| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_MV_H_ |
| #define AOM_AV1_COMMON_MV_H_ |
| |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "aom_dsp/aom_filter.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define INVALID_MV 0x80008000 |
| #define GET_MV_RAWPEL(x) (((x) + 3 + ((x) >= 0)) >> 3) |
| #define GET_MV_SUBPEL(x) ((x)*8) |
| |
| #define MV_IN_USE_BITS 14 |
| #define MV_UPP (1 << MV_IN_USE_BITS) |
| #define MV_LOW (-(1 << MV_IN_USE_BITS)) |
| |
| #define MARK_MV_INVALID(mv) \ |
| do { \ |
| ((int_mv *)(mv))->as_int = INVALID_MV; \ |
| } while (0); |
| #define CHECK_MV_EQUAL(x, y) (((x).row == (y).row) && ((x).col == (y).col)) |
| |
| // The motion vector in units of full pixel |
| typedef struct fullpel_mv { |
| int16_t row; |
| int16_t col; |
| } FULLPEL_MV; |
| |
| // The motion vector in units of 1/8-pel |
| typedef struct mv { |
| int16_t row; |
| int16_t col; |
| } MV; |
| |
| static const MV kZeroMv = { 0, 0 }; |
| static const FULLPEL_MV kZeroFullMv = { 0, 0 }; |
| |
| typedef union int_mv { |
| uint32_t as_int; |
| MV as_mv; |
| FULLPEL_MV as_fullmv; |
| } int_mv; /* facilitates faster equality tests and copies */ |
| |
| typedef struct mv32 { |
| int32_t row; |
| int32_t col; |
| } MV32; |
| |
| enum { |
| MV_PRECISION_8_PEL = 0, |
| MV_PRECISION_FOUR_PEL = 1, |
| MV_PRECISION_TWO_PEL = 2, |
| MV_PRECISION_ONE_PEL = 3, |
| MV_PRECISION_HALF_PEL = 4, |
| MV_PRECISION_QTR_PEL = 5, |
| MV_PRECISION_ONE_EIGHTH_PEL = 6, |
| NUM_MV_PRECISIONS, |
| } SENUM1BYTE(MvSubpelPrecision); |
| |
| typedef struct { |
| uint8_t num_precisions; |
| MvSubpelPrecision precision[NUM_MV_PRECISIONS]; |
| } PRECISION_SET; |
| static const PRECISION_SET av1_mv_precision_sets[2] = { |
| { 4, |
| { MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, |
| MV_PRECISION_ONE_EIGHTH_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| { 4, |
| { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, |
| MV_PRECISION_QTR_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| }; |
| |
| #define MAX_NUM_OF_SUPPORTED_PRECISIONS 4 |
| #define NUMBER_OF_PRECISION_SETS 1 |
| #define MV_PREC_DOWN_CONTEXTS 2 |
| #define FLEX_MV_COSTS_SIZE (MAX_NUM_OF_SUPPORTED_PRECISIONS - 1) |
| #define NUM_MV_PREC_MPP_CONTEXT 3 |
| #define NUM_PB_FLEX_QUALIFIED_MAX_PREC \ |
| ((NUM_MV_PRECISIONS) - (MV_PRECISION_HALF_PEL)) |
| |
| // The mv limit for fullpel mvs |
| typedef struct { |
| int col_min; |
| int col_max; |
| int row_min; |
| int row_max; |
| } FullMvLimits; |
| |
| // The mv limit for subpel mvs |
| typedef struct { |
| int col_min; |
| int col_max; |
| int row_min; |
| int row_max; |
| } SubpelMvLimits; |
| |
| static AOM_INLINE FULLPEL_MV get_fullmv_from_mv(const MV *subpel_mv) { |
| const FULLPEL_MV full_mv = { (int16_t)GET_MV_RAWPEL(subpel_mv->row), |
| (int16_t)GET_MV_RAWPEL(subpel_mv->col) }; |
| return full_mv; |
| } |
| |
| #if CONFIG_C071_SUBBLK_WARPMV |
| static AOM_INLINE void get_phase_from_mv(MV ref_mv, MV *sub_mv_offset, |
| MvSubpelPrecision precision) { |
| sub_mv_offset->col = 0; |
| sub_mv_offset->row = 0; |
| int col_phase = ref_mv.col - GET_MV_SUBPEL(GET_MV_RAWPEL(ref_mv.col)); |
| int row_phase = ref_mv.row - GET_MV_SUBPEL(GET_MV_RAWPEL(ref_mv.row)); |
| if (precision == MV_PRECISION_QTR_PEL) { |
| sub_mv_offset->col = (col_phase & 1) ? col_phase : 0; |
| sub_mv_offset->row = (row_phase & 1) ? row_phase : 0; |
| } else if (precision == MV_PRECISION_HALF_PEL) { |
| sub_mv_offset->col = ((col_phase & 1) || (col_phase & 2)) ? col_phase : 0; |
| sub_mv_offset->row = ((row_phase & 1) || (row_phase & 2)) ? row_phase : 0; |
| } else if (precision == MV_PRECISION_ONE_PEL) { |
| sub_mv_offset->col = col_phase; |
| sub_mv_offset->row = row_phase; |
| } else { |
| assert(precision == MV_PRECISION_ONE_EIGHTH_PEL || |
| precision < MV_PRECISION_ONE_PEL); |
| } |
| } |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| |
| static AOM_INLINE MV get_mv_from_fullmv(const FULLPEL_MV *full_mv) { |
| const MV subpel_mv = { (int16_t)GET_MV_SUBPEL(full_mv->row), |
| (int16_t)GET_MV_SUBPEL(full_mv->col) }; |
| return subpel_mv; |
| } |
| |
| static AOM_INLINE void convert_fullmv_to_mv(int_mv *mv) { |
| mv->as_mv = get_mv_from_fullmv(&mv->as_fullmv); |
| } |
| |
| #define ABS(x) (((x) >= 0) ? (x) : (-(x))) |
| // Reduce the precision of the MV to the target precision |
| // The parameter radix define the step size of the MV . |
| // For instance, radix = 1 for 1/8th pel, 2 for 1/4-th perl, 4 for 1/2 pel, 8 |
| // for integer pel |
| static INLINE void lower_mv_precision(MV *mv, MvSubpelPrecision precision) { |
| const int radix = (1 << (MV_PRECISION_ONE_EIGHTH_PEL - precision)); |
| if (radix == 1) return; |
| int mod = (mv->row % radix); |
| if (mod != 0) { |
| mv->row -= mod; |
| if (ABS(mod) > (radix >> 1)) { |
| if (mod > 0) { |
| mv->row += radix; |
| } else { |
| mv->row -= radix; |
| } |
| } |
| mv->row = clamp(mv->row, MV_LOW + radix, MV_UPP - radix); |
| } |
| |
| mod = (mv->col % radix); |
| if (mod != 0) { |
| mv->col -= mod; |
| if (ABS(mod) > (radix >> 1)) { |
| if (mod > 0) { |
| mv->col += radix; |
| } else { |
| mv->col -= radix; |
| } |
| } |
| mv->col = clamp(mv->col, MV_LOW + radix, MV_UPP - radix); |
| } |
| } |
| |
| static INLINE void full_pel_lower_mv_precision(FULLPEL_MV *full_pel_mv, |
| MvSubpelPrecision precision) { |
| if (precision >= MV_PRECISION_ONE_PEL) return; |
| |
| const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); |
| if (radix == 1) return; |
| int mod = (full_pel_mv->row % radix); |
| if (mod != 0) { |
| full_pel_mv->row -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| full_pel_mv->row += radix; |
| } else { |
| full_pel_mv->row -= radix; |
| } |
| } |
| full_pel_mv->row = clamp(full_pel_mv->row, GET_MV_RAWPEL(MV_LOW) + radix, |
| GET_MV_RAWPEL(MV_UPP) - radix); |
| } |
| |
| mod = (full_pel_mv->col % radix); |
| if (mod != 0) { |
| full_pel_mv->col -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| full_pel_mv->col += radix; |
| } else { |
| full_pel_mv->col -= radix; |
| } |
| } |
| full_pel_mv->col = clamp(full_pel_mv->col, GET_MV_RAWPEL(MV_LOW) + radix, |
| GET_MV_RAWPEL(MV_UPP) - radix); |
| } |
| } |
| |
| static INLINE void full_pel_lower_mv_precision_one_comp( |
| int *comp_value, MvSubpelPrecision precision, int is_max) { |
| if (precision >= MV_PRECISION_ONE_PEL) return; |
| const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); |
| int value = *comp_value; |
| int mod = (value % radix); |
| if (mod != 0) { |
| if (mod < 0) |
| value -= mod; |
| else |
| value += (radix - ABS(mod)); |
| |
| if (is_max) { |
| value -= radix; |
| } |
| *comp_value = clamp(value, GET_MV_RAWPEL(MV_LOW) + radix, |
| GET_MV_RAWPEL(MV_UPP) - radix); |
| } |
| } |
| |
| // Calculation precision for warp models |
| #define WARPEDMODEL_PREC_BITS 16 |
| #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // Storage precision for warp models |
| // |
| // Warp models are initially calculated using WARPEDMODEL_PREC_BITS fractional |
| // bits. This value is set quite high to reduce rounding error, especially |
| // during the least-squares process. |
| // |
| // However, this precision is far more than is needed for the warp filter and |
| // during storage, and excessive precision requires more hardware resources |
| // for little gain. So we reduce the parameters to a lower precision |
| // of (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) after calculation. |
| // |
| // Note that the constraints in av1_get_shear_params() imply that the |
| // non-translational parameters are limited to a range a little wider than |
| // (-1/4, +1/4), but certainly narrower than (-1/2, +1/2). So they can be safely |
| // stored in (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) bits, including |
| // the sign bit. |
| // |
| // In addition, the translational part of a warp model is clamped, to further |
| // limit the number of bits required for storage. |
| // |
| // The upshot of this is that, to store a single 6-parameter AFFINE warp model, |
| // hardware requires: |
| // * (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) bits for each of the 4 |
| // non-translational parameters |
| // * (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS + WARP_TRANS_INTEGER_BITS) |
| // bits for each of the 2 translational parameters |
| // |
| // for a total of 4 * 10 + 2 * 22 = 84 bits/model |
| #define WARP_PARAM_REDUCE_BITS 6 |
| #define WARP_TRANS_INTEGER_BITS 12 |
| #else |
| #define WARP_PARAM_REDUCE_BITS 6 |
| #define WARP_TRANS_INTEGER_BITS 8 |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #define WARPEDMODEL_TRANS_CLAMP \ |
| (1 << (WARPEDMODEL_PREC_BITS + WARP_TRANS_INTEGER_BITS - 1)) |
| #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3)) |
| #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2)) |
| |
| // Shift required to convert between warp parameter and MV precision |
| #define WARPEDMODEL_TO_MV_SHIFT (WARPEDMODEL_PREC_BITS - 3) |
| |
| // Bits of subpel precision for warped interpolation |
| #define WARPEDPIXEL_PREC_BITS 6 |
| #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) |
| |
| #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) |
| |
| /* clang-format off */ |
| enum { |
| IDENTITY = 0, // identity transformation, 0-parameter |
| TRANSLATION = 1, // translational motion 2-parameter |
| ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter |
| AFFINE = 3, // affine, 6-parameter |
| TRANS_TYPES, |
| } UENUM1BYTE(TransformationType); |
| /* clang-format on */ |
| |
| // Number of types used for global motion (must be >= 3 and <= TRANS_TYPES) |
| // The following can be useful: |
| // GLOBAL_TRANS_TYPES 3 - up to rotation-zoom |
| // GLOBAL_TRANS_TYPES 4 - up to affine |
| // GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids |
| // GLOBAL_TRANS_TYPES 7 - up to full homography |
| #define GLOBAL_TRANS_TYPES 4 |
| |
| typedef struct { |
| int global_warp_allowed; |
| int local_warp_allowed; |
| } WarpTypesAllowed; |
| |
| // number of parameters used by each transformation in TransformationTypes |
| static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 }; |
| |
| // The order of values in the wmmat matrix below is best described |
| // by the homography: |
| // [x' (m2 m3 m0 [x |
| // z . y' = m4 m5 m1 * y |
| // 1] m6 m7 1) 1] |
| typedef struct { |
| int32_t wmmat[8]; |
| int16_t alpha, beta, gamma, delta; |
| TransformationType wmtype; |
| int8_t invalid; |
| #if CONFIG_EXT_WARP_FILTER |
| // Flag that indicates whether to use the affine warp filter |
| // (av1_highbd_warp_affine) or the translational warp filter |
| // (av1_ext_highbd_warp_affine) |
| bool use_affine_filter; |
| #endif // CONFIG_EXT_WARP_FILTER |
| } WarpedMotionParams; |
| |
| /* clang-format off */ |
| static const WarpedMotionParams default_warp_params = { |
| { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, |
| 0 }, |
| 0, 0, 0, 0, |
| IDENTITY, |
| 0, |
| #if CONFIG_EXT_WARP_FILTER |
| true |
| #endif // CONFIG_EXT_WARP_FILTER |
| }; |
| /* clang-format on */ |
| |
| // The following constants describe the various precisions |
| // of different parameters in the global motion experiment. |
| // |
| // Given the general homography: |
| // [x' (a b c [x |
| // z . y' = d e f * y |
| // 1] g h i) 1] |
| // |
| // Constants using the name ALPHA here are related to parameters |
| // a, b, d, e. Constants using the name TRANS are related |
| // to parameters c and f. |
| // |
| // Anything ending in PREC_BITS is the number of bits of precision |
| // to maintain when converting from double to integer. |
| // |
| // The ABS parameters are used to create an upper and lower bound |
| // for each parameter. In other words, after a parameter is integerized |
| // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). |
| // |
| // XXX_PREC_DIFF and XXX_DECODE_FACTOR |
| // are computed once here to prevent repetitive |
| // computation on the decoder side. These are |
| // to allow the global motion parameters to be encoded in a lower |
| // precision than the warped model precision. This means that they |
| // need to be changed to warped precision when they are decoded. |
| // |
| // XX_MIN, XX_MAX are also computed to avoid repeated computation |
| |
| #define SUBEXPFIN_K 3 |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_IMPROVED_GLOBAL_MOTION |
| #define GM_TRANS_PREC_BITS 3 |
| #define GM_ABS_TRANS_BITS 14 |
| #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) |
| #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) |
| #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) |
| #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) |
| #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) |
| |
| #define GM_ALPHA_PREC_BITS 10 |
| #if CONFIG_EXT_WARP_FILTER |
| #define GM_ABS_ALPHA_BITS 9 |
| #else |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| #define GM_ABS_ALPHA_BITS 8 |
| #else |
| #define GM_ABS_ALPHA_BITS 7 |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| #endif // CONFIG_EXT_WARP_FILTER |
| #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) |
| #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) |
| #else |
| #define GM_TRANS_PREC_BITS 6 |
| #define GM_ABS_TRANS_BITS 12 |
| #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) |
| #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) |
| #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) |
| #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) |
| #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) |
| |
| #define GM_ALPHA_PREC_BITS 15 |
| #define GM_ABS_ALPHA_BITS 12 |
| #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) |
| #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| #define GM_ROW3HOMO_PREC_BITS 16 |
| #define GM_ABS_ROW3HOMO_BITS 11 |
| #define GM_ROW3HOMO_PREC_DIFF \ |
| (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS) |
| #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF) |
| |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| #define GM_TRANS_MAX ((1 << GM_ABS_TRANS_BITS) - 1) |
| #else |
| #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| #if CONFIG_EXT_WARP_FILTER |
| #define GM_ALPHA_MAX ((1 << GM_ABS_ALPHA_BITS) - 1) |
| #else |
| #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) |
| #endif // CONFIG_EXT_WARP_FILTER |
| #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS) |
| |
| #define GM_TRANS_MIN -GM_TRANS_MAX |
| #define GM_ALPHA_MIN -GM_ALPHA_MAX |
| #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX |
| |
| static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { |
| const int bw = block_size_wide[bs]; |
| return mi_col * MI_SIZE + bw / 2 - 1; |
| } |
| |
| static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { |
| const int bh = block_size_high[bs]; |
| return mi_row * MI_SIZE + bh / 2 - 1; |
| } |
| |
| static INLINE int convert_to_trans_prec(MvSubpelPrecision precision, int coor) { |
| if (precision > MV_PRECISION_QTR_PEL) |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); |
| else |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; |
| } |
| |
| // Returns how many bits do not need to be signaled relative to |
| // MV_PRECISION_ONE_EIGHTH_PEL |
| static INLINE int get_gm_precision_loss(MvSubpelPrecision precision) { |
| // NOTE: there is a bit of an anomaly in AV1 that the translation-only |
| // global parameters are sent only at 1/4 or 1/8 pel resolution depending |
| // on whether the allow_high_precision_mv flag is 0 or 1, but the |
| // cur_frame_force_integer_mv is ignored. Hence the AOMMIN(1, ...) |
| // below, but in here we correct that so that translation- |
| // only global parameters are sent at the MV resolution of the frame. |
| return AOMMIN(1, MV_PRECISION_ONE_EIGHTH_PEL - precision); |
| } |
| |
| static INLINE TransformationType get_wmtype(const WarpedMotionParams *model) { |
| if (model->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !model->wmmat[4] && |
| model->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !model->wmmat[3]) { |
| return ((!model->wmmat[1] && !model->wmmat[0]) ? IDENTITY : TRANSLATION); |
| } |
| if (model->wmmat[2] == model->wmmat[5] && model->wmmat[3] == -model->wmmat[4]) |
| return ROTZOOM; |
| else |
| return AFFINE; |
| } |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // Special value for row_offset and col_offset in the `CANDIDATE_MV` struct, |
| // to indicate that this motion vector did not come from spatial prediction |
| // (eg, temporal prediction, or a scaled MV from a nearby block which used |
| // a different ref frame) |
| // |
| // The special value is 0 because the spatial scan area consists of blocks |
| // both above and left of the current block. Thus valid offsets will always |
| // have at least one of row_offset and col_offset negative. |
| #define OFFSET_NONSPATIAL 0 |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| typedef struct candidate_mv { |
| int_mv this_mv; |
| int_mv comp_mv; |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // Position of the candidate block relative to the current block. |
| // This is used to decide whether to signal the WARP_EXTEND mode, |
| // and to fetch the corresponding warp model if that is used |
| // |
| // Note(rachelbarker): |
| // If these are both set to OFFSET_NONSPATIAL, then this is a non-spatial |
| // candidate, and so does not allow WARP_EXTEND |
| int row_offset; |
| int col_offset; |
| // Record the cwp index of the neighboring blocks |
| int8_t cwp_idx; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| } CANDIDATE_MV; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // structure of the warp-reference-list (WRL) |
| // Each entry of the WRL contain warp parameter and projection type. |
| typedef struct warp_candidate { |
| WarpedMotionParams wm_params; |
| WarpProjectionType proj_type; |
| } WARP_CANDIDATE; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| static INLINE int is_zero_mv(const MV *mv) { |
| return *((const uint32_t *)mv) == 0; |
| } |
| |
| static INLINE int is_equal_mv(const MV *a, const MV *b) { |
| return *((const uint32_t *)a) == *((const uint32_t *)b); |
| } |
| |
| static INLINE void clamp_mv(MV *mv, const SubpelMvLimits *mv_limits) { |
| mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); |
| mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); |
| } |
| |
| static INLINE void clamp_fullmv(FULLPEL_MV *mv, const FullMvLimits *mv_limits) { |
| mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); |
| mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_MV_H_ |