from the direction of smallest gradient
UV_CFL_PRED, // Chroma-from-Luma
UV_INTRA_MODES,
UV_MODE_INVALID, // For uv_mode in inter blocks
} UENUM1BYTE(UV_PREDICTION_MODE);
#if CONFIG_IMPROVED_CFL
enum {
CFL_EXPLICIT, // av1 cfl
CFL_DERIVED_ALPHA, // implicit CfL mode with derived scaling factor
#if CONFIG_ENABLE_MHCCP
CFL_MULTI_PARAM_V, // multi hypothesis cross component vertical prediction
CFL_MULTI_PARAM_H, // multi hypothesis cross component horizontal prediction
#endif // CONFIG_ENABLE_MHCCP
CFL_TYPE_COUNT, // CfL mode type count
} UENUM1BYTE(CFL_TYPE);
#endif
// Number of top model rd to store for pruning y modes in intra mode decision
#define TOP_INTRA_MODEL_COUNT 4
// Total number of luma intra prediction modes (include both directional and
// non-directional modes)
#define LUMA_MODE_COUNT 61
enum {
SIMPLE_TRANSLATION,
#if CONFIG_EXTENDED_WARP_PREDICTION
INTERINTRA,
#endif // CONFIG_EXTENDED_WARP_PREDICTION
OBMC_CAUSAL, // 2-sided OBMC
WARPED_CAUSAL, // Warp estimation from spatial MVs
#if CONFIG_EXTENDED_WARP_PREDICTION
WARP_DELTA, // Directly-signaled warp model
WARP_EXTEND, // Extension of an existing warp model into another block
#endif
MOTION_MODES
} UENUM1BYTE(MOTION_MODE);
#if CONFIG_AFFINE_REFINEMENT
enum {
COMP_REFINE_NONE, // No refinement
// Refine types to be searched and signaled in *MV_OPTFLOW modes
COMP_REFINE_SUBBLK2P, // subblock wise translation, 2-parameter
COMP_REFINE_ROTZOOM4P_SUBBLK2P, // rotation/scale/trans & subblock wise trans
COMP_REFINE_TYPES,
// Other supported refine types
COMP_REFINE_ROTZOOM2P_SUBBLK2P, // rotation/scale & subblock wise trans
// Other enums
COMP_REFINE_START = COMP_REFINE_NONE,
COMP_AFFINE_REFINE_START = COMP_REFINE_SUBBLK2P + 1,
COMP_AFFINE_REFINE_TYPES = COMP_REFINE_TYPES - 1, // excluding subblock 2p
COMP_REFINE_TYPE_FOR_SKIP = COMP_REFINE_SUBBLK2P,
COMP_REFINE_TYPE_FOR_REFINE_ALL = COMP_REFINE_ROTZOOM4P_SUBBLK2P,
COMP_REFINE_TYPES_VALID = COMP_REFINE_TYPES - 1,
} UENUM1BYTE(CompoundRefineType);
#endif // CONFIG_AFFINE_REFINEMENT
enum {
II_DC_PRED,
II_V_PRED,
II_H_PRED,
II_SMOOTH_PRED,
INTERINTRA_MODES
} UENUM1BYTE(INTERINTRA_MODE);
enum {
COMPOUND_AVERAGE,
COMPOUND_WEDGE,
COMPOUND_DIFFWTD,
COMPOUND_TYPES,
MASKED_COMPOUND_TYPES = 2,
} UENUM1BYTE(COMPOUND_TYPE);
enum {
FILTER_DC_PRED,
FILTER_V_PRED,
FILTER_H_PRED,
FILTER_D157_PRED,
FILTER_PAETH_PRED,
FILTER_INTRA_MODES,
} UENUM1BYTE(FILTER_INTRA_MODE);
enum {
SEQ_LEVEL_2_0,
SEQ_LEVEL_2_1,
SEQ_LEVEL_2_2,
SEQ_LEVEL_2_3,
SEQ_LEVEL_3_0,
SEQ_LEVEL_3_1,
SEQ_LEVEL_3_2,
SEQ_LEVEL_3_3,
SEQ_LEVEL_4_0,
SEQ_LEVEL_4_1,
SEQ_LEVEL_4_2,
SEQ_LEVEL_4_3,
SEQ_LEVEL_5_0,
SEQ_LEVEL_5_1,
SEQ_LEVEL_5_2,
SEQ_LEVEL_5_3,
SEQ_LEVEL_6_0,
SEQ_LEVEL_6_1,
SEQ_LEVEL_6_2,
SEQ_LEVEL_6_3,
SEQ_LEVEL_7_0,
SEQ_LEVEL_7_1,
SEQ_LEVEL_7_2,
SEQ_LEVEL_7_3,
SEQ_LEVELS,
SEQ_LEVEL_MAX = 31
} UENUM1BYTE(AV1_LEVEL);
#define LEVEL_BITS 5
#define DIRECTIONAL_MODES 8
#define MAX_ANGLE_DELTA 3
#define ANGLE_STEP 3
#if CONFIG_AIMC
// Total delta angles for one nominal directional mode
#define TOTAL_ANGLE_DELTA_COUNT 7
#endif
#if CONFIG_EXTENDED_WARP_PREDICTION
// The warpmv mode is signalled as a separate flag
// So the number of remaining modes to be signalled is (SINGLE_INTER_MODE_NUM-1)
#define INTER_SINGLE_MODES (SINGLE_INTER_MODE_NUM - 1)
#else
#define INTER_SINGLE_MODES SINGLE_INTER_MODE_NUM
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#define INTER_COMPOUND_MODES COMP_INTER_MODE_NUM
#if CONFIG_SKIP_MODE_ENHANCEMENT
#define SKIP_CONTEXTS 6
#else
#define SKIP_CONTEXTS 3
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
#define SKIP_MODE_CONTEXTS 3
#if CONFIG_NEW_CONTEXT_MODELING
#define INTRABC_CONTEXTS 3
#endif // CONFIG_NEW_CONTEXT_MODELING
#define COMP_GROUP_IDX_CONTEXTS 12
#define NMV_CONTEXTS 3
#define NEWMV_MODE_CONTEXTS 6
#define GLOBALMV_MODE_CONTEXTS 2
#define REFMV_MODE_CONTEXTS 6
#define ISREFMV_MODE_CONTEXTS 2
#define MIN_MAX_DRL_BITS 1
#define MAX_MAX_DRL_BITS 7
#if CONFIG_C076_INTER_MOD_CTX
#define INTER_SINGLE_MODE_CONTEXTS (NEWMV_MODE_CONTEXTS * ISREFMV_MODE_CONTEXTS)
#else
#define INTER_SINGLE_MODE_CONTEXTS \
(NEWMV_MODE_CONTEXTS * GLOBALMV_MODE_CONTEXTS * ISREFMV_MODE_CONTEXTS)
#endif // CONFIG_C076_INTER_MOD_CTX
#if CONFIG_C076_INTER_MOD_CTX
#define DRL_MODE_CONTEXTS NEWMV_MODE_CONTEXTS
#else
#define DRL_MODE_CONTEXTS (NEWMV_MODE_CONTEXTS * GLOBALMV_MODE_CONTEXTS)
#endif // CONFIG_C076_INTER_MOD_CTX
#if CONFIG_EXTENDED_WARP_PREDICTION
#define WARPMV_MODE_CONTEXT 10
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_IBC_BV_IMPROVEMENT
#define MAX_REF_BV_STACK_SIZE 4
#if CONFIG_IBC_MAX_DRL
#define MIN_MAX_IBC_DRL_BITS 1
#define MAX_MAX_IBC_DRL_BITS (MAX_REF_BV_STACK_SIZE - 1)
#endif // CONFIG_IBC_MAX_DRL
#endif // CONFIG_IBC_BV_IMPROVEMENT
#define GLOBALMV_OFFSET 3
#define REFMV_OFFSET 4
#if CONFIG_EXPLICIT_BAWP
// Explicit BAWP scaling factor counts
#define EXPLICIT_BAWP_SCALE_CNT 2
// Explicit BAWP scaling factor context counts
#define BAWP_SCALES_CTX_COUNT 3
// The allowed value range for bawp_flag
#define BAWP_OPTION_CNT 4
#endif // CONFIG_EXPLICIT_BAWP
#define NEWMV_CTX_MASK ((1 << GLOBALMV_OFFSET) - 1)
#define GLOBALMV_CTX_MASK ((1 << (REFMV_OFFSET - GLOBALMV_OFFSET)) - 1)
#define REFMV_CTX_MASK ((1 << (8 - REFMV_OFFSET)) - 1)
#define COMP_NEWMV_CTXS 5
#if CONFIG_C076_INTER_MOD_CTX
#define INTER_COMPOUND_MODE_CONTEXTS 6
#else
#define INTER_COMPOUND_MODE_CONTEXTS 8
#endif // CONFIG_C076_INTER_MOD_CTX
// Number of supported factors for compound weighted prediction
#define MAX_CWP_NUM 5
// maximum value for the supported factors
#define CWP_MAX 20
// minimum value for the supported factors
#define CWP_MIN -4
// Weighting factor for simple averge prediction
#define CWP_EQUAL 8
#define CWP_WEIGHT_BITS 4
#define MAX_CWP_CONTEXTS 2
#define DELTA_Q_SMALL 3
#define DELTA_Q_PROBS (DELTA_Q_SMALL)
#define DEFAULT_DELTA_Q_RES_PERCEPTUAL 4
#define DEFAULT_DELTA_Q_RES_OBJECTIVE 4
#define DELTA_LF_SMALL 3
#define DELTA_LF_PROBS (DELTA_LF_SMALL)
#define DEFAULT_DELTA_LF_RES 2
#define MAX_MV_REF_CANDIDATES 2
#define MAX_REF_MV_STACK_SIZE 8
#define USABLE_REF_MV_STACK_SIZE (MAX_REF_MV_STACK_SIZE)
#define REF_CAT_LEVEL 640
#if CONFIG_EXTENDED_WARP_PREDICTION
#define MAX_WARP_REF_CANDIDATES 4
#define WARP_REF_CONTEXTS 1
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_CONTEXT_DERIVATION
#define INTRA_INTER_SKIP_TXFM_CONTEXTS 2
#endif // CONFIG_CONTEXT_DERIVATION
#define INTRA_INTER_CONTEXTS 4
#define COMP_INTER_CONTEXTS 5
#define REF_CONTEXTS 3
#define COMP_REF_TYPE_CONTEXTS 5
#define UNI_COMP_REF_CONTEXTS 3
#if CONFIG_NEW_TX_PARTITION
#if CONFIG_TX_PARTITION_CTX
// Group size from mapping block size to tx partition context
#if CONFIG_FLEX_PARTITION
#define TXFM_PARTITION_GROUP 9
#else
#define TXFM_PARTITION_GROUP 8
#endif // CONFIG_FLEX_PARTITION
#else
#define TXFM_PARTITION_INTER_CONTEXTS ((TX_SIZES - TX_8X8) * 6 - 3)
#endif // CONFIG_TX_PARTITION_CTX
#else
#define TXFM_PARTITION_CONTEXTS ((TX_SIZES - TX_8X8) * 6 - 3)
#endif // CONFIG_NEW_TX_PARTITION
typedef uint16_t TXFM_CONTEXT;
#define TIP_CONTEXTS 3
#define INTER_REFS_PER_FRAME 7
#define REF_FRAMES (INTER_REFS_PER_FRAME + 1)
// NOTE: A limited number of unidirectional reference pairs can be signalled for
// compound prediction. The use of skip mode, on the other hand, makes it
// possible to have a reference pair not listed for explicit signaling.
#if CONFIG_ALLOW_SAME_REF_COMPOUND
#define MODE_CTX_REF_FRAMES \
(INTER_REFS_PER_FRAME * (INTER_REFS_PER_FRAME + 3) / 2 + \
2) // additional combinations for the same reference of compound mode
#else
#define MODE_CTX_REF_FRAMES \
(INTER_REFS_PER_FRAME * (INTER_REFS_PER_FRAME + 1) / 2 + 2)
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
// With k=INTER_REFS_PER_FRAMES, indices 0 to k-1 represent rank 1 to rank k
// references. The next k(k-1)/2 indices are left for compound reference types
// (there are k choose 2 compound combinations). Then, index for intra frame is
// defined as k+k(k-1)/2.
#if CONFIG_ALLOW_SAME_REF_COMPOUND
#define INTRA_FRAME \
(INTER_REFS_PER_FRAME * (INTER_REFS_PER_FRAME + 3) / \
2) // additional combinations for the same reference of compound mode
#else
#define INTRA_FRAME (INTER_REFS_PER_FRAME * (INTER_REFS_PER_FRAME + 1) / 2)
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
// Used for indexing into arrays that contain reference data for
// inter and intra.
#define INTRA_FRAME_INDEX INTER_REFS_PER_FRAME
#define NONE_FRAME INVALID_IDX
#define AOM_REFFRAME_ALL ((1 << INTER_REFS_PER_FRAME) - 1)
#define REF_FRAMES_LOG2 3
#define REFRESH_FRAME_ALL ((1 << REF_FRAMES) - 1)
// REF_FRAMES for the cm->ref_frame_map array, 1 scratch frame for the new
// frame in cm->cur_frame, INTER_REFS_PER_FRAME for scaled references on the
// encoder in the cpi->scaled_ref_buf array.
#define FRAME_BUFFERS (REF_FRAMES + 1 + INTER_REFS_PER_FRAME)
#define FWD_RF_OFFSET(ref) (ref - LAST_FRAME)
#define BWD_RF_OFFSET(ref) (ref - BWDREF_FRAME)
#define TOTAL_COMP_REFS (FWD_REFS * BWD_REFS + TOTAL_UNIDIR_COMP_REFS)
#define COMP_REFS (FWD_REFS * BWD_REFS + UNIDIR_COMP_REFS)
#define TIP_FRAME (MODE_CTX_REF_FRAMES - 1)
#define TIP_FRAME_INDEX (INTER_REFS_PER_FRAME + 1)
#define EXTREF_FRAMES (REF_FRAMES + 1)
#define SINGLE_REF_FRAMES EXTREF_FRAMES
// Note: It includes single and compound references. So, it can take values from
// NONE_FRAME to (MODE_CTX_REF_FRAMES - 1). Hence, it is not defined as an enum.
typedef int8_t MV_REFERENCE_FRAME;
#if CONFIG_LR_IMPROVEMENTS
#define MAX_LR_FLEX_SWITCHABLE_BITS 4
#endif // CONFIG_LR_IMPROVEMENTS
/*!\endcond */
/*!\enum RestorationType
* \brief This enumeration defines various restoration types supported
*/
typedef enum {
RESTORE_NONE, /**< No restoration */
RESTORE_WIENER, /**< Separable Wiener restoration */
RESTORE_SGRPROJ, /**< Selfguided restoration */
#if CONFIG_LR_IMPROVEMENTS
RESTORE_PC_WIENER, /**< Pixel-classified Wiener restoration */
RESTORE_WIENER_NONSEP, /**< Nonseparable Wiener restoration */
#endif // CONFIG_LR_IMPROVEMENTS
RESTORE_SWITCHABLE, /**< Switchable restoration */
RESTORE_SWITCHABLE_TYPES = RESTORE_SWITCHABLE, /**< Num Switchable types */
RESTORE_TYPES = RESTORE_SWITCHABLE + 1, /**< Num Restore types */
} RestorationType;
/*!\cond */
// Picture prediction structures (0-12 are predefined) in scalability metadata.
enum {
SCALABILITY_L1T2 = 0,
SCALABILITY_L1T3 = 1,
SCALABILITY_L2T1 = 2,
SCALABILITY_L2T2 = 3,
SCALABILITY_L2T3 = 4,
SCALABILITY_S2T1 = 5,
SCALABILITY_S2T2 = 6,
SCALABILITY_S2T3 = 7,
SCALABILITY_L2T1h = 8,
SCALABILITY_L2T2h = 9,
SCALABILITY_L2T3h = 10,
SCALABILITY_S2T1h = 11,
SCALABILITY_S2T2h = 12,
SCALABILITY_S2T3h = 13,
SCALABILITY_SS = 14
} UENUM1BYTE(SCALABILITY_STRUCTURES);
#define SUPERRES_SCALE_BITS 3
#define SUPERRES_SCALE_DENOMINATOR_MIN (SCALE_NUMERATOR + 1)
// In large_scale_tile coding, external references are used.
#define MAX_EXTERNAL_REFERENCES 128
#define MAX_TILES 512
#define DIR_MODES_0_90 17
#define IBP_WEIGHT_SHIFT 8
#define IBP_WEIGHT_MAX 255
#if CONFIG_EXTENDED_WARP_PREDICTION
/*!\enum Warp projection type
* \brief This enumeration defines various warp projection type supported
*/
typedef enum {
PROJ_GLOBAL_MOTION, /**< block is from global motion */
PROJ_SPATIAL, /**< Project from spatial neighborhood */
PROJ_PARAM_BANK, /**< Project from circular buffer */
PROJ_DEFAULT, /**< Default values */
WARP_PROJ_TYPES = 4, /**< Num projection types */
} WarpProjectionType;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_ENUMS_H_