| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_COMMON_MV_H_ | 
 | #define AOM_AV1_COMMON_MV_H_ | 
 |  | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/common_data.h" | 
 | #include "aom_dsp/aom_filter.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #define INVALID_MV 0x80008000 | 
 | #define GET_MV_RAWPEL(x) (((x) + 3 + ((x) >= 0)) >> 3) | 
 | #define GET_MV_SUBPEL(x) ((x)*8) | 
 |  | 
 | #define MV_IN_USE_BITS 14 | 
 | #define MV_UPP (1 << MV_IN_USE_BITS) | 
 | #define MV_LOW (-(1 << MV_IN_USE_BITS)) | 
 |  | 
 | #define MARK_MV_INVALID(mv)                \ | 
 |   do {                                     \ | 
 |     ((int_mv *)(mv))->as_int = INVALID_MV; \ | 
 |   } while (0); | 
 | #define CHECK_MV_EQUAL(x, y) (((x).row == (y).row) && ((x).col == (y).col)) | 
 |  | 
 | // The motion vector in units of full pixel | 
 | typedef struct fullpel_mv { | 
 |   int16_t row; | 
 |   int16_t col; | 
 | } FULLPEL_MV; | 
 |  | 
 | // The motion vector in units of 1/8-pel | 
 | typedef struct mv { | 
 |   int16_t row; | 
 |   int16_t col; | 
 | } MV; | 
 |  | 
 | static const MV kZeroMv = { 0, 0 }; | 
 | static const FULLPEL_MV kZeroFullMv = { 0, 0 }; | 
 |  | 
 | typedef union int_mv { | 
 |   uint32_t as_int; | 
 |   MV as_mv; | 
 |   FULLPEL_MV as_fullmv; | 
 | } int_mv; /* facilitates faster equality tests and copies */ | 
 |  | 
 | typedef struct mv32 { | 
 |   int32_t row; | 
 |   int32_t col; | 
 | } MV32; | 
 |  | 
 | enum { | 
 |   MV_PRECISION_8_PEL = 0, | 
 |   MV_PRECISION_FOUR_PEL = 1, | 
 |   MV_PRECISION_TWO_PEL = 2, | 
 |   MV_PRECISION_ONE_PEL = 3, | 
 |   MV_PRECISION_HALF_PEL = 4, | 
 |   MV_PRECISION_QTR_PEL = 5, | 
 |   MV_PRECISION_ONE_EIGHTH_PEL = 6, | 
 |   NUM_MV_PRECISIONS, | 
 | } SENUM1BYTE(MvSubpelPrecision); | 
 |  | 
 | typedef struct { | 
 |   uint8_t num_precisions; | 
 |   MvSubpelPrecision precision[NUM_MV_PRECISIONS]; | 
 | } PRECISION_SET; | 
 | static const PRECISION_SET av1_mv_precision_sets[2] = { | 
 |   { 4, | 
 |     { MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, | 
 |       MV_PRECISION_ONE_EIGHTH_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, | 
 |       NUM_MV_PRECISIONS } }, | 
 |   { 4, | 
 |     { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, | 
 |       MV_PRECISION_QTR_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, | 
 |       NUM_MV_PRECISIONS } }, | 
 | }; | 
 |  | 
 | #define MAX_NUM_OF_SUPPORTED_PRECISIONS 4 | 
 | #define NUMBER_OF_PRECISION_SETS 1 | 
 | #define MV_PREC_DOWN_CONTEXTS 2 | 
 | #define FLEX_MV_COSTS_SIZE (MAX_NUM_OF_SUPPORTED_PRECISIONS - 1) | 
 | #define NUM_MV_PREC_MPP_CONTEXT 3 | 
 | #define NUM_PB_FLEX_QUALIFIED_MAX_PREC \ | 
 |   ((NUM_MV_PRECISIONS) - (MV_PRECISION_HALF_PEL)) | 
 |  | 
 | // The mv limit for fullpel mvs | 
 | typedef struct { | 
 |   int col_min; | 
 |   int col_max; | 
 |   int row_min; | 
 |   int row_max; | 
 | } FullMvLimits; | 
 |  | 
 | // The mv limit for subpel mvs | 
 | typedef struct { | 
 |   int col_min; | 
 |   int col_max; | 
 |   int row_min; | 
 |   int row_max; | 
 | } SubpelMvLimits; | 
 |  | 
 | static AOM_INLINE FULLPEL_MV get_fullmv_from_mv(const MV *subpel_mv) { | 
 |   const FULLPEL_MV full_mv = { (int16_t)GET_MV_RAWPEL(subpel_mv->row), | 
 |                                (int16_t)GET_MV_RAWPEL(subpel_mv->col) }; | 
 |   return full_mv; | 
 | } | 
 |  | 
 | #if CONFIG_C071_SUBBLK_WARPMV | 
 | static AOM_INLINE void get_phase_from_mv(MV ref_mv, MV *sub_mv_offset, | 
 |                                          MvSubpelPrecision precision) { | 
 |   sub_mv_offset->col = 0; | 
 |   sub_mv_offset->row = 0; | 
 |   int col_phase = ref_mv.col - GET_MV_SUBPEL(GET_MV_RAWPEL(ref_mv.col)); | 
 |   int row_phase = ref_mv.row - GET_MV_SUBPEL(GET_MV_RAWPEL(ref_mv.row)); | 
 |   if (precision == MV_PRECISION_QTR_PEL) { | 
 |     sub_mv_offset->col = (col_phase & 1) ? col_phase : 0; | 
 |     sub_mv_offset->row = (row_phase & 1) ? row_phase : 0; | 
 |   } else if (precision == MV_PRECISION_HALF_PEL) { | 
 |     sub_mv_offset->col = ((col_phase & 1) || (col_phase & 2)) ? col_phase : 0; | 
 |     sub_mv_offset->row = ((row_phase & 1) || (row_phase & 2)) ? row_phase : 0; | 
 |   } else if (precision == MV_PRECISION_ONE_PEL) { | 
 |     sub_mv_offset->col = col_phase; | 
 |     sub_mv_offset->row = row_phase; | 
 |   } else { | 
 |     assert(precision == MV_PRECISION_ONE_EIGHTH_PEL || | 
 |            precision < MV_PRECISION_ONE_PEL); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_C071_SUBBLK_WARPMV | 
 |  | 
 | static AOM_INLINE MV get_mv_from_fullmv(const FULLPEL_MV *full_mv) { | 
 |   const MV subpel_mv = { (int16_t)GET_MV_SUBPEL(full_mv->row), | 
 |                          (int16_t)GET_MV_SUBPEL(full_mv->col) }; | 
 |   return subpel_mv; | 
 | } | 
 |  | 
 | static AOM_INLINE void convert_fullmv_to_mv(int_mv *mv) { | 
 |   mv->as_mv = get_mv_from_fullmv(&mv->as_fullmv); | 
 | } | 
 |  | 
 | #define ABS(x) (((x) >= 0) ? (x) : (-(x))) | 
 | // Reduce the precision of the MV to the target precision | 
 | // The parameter radix define the step size of the MV . | 
 | // For instance, radix = 1 for 1/8th pel, 2 for 1/4-th perl, 4 for 1/2 pel, 8 | 
 | // for integer pel | 
 | static INLINE void lower_mv_precision(MV *mv, MvSubpelPrecision precision) { | 
 |   const int radix = (1 << (MV_PRECISION_ONE_EIGHTH_PEL - precision)); | 
 |   if (radix == 1) return; | 
 |   int mod = (mv->row % radix); | 
 |   if (mod != 0) { | 
 |     mv->row -= mod; | 
 |     if (ABS(mod) > (radix >> 1)) { | 
 |       if (mod > 0) { | 
 |         mv->row += radix; | 
 |       } else { | 
 |         mv->row -= radix; | 
 |       } | 
 |     } | 
 |     mv->row = clamp(mv->row, MV_LOW + radix, MV_UPP - radix); | 
 |   } | 
 |  | 
 |   mod = (mv->col % radix); | 
 |   if (mod != 0) { | 
 |     mv->col -= mod; | 
 |     if (ABS(mod) > (radix >> 1)) { | 
 |       if (mod > 0) { | 
 |         mv->col += radix; | 
 |       } else { | 
 |         mv->col -= radix; | 
 |       } | 
 |     } | 
 |     mv->col = clamp(mv->col, MV_LOW + radix, MV_UPP - radix); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void full_pel_lower_mv_precision(FULLPEL_MV *full_pel_mv, | 
 |                                                MvSubpelPrecision precision) { | 
 |   if (precision >= MV_PRECISION_ONE_PEL) return; | 
 |  | 
 |   const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); | 
 |   if (radix == 1) return; | 
 |   int mod = (full_pel_mv->row % radix); | 
 |   if (mod != 0) { | 
 |     full_pel_mv->row -= mod; | 
 |     if (ABS(mod) > radix / 2) { | 
 |       if (mod > 0) { | 
 |         full_pel_mv->row += radix; | 
 |       } else { | 
 |         full_pel_mv->row -= radix; | 
 |       } | 
 |     } | 
 |     full_pel_mv->row = clamp(full_pel_mv->row, GET_MV_RAWPEL(MV_LOW) + radix, | 
 |                              GET_MV_RAWPEL(MV_UPP) - radix); | 
 |   } | 
 |  | 
 |   mod = (full_pel_mv->col % radix); | 
 |   if (mod != 0) { | 
 |     full_pel_mv->col -= mod; | 
 |     if (ABS(mod) > radix / 2) { | 
 |       if (mod > 0) { | 
 |         full_pel_mv->col += radix; | 
 |       } else { | 
 |         full_pel_mv->col -= radix; | 
 |       } | 
 |     } | 
 |     full_pel_mv->col = clamp(full_pel_mv->col, GET_MV_RAWPEL(MV_LOW) + radix, | 
 |                              GET_MV_RAWPEL(MV_UPP) - radix); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void full_pel_lower_mv_precision_one_comp( | 
 |     int *comp_value, MvSubpelPrecision precision, int is_max) { | 
 |   if (precision >= MV_PRECISION_ONE_PEL) return; | 
 |   const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); | 
 |   int value = *comp_value; | 
 |   int mod = (value % radix); | 
 |   if (mod != 0) { | 
 |     if (mod < 0) | 
 |       value -= mod; | 
 |     else | 
 |       value += (radix - ABS(mod)); | 
 |  | 
 |     if (is_max) { | 
 |       value -= radix; | 
 |     } | 
 |     *comp_value = clamp(value, GET_MV_RAWPEL(MV_LOW) + radix, | 
 |                         GET_MV_RAWPEL(MV_UPP) - radix); | 
 |   } | 
 | } | 
 |  | 
 | // Calculation precision for warp models | 
 | #define WARPEDMODEL_PREC_BITS 16 | 
 | #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 | 
 |  | 
 | #if CONFIG_EXTENDED_WARP_PREDICTION | 
 | // Storage precision for warp models | 
 | // | 
 | // Warp models are initially calculated using WARPEDMODEL_PREC_BITS fractional | 
 | // bits. This value is set quite high to reduce rounding error, especially | 
 | // during the least-squares process. | 
 | // | 
 | // However, this precision is far more than is needed for the warp filter and | 
 | // during storage, and excessive precision requires more hardware resources | 
 | // for little gain. So we reduce the parameters to a lower precision | 
 | // of (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) after calculation. | 
 | // | 
 | // Note that the constraints in av1_get_shear_params() imply that the | 
 | // non-translational parameters are limited to a range a little wider than | 
 | // (-1/4, +1/4), but certainly narrower than (-1/2, +1/2). So they can be safely | 
 | // stored in (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) bits, including | 
 | // the sign bit. | 
 | // | 
 | // In addition, the translational part of a warp model is clamped, to further | 
 | // limit the number of bits required for storage. | 
 | // | 
 | // The upshot of this is that, to store a single 6-parameter AFFINE warp model, | 
 | // hardware requires: | 
 | // * (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) bits for each of the 4 | 
 | //   non-translational parameters | 
 | // * (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS + WARP_TRANS_INTEGER_BITS) | 
 | //   bits for each of the 2 translational parameters | 
 | // | 
 | // for a total of 4 * 10 + 2 * 22 = 84 bits/model | 
 | #define WARP_PARAM_REDUCE_BITS 6 | 
 | #define WARP_TRANS_INTEGER_BITS 12 | 
 | #else | 
 | #define WARP_PARAM_REDUCE_BITS 6 | 
 | #define WARP_TRANS_INTEGER_BITS 8 | 
 | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
 |  | 
 | #define WARPEDMODEL_TRANS_CLAMP \ | 
 |   (1 << (WARPEDMODEL_PREC_BITS + WARP_TRANS_INTEGER_BITS - 1)) | 
 | #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3)) | 
 | #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2)) | 
 |  | 
 | // Shift required to convert between warp parameter and MV precision | 
 | #define WARPEDMODEL_TO_MV_SHIFT (WARPEDMODEL_PREC_BITS - 3) | 
 |  | 
 | // Bits of subpel precision for warped interpolation | 
 | #define WARPEDPIXEL_PREC_BITS 6 | 
 | #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) | 
 |  | 
 | #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) | 
 |  | 
 | /* clang-format off */ | 
 | enum { | 
 |   IDENTITY = 0,      // identity transformation, 0-parameter | 
 |   TRANSLATION = 1,   // translational motion 2-parameter | 
 |   ROTZOOM = 2,       // simplified affine with rotation + zoom only, 4-parameter | 
 |   AFFINE = 3,        // affine, 6-parameter | 
 |   TRANS_TYPES, | 
 | } UENUM1BYTE(TransformationType); | 
 | /* clang-format on */ | 
 |  | 
 | // Number of types used for global motion (must be >= 3 and <= TRANS_TYPES) | 
 | // The following can be useful: | 
 | // GLOBAL_TRANS_TYPES 3 - up to rotation-zoom | 
 | // GLOBAL_TRANS_TYPES 4 - up to affine | 
 | // GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids | 
 | // GLOBAL_TRANS_TYPES 7 - up to full homography | 
 | #define GLOBAL_TRANS_TYPES 4 | 
 |  | 
 | typedef struct { | 
 |   int global_warp_allowed; | 
 |   int local_warp_allowed; | 
 | } WarpTypesAllowed; | 
 |  | 
 | // number of parameters used by each transformation in TransformationTypes | 
 | static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 }; | 
 |  | 
 | // The order of values in the wmmat matrix below is best described | 
 | // by the homography: | 
 | //      [x'     (m2 m3 m0   [x | 
 | //  z .  y'  =   m4 m5 m1 *  y | 
 | //       1]      m6 m7 1)    1] | 
 | typedef struct { | 
 |   int32_t wmmat[8]; | 
 |   int16_t alpha, beta, gamma, delta; | 
 |   TransformationType wmtype; | 
 |   int8_t invalid; | 
 | #if CONFIG_EXT_WARP_FILTER | 
 |   // Flag that indicates whether to use the affine warp filter | 
 |   // (av1_highbd_warp_affine) or the translational warp filter | 
 |   // (av1_ext_highbd_warp_affine) | 
 |   bool use_affine_filter; | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 | } WarpedMotionParams; | 
 |  | 
 | /* clang-format off */ | 
 | static const WarpedMotionParams default_warp_params = { | 
 |   { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, | 
 |     0 }, | 
 |   0, 0, 0, 0, | 
 |   IDENTITY, | 
 |   0, | 
 | #if CONFIG_EXT_WARP_FILTER | 
 |   true | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 | }; | 
 | /* clang-format on */ | 
 |  | 
 | // The following constants describe the various precisions | 
 | // of different parameters in the global motion experiment. | 
 | // | 
 | // Given the general homography: | 
 | //      [x'     (a  b  c   [x | 
 | //  z .  y'  =   d  e  f *  y | 
 | //       1]      g  h  i)    1] | 
 | // | 
 | // Constants using the name ALPHA here are related to parameters | 
 | // a, b, d, e. Constants using the name TRANS are related | 
 | // to parameters c and f. | 
 | // | 
 | // Anything ending in PREC_BITS is the number of bits of precision | 
 | // to maintain when converting from double to integer. | 
 | // | 
 | // The ABS parameters are used to create an upper and lower bound | 
 | // for each parameter. In other words, after a parameter is integerized | 
 | // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). | 
 | // | 
 | // XXX_PREC_DIFF and XXX_DECODE_FACTOR | 
 | // are computed once here to prevent repetitive | 
 | // computation on the decoder side. These are | 
 | // to allow the global motion parameters to be encoded in a lower | 
 | // precision than the warped model precision. This means that they | 
 | // need to be changed to warped precision when they are decoded. | 
 | // | 
 | // XX_MIN, XX_MAX are also computed to avoid repeated computation | 
 |  | 
 | #define SUBEXPFIN_K 3 | 
 |  | 
 | #if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #define GM_TRANS_PREC_BITS 3 | 
 | #define GM_ABS_TRANS_BITS 14 | 
 | #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) | 
 | #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) | 
 | #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) | 
 | #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) | 
 | #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) | 
 |  | 
 | #define GM_ALPHA_PREC_BITS 10 | 
 | #if CONFIG_EXT_WARP_FILTER | 
 | #define GM_ABS_ALPHA_BITS 9 | 
 | #else | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #define GM_ABS_ALPHA_BITS 8 | 
 | #else | 
 | #define GM_ABS_ALPHA_BITS 7 | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 | #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) | 
 | #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) | 
 | #else | 
 | #define GM_TRANS_PREC_BITS 6 | 
 | #define GM_ABS_TRANS_BITS 12 | 
 | #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) | 
 | #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) | 
 | #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) | 
 | #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) | 
 | #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) | 
 |  | 
 | #define GM_ALPHA_PREC_BITS 15 | 
 | #define GM_ABS_ALPHA_BITS 12 | 
 | #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) | 
 | #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) | 
 | #endif  // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_IMPROVED_GLOBAL_MOTION | 
 |  | 
 | #define GM_ROW3HOMO_PREC_BITS 16 | 
 | #define GM_ABS_ROW3HOMO_BITS 11 | 
 | #define GM_ROW3HOMO_PREC_DIFF \ | 
 |   (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS) | 
 | #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF) | 
 |  | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #define GM_TRANS_MAX ((1 << GM_ABS_TRANS_BITS) - 1) | 
 | #else | 
 | #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #if CONFIG_EXT_WARP_FILTER | 
 | #define GM_ALPHA_MAX ((1 << GM_ABS_ALPHA_BITS) - 1) | 
 | #else | 
 | #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 | #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS) | 
 |  | 
 | #define GM_TRANS_MIN -GM_TRANS_MAX | 
 | #define GM_ALPHA_MIN -GM_ALPHA_MAX | 
 | #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX | 
 |  | 
 | static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { | 
 |   const int bw = block_size_wide[bs]; | 
 |   return mi_col * MI_SIZE + bw / 2 - 1; | 
 | } | 
 |  | 
 | static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { | 
 |   const int bh = block_size_high[bs]; | 
 |   return mi_row * MI_SIZE + bh / 2 - 1; | 
 | } | 
 |  | 
 | static INLINE int convert_to_trans_prec(MvSubpelPrecision precision, int coor) { | 
 |   if (precision > MV_PRECISION_QTR_PEL) | 
 |     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); | 
 |   else | 
 |     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; | 
 | } | 
 |  | 
 | // Returns how many bits do not need to be signaled relative to | 
 | // MV_PRECISION_ONE_EIGHTH_PEL | 
 | static INLINE int get_gm_precision_loss(MvSubpelPrecision precision) { | 
 |   // NOTE: there is a bit of an anomaly in AV1 that the translation-only | 
 |   // global parameters are sent only at 1/4 or 1/8 pel resolution depending | 
 |   // on whether the allow_high_precision_mv flag is 0 or 1, but the | 
 |   // cur_frame_force_integer_mv is ignored. Hence the AOMMIN(1, ...) | 
 |   // below, but in here we correct that so that translation- | 
 |   // only global parameters are sent at the MV resolution of the frame. | 
 |   return AOMMIN(1, MV_PRECISION_ONE_EIGHTH_PEL - precision); | 
 | } | 
 |  | 
 | static INLINE TransformationType get_wmtype(const WarpedMotionParams *model) { | 
 |   if (model->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !model->wmmat[4] && | 
 |       model->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !model->wmmat[3]) { | 
 |     return ((!model->wmmat[1] && !model->wmmat[0]) ? IDENTITY : TRANSLATION); | 
 |   } | 
 |   if (model->wmmat[2] == model->wmmat[5] && model->wmmat[3] == -model->wmmat[4]) | 
 |     return ROTZOOM; | 
 |   else | 
 |     return AFFINE; | 
 | } | 
 |  | 
 | #if CONFIG_EXTENDED_WARP_PREDICTION | 
 | // Special value for row_offset and col_offset in the `CANDIDATE_MV` struct, | 
 | // to indicate that this motion vector did not come from spatial prediction | 
 | // (eg, temporal prediction, or a scaled MV from a nearby block which used | 
 | // a different ref frame) | 
 | // | 
 | // The special value is 0 because the spatial scan area consists of blocks | 
 | // both above and left of the current block. Thus valid offsets will always | 
 | // have at least one of row_offset and col_offset negative. | 
 | #define OFFSET_NONSPATIAL 0 | 
 | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
 |  | 
 | typedef struct candidate_mv { | 
 |   int_mv this_mv; | 
 |   int_mv comp_mv; | 
 | #if CONFIG_EXTENDED_WARP_PREDICTION | 
 |   // Position of the candidate block relative to the current block. | 
 |   // This is used to decide whether to signal the WARP_EXTEND mode, | 
 |   // and to fetch the corresponding warp model if that is used | 
 |   // | 
 |   // Note(rachelbarker): | 
 |   // If these are both set to OFFSET_NONSPATIAL, then this is a non-spatial | 
 |   // candidate, and so does not allow WARP_EXTEND | 
 |   int row_offset; | 
 |   int col_offset; | 
 |   // Record the cwp index of the neighboring blocks | 
 |   int8_t cwp_idx; | 
 | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
 | } CANDIDATE_MV; | 
 |  | 
 | #if CONFIG_EXTENDED_WARP_PREDICTION | 
 | // structure of the warp-reference-list (WRL) | 
 | // Each entry of the WRL contain warp parameter and projection type. | 
 | typedef struct warp_candidate { | 
 |   WarpedMotionParams wm_params; | 
 |   WarpProjectionType proj_type; | 
 | } WARP_CANDIDATE; | 
 | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
 |  | 
 | static INLINE int is_zero_mv(const MV *mv) { | 
 |   return *((const uint32_t *)mv) == 0; | 
 | } | 
 |  | 
 | static INLINE int is_equal_mv(const MV *a, const MV *b) { | 
 |   return *((const uint32_t *)a) == *((const uint32_t *)b); | 
 | } | 
 |  | 
 | static INLINE void clamp_mv(MV *mv, const SubpelMvLimits *mv_limits) { | 
 |   mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); | 
 |   mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); | 
 | } | 
 |  | 
 | static INLINE void clamp_fullmv(FULLPEL_MV *mv, const FullMvLimits *mv_limits) { | 
 |   mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); | 
 |   mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_COMMON_MV_H_ |