blob: e7f97bd3c57ffa9c19cf3334a7cf49e63d849a84 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "av1/common/enums.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
const WarpTypesAllowed *const warp_types,
const WarpedMotionParams *const gm_params,
#if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
int ref,
#endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
int build_for_obmc, const struct scale_factors *const sf,
WarpedMotionParams *final_warp_params) {
// Note: As per the spec, we must test the fixed point scales here, which are
// at a higher precision (1 << 14) than the xs and ys in subpel_params (that
// have 1 << 10 precision).
if (av1_is_scaled(sf)) return 0;
if (final_warp_params != NULL) *final_warp_params = default_warp_params;
if (build_for_obmc) return 0;
#if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params[ref],
sizeof(*final_warp_params));
return 1;
#else
if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params));
return 1;
#endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
} else if (warp_types->global_warp_allowed && !gm_params->invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
return 0;
}
void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
int block_height, int pix_row, int pix_col,
int subsampling_x, int subsampling_y, int bit_depth,
int is_intrabc, const struct scale_factors *sf,
const struct buf_2d *ref_buf,
InterpFilter interp_filter) {
inter_pred_params->block_width = block_width;
inter_pred_params->block_height = block_height;
#if CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->orig_block_width = block_width;
inter_pred_params->orig_block_height = block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
inter_pred_params->original_pu_width = block_width;
inter_pred_params->original_pu_height = block_height;
#endif // CONFIG_REFINEMV
inter_pred_params->pix_row = pix_row;
inter_pred_params->pix_col = pix_col;
inter_pred_params->subsampling_x = subsampling_x;
inter_pred_params->subsampling_y = subsampling_y;
inter_pred_params->bit_depth = bit_depth;
inter_pred_params->is_intrabc = is_intrabc;
inter_pred_params->scale_factors = sf;
inter_pred_params->ref_frame_buf = *ref_buf;
inter_pred_params->mode = TRANSLATION_PRED;
inter_pred_params->comp_mode = UNIFORM_SINGLE;
#if CONFIG_REFINEMV
inter_pred_params->use_ref_padding = 0;
inter_pred_params->ref_area = NULL;
#endif // CONFIG_REFINEMV
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params->border_data.enable_bacp = 0;
inter_pred_params->border_data.bacp_block_data = NULL;
#endif // CONFIG_D071_IMP_MSK_BLD
if (is_intrabc) {
inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
} else {
inter_pred_params->interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_width);
inter_pred_params->interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_height);
}
}
void av1_init_comp_mode(InterPredParams *inter_pred_params) {
inter_pred_params->comp_mode = UNIFORM_COMP;
}
void av1_init_warp_params(InterPredParams *inter_pred_params,
const WarpTypesAllowed *warp_types, int ref,
const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8)
return;
if (is_tip_ref_frame(mi->ref_frame[0])) return;
#if CONFIG_REFINEMV
// We do not do refineMV for warp blocks
// We may need to return from here.
if (mi->refinemv_flag) return;
#endif // CONFIG_REFINEMV
if (xd->cur_frame_force_integer_mv) return;
if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]],
#if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
ref,
#endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT
0, inter_pred_params->scale_factors,
&inter_pred_params->warp_params))
inter_pred_params->mode = WARP_PRED;
}
void av1_make_inter_predictor(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params) {
assert(IMPLIES(inter_pred_params->conv_params.is_compound,
inter_pred_params->conv_params.dst != NULL));
// TODO(jingning): av1_warp_plane() can be further cleaned up.
if (inter_pred_params->mode == WARP_PRED) {
av1_warp_plane(
&inter_pred_params->warp_params, inter_pred_params->bit_depth,
inter_pred_params->ref_frame_buf.buf0,
inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height,
inter_pred_params->ref_frame_buf.stride, dst,
inter_pred_params->pix_col, inter_pred_params->pix_row,
inter_pred_params->block_width, inter_pred_params->block_height,
dst_stride, inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y, &inter_pred_params->conv_params);
} else if (inter_pred_params->mode == TRANSLATION_PRED) {
highbd_inter_predictor(
src, src_stride, dst, dst_stride, subpel_params,
inter_pred_params->block_width, inter_pred_params->block_height,
&inter_pred_params->conv_params,
inter_pred_params->interp_filter_params, inter_pred_params->bit_depth);
}
}
#if !CONFIG_WEDGE_MOD_EXT
static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
#else
/* clang-format off */
#if WEDGE_BLD_SIG
// rounded cosine and sine look-up tables given by round(32*cos(i))
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
32, 31, 29, 23, 14,
// 8, 10, 12, 14, 15,
0,-14,-23,-29,-31,
// 16, 17, 18, 20, 22,
-32,-31,-29,-23,-14,
// 24, 26, 28, 30, 31
0, 14, 23, 29, 31
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -8,-14,-23,-29,
// 8, 10, 12, 14, 15,
-32,-29,-23,-14, -8,
// 16, 17, 18, 20, 22,
0, 8, 14, 23, 29,
// 24, 26, 28, 30, 31
32, 29, 23, 14, 8
};
// rounded sigmoid function look-up talbe given by round(1/(1+exp(-x)))
static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={
32, 32, 33, 33, 34, 34, 35, 35,
36, 36, 37, 37, 38, 38, 39, 39,
40, 40, 41, 41, 42, 42, 43, 43,
43, 44, 44, 45, 45, 46, 46, 46,
47, 47, 48, 48, 48, 49, 49, 49,
50, 50, 50, 51, 51, 51, 52, 52,
52, 53, 53, 53, 53, 54, 54, 54,
55, 55, 55, 55, 55, 56, 56, 56,
56, 57, 57, 57, 57, 57, 58, 58,
58, 58, 58, 58, 59, 59, 59, 59,
59, 59, 59, 60, 60, 60, 60, 60,
60, 60, 60, 60, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 62,
62, 62, 62, 62, 62, 62, 62, 62,
62, 62, 62, 62, 62, 62, 62, 62,
63, 63, 63, 63, 63, 63, 63, 64
};
static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={
32, 32, 31, 31, 30, 30, 29, 29,
28, 28, 27, 27, 26, 26, 25, 25,
24, 24, 23, 23, 22, 22, 21, 21,
21, 20, 20, 19, 19, 18, 18, 18,
17, 17, 16, 16, 16, 15, 15, 15,
14, 14, 14, 13, 13, 13, 12, 12,
12, 11, 11, 11, 11, 10, 10, 10,
9, 9, 9, 9, 9, 8, 8, 8,
8, 7, 7, 7, 7, 7, 6, 6,
6, 6, 6, 6, 5, 5, 5, 5,
5, 5, 5, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 0
};
#else
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
8, 8, 8, 4, 4,
// 8, 10, 12, 14, 15,
0, -4, -4, -8, -8,
// 16, 17, 18, 20, 22,
-8, -8, -8, -4, -4,
// 24, 26, 28, 30, 31
0, 4, 4, 8, 8
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -2, -4, -4, -8,
// 8, 10, 12, 14, 15,
-8, -8, -4, -4, -2,
// 16, 17, 18, 20, 22,
0, 2, 4, 4, 8,
// 24, 26, 28, 30, 31
8, 8, 4, 4, 2
};
#endif
/* clang-format on */
#endif // !CONFIG_WEDGE_MOD_EXT
#if !CONFIG_WEDGE_MOD_EXT
static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift,
int width) {
if (shift >= 0) {
memcpy(dst + shift, src, width - shift);
memset(dst, src[0], shift);
} else {
shift = -shift;
memcpy(dst, src + shift, width - shift);
memset(dst + width - shift, src[width - 1], shift);
}
}
/* clang-format off */
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#if CONFIG_BLOCK_256
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#endif // CONFIG_BLOCK_256
{ 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#if CONFIG_FLEX_PARTITION
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#endif // CONFIG_FLEX_PARTITION
};
/* clang-format on */
#endif // !CONFIG_WEDGE_MOD_EXT
// [negative][direction]
#if CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(
16, static uint8_t,
wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#else
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#endif // CONFIG_WEDGE_MOD_EXT
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
#if CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]);
#else
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
#endif // CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(16, static uint8_t,
smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
[MAX_WEDGE_SQUARE]);
DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
#if CONFIG_WEDGE_MOD_EXT
static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = {
{ WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 },
{ WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 },
{ WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 },
{ WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 },
{ WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 },
{ WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 },
{ WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 },
{ WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 },
{ WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 },
{ WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 },
{ WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 },
{ WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 },
{ WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 },
{ WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 },
{ WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 },
{ WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 },
{ WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 },
{ WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 },
{ WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 },
{ WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 },
{ WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 },
{ WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 },
{ WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 },
};
#else
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
#endif // CONFIG_WEDGE_MOD_EXT
#if CONFIG_WEDGE_MOD_EXT
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_BLOCK_256
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_BLOCK_256
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16] },
#if CONFIG_FLEX_PARTITION
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_FLEX_PARTITION
};
#else
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
wedge_masks[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
wedge_masks[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
wedge_masks[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
wedge_masks[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
wedge_masks[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
wedge_masks[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
wedge_masks[BLOCK_32X32] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_BLOCK_256
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_BLOCK_256
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
wedge_masks[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
wedge_masks[BLOCK_32X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_FLEX_PARTITION
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_FLEX_PARTITION
};
#endif
// Init the cwp masks, called by init_cwp_masks
static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride,
BLOCK_SIZE plane_bsize, int8_t w) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) mask[j] = w;
mask += stride;
}
}
// Init the cwp masks
void init_cwp_masks() {
const int bs = BLOCK_128X128;
const int bw = block_size_wide[bs];
for (int list_idx = 0; list_idx < 2; ++list_idx) {
for (int idx = 0; idx < MAX_CWP_NUM; ++idx) {
int8_t weight = cwp_weighting_factor[list_idx][idx] * 4;
build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight);
}
}
}
// Return the associated cwp mask
const int8_t *av1_get_cwp_mask(int list_idx, int idx) {
return cwp_mask[list_idx][idx];
}
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
av1_wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
#if !CONFIG_WEDGE_MOD_EXT
const uint8_t wsignflip =
av1_wedge_params_lookup[sb_type].signflip[wedge_index];
#endif
assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
#if CONFIG_WEDGE_MOD_EXT
master = wedge_master_mask[neg][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
#else
master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
#endif // CONFIG_WEDGE_MOD_EXT
return master;
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
#if !CONFIG_D071_IMP_MSK_BLD
assert(is_masked_compound_type(comp_data->type));
#endif // !CONFIG_D071_IMP_MSK_BLD
(void)sb_type;
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
#if CONFIG_D071_IMP_MSK_BLD
case COMPOUND_AVERAGE:
#endif // CONFIG_D071_IMP_MSK_BLD
case COMPOUND_DIFFWTD: return comp_data->seg_mask;
default: assert(0); return NULL;
}
}
static AOM_INLINE void diffwtd_mask_d16(
uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_d16_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
default: assert(0);
}
}
static AOM_FORCE_INLINE void diffwtd_mask_highbd(
uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
const unsigned int bd) {
assert(bd >= 8);
if (bd == 8) {
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
} else {
const unsigned int bd_shift = bd - 8;
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
}
}
void av1_build_compound_diffwtd_mask_highbd_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
default: assert(0);
}
}
static AOM_INLINE void init_wedge_master_masks() {
#if CONFIG_WEDGE_MOD_EXT
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
for (int angle = 0; angle < WEDGE_ANGLES; angle++) {
int idx = 0;
// printf("angle: %d\n", angle);
for (int n = 0; n < h; n++) {
int y = ((n << 1) - h + 1) * wedge_sin_lut[angle];
for (int m = 0; m < w; m++, idx++) {
int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y;
#if WEDGE_BLD_SIG
const int clamp_d = clamp(d, -127, 127);
wedge_master_mask[0][angle][idx] =
clamp_d >= 0 ? pos_dist_2_bld_weight[clamp_d]
: neg_dist_2_bld_weight[-clamp_d];
#else
wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64);
#endif
wedge_master_mask[1][angle][idx] =
64 - wedge_master_mask[0][angle][idx];
}
}
}
#else
int i, j;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
// Note: index [0] stores the masters, and [1] its complement.
// Generate prototype by shifting the masters
int shift = h / 4;
for (i = 0; i < h; i += 2) {
shift_copy(wedge_master_oblique_even,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
MASK_MASTER_SIZE);
shift--;
shift_copy(wedge_master_oblique_odd,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
MASK_MASTER_SIZE);
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
}
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - mskx;
}
}
#endif
}
static AOM_INLINE void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
const int wtypes = wedge_params->wedge_types;
if (wtypes == 0) continue;
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
int w;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[0][w] = dst;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[1][w] = dst;
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
#if CONFIG_BLOCK_256
0, 0, 0, // unused
#endif // CONFIG_BLOCK_256
8, 8, 4, 4, 2, 2,
#if CONFIG_FLEX_PARTITION
4, 4, 2, 2, 2, 2,
#endif // CONFIG_FLEX_PARTITION
};
/* clang-format on */
static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
BLOCK_SIZE plane_bsize,
INTERINTRA_MODE mode) {
int i, j;
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
mask += stride;
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
mask += stride;
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j)
mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
mask += stride;
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
memset(mask, 32, bw * sizeof(mask[0]));
mask += stride;
}
break;
}
}
static AOM_INLINE void init_smooth_interintra_masks() {
for (int m = 0; m < INTERINTRA_MODES; ++m) {
for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
const int bw = block_size_wide[bs];
const int bh = block_size_high[bs];
if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
m);
}
}
}
#if CONFIG_REFINEMV
// Compute the SAD values for refineMV modes
int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int width, int height,
int bd) {
return get_highbd_sad(src1, width, src2, width, bd, width, height);
}
#endif // CONFIG_REFINEMV
#if CONFIG_AFFINE_REFINEMENT
#if AFFINE_FAST_WARP_METHOD == 2
#define BICUBIC_PHASE_BITS 6
#define BICUBIC_WARP_PREC_BITS 10
// Warp prediction using bicubic interpolation (effectively 4-tap filter)
void av1_warp_plane_bicubic(WarpedMotionParams *wm, int bd, const uint16_t *ref,
int width, int height, int stride, uint16_t *pred,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
ConvolveParams *conv_params) {
(void)conv_params;
assert(wm->wmtype <= AFFINE);
assert(!is_uneven_wtd_comp_avg(conv_params));
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int32_t *const mat = wm->wmmat;
// bicubic coefficient matrix is the following one divided by 6
const int bicubic_mat[4][4] = {
{ -1, 3, -3, 1 }, { 3, -6, 3, 0 }, { -2, -3, 6, -1 }, { 0, 6, 0, 0 }
};
const int onesixth_bits = 12;
const int onesixth = 683; // Integerized (1 << onesixth_bits) / 6
int32_t sum = 0;
int32_t tmp[4] = { 0 };
for (int i = p_row; i < p_row + p_height; i++) {
for (int j = p_col; j < p_col + p_width; j++) {
uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)];
// Project to luma coordinates (if in a subsampled chroma plane), apply
// the affine transformation, then convert back to the original
// coordinates (if necessary)
const int32_t src_x = j << subsampling_x;
const int32_t src_y = i << subsampling_y;
const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
const int32_t x = dst_x >> subsampling_x;
const int32_t y = dst_y >> subsampling_y;
const int32_t ix = x >> WARPEDMODEL_PREC_BITS;
const int32_t ixs[4] = { clamp(ix - 1, 0, width - 1),
clamp(ix, 0, width - 1),
clamp(ix + 1, 0, width - 1),
clamp(ix + 2, 0, width - 1) };
const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t iy = y >> WARPEDMODEL_PREC_BITS;
const int32_t iys[4] = { clamp(iy - 1, 0, height - 1),
clamp(iy, 0, height - 1),
clamp(iy + 1, 0, height - 1),
clamp(iy + 2, 0, height - 1) };
const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t spel_x =
ROUND_POWER_OF_TWO(sx, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS);
const int32_t spel_y =
ROUND_POWER_OF_TWO(sy, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS);
int32_t xx[4] = { spel_x * spel_x * spel_x, spel_x * spel_x, spel_x, 1 };
int32_t yy[4] = { spel_y * spel_y * spel_y, spel_y * spel_y, spel_y, 1 };
assert(onesixth_bits - BICUBIC_WARP_PREC_BITS >= 0);
// Horizontal filter
for (int k = 0; k < 4; k++) {
tmp[k] = 0;
for (int l = 0; l < 4; l++) {
int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits -
BICUBIC_WARP_PREC_BITS;
tmp[k] += ROUND_POWER_OF_TWO_SIGNED(
xx[l] * bicubic_mat[l][k] * onesixth, bits);
}
}
for (int k = 0; k < 4; k++) {
xx[k] = 0;
for (int l = 0; l < 4; l++) {
xx[k] += tmp[l] * ref[iys[k] * stride + ixs[l]];
}
xx[k] = ROUND_POWER_OF_TWO(xx[k], BICUBIC_WARP_PREC_BITS);
}
// Vertical filter
for (int k = 0; k < 4; k++) {
tmp[k] = 0;
for (int l = 0; l < 4; l++) {
int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits -
BICUBIC_WARP_PREC_BITS;
tmp[k] += ROUND_POWER_OF_TWO_SIGNED(
yy[l] * bicubic_mat[l][k] * onesixth, bits);
}
}
for (int l = 0; l < 4; l++) {
sum += tmp[l] * xx[l];
}
sum = ROUND_POWER_OF_TWO(sum, BICUBIC_WARP_PREC_BITS);
*p = clip_pixel_highbd(sum, bd);
}
}
}
#endif // AFFINE_FAST_WARP_METHOD == 2
#if AFFINE_FAST_WARP_METHOD == 3
#define BILINEAR_WARP_PREC_BITS 12
// Warp prediction using bilinear interpolation (effectively 2-tap filter)
void av1_warp_plane_bilinear(WarpedMotionParams *wm, int bd,
const uint16_t *ref, int width, int height,
int stride, uint16_t *pred, int p_col, int p_row,
int p_width, int p_height, int p_stride,
int subsampling_x, int subsampling_y,
ConvolveParams *conv_params) {
(void)conv_params;
assert(wm->wmtype <= AFFINE);
assert(!is_uneven_wtd_comp_avg(conv_params));
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int32_t *const mat = wm->wmmat;
for (int i = p_row; i < p_row + p_height; i++) {
for (int j = p_col; j < p_col + p_width; j++) {
uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)];
// Project to luma coordinates (if in a subsampled chroma plane), apply
// the affine transformation, then convert back to the original
// coordinates (if necessary)
const int32_t src_x = j << subsampling_x;
const int32_t src_y = i << subsampling_y;
const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
const int32_t x = dst_x >> subsampling_x;
const int32_t y = dst_y >> subsampling_y;
const int32_t ix = x >> WARPEDMODEL_PREC_BITS;
const int32_t ix0 = clamp(ix, 0, width - 1);
const int32_t ix1 = clamp(ix + 1, 0, width - 1);
const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t iy = y >> WARPEDMODEL_PREC_BITS;
const int32_t iy0 = clamp(iy, 0, height - 1);
const int32_t iy1 = clamp(iy + 1, 0, height - 1);
const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t unit_offset = 1 << BILINEAR_WARP_PREC_BITS;
const int32_t coeff_x = ROUND_POWER_OF_TWO(
sx, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS);
const int32_t coeff_y = ROUND_POWER_OF_TWO(
sy, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS);
// Horizontal filter
int32_t tmp0 = ref[iy0 * stride + ix0] * (unit_offset - coeff_x) +
ref[iy0 * stride + ix1] * coeff_x;
tmp0 = ROUND_POWER_OF_TWO(tmp0, BILINEAR_WARP_PREC_BITS);
int32_t tmp1 = ref[iy1 * stride + ix0] * (unit_offset - coeff_x) +
ref[iy1 * stride + ix1] * coeff_x;
tmp1 = ROUND_POWER_OF_TWO(tmp1, BILINEAR_WARP_PREC_BITS);
// Vertical filter
int32_t sum = tmp0 * (unit_offset - coeff_y) + tmp1 * coeff_y;
sum = ROUND_POWER_OF_TWO(sum, BILINEAR_WARP_PREC_BITS);
*p = clip_pixel_highbd(sum, bd);
}
}
}
#endif // AFFINE_FAST_WARP_METHOD == 3
// Compute intermediate results for 4D linear solver.
void getsub_4d(int64_t *sub, int64_t *mat, int64_t *vec) {
sub[0] = mat[0] * mat[5] - mat[1] * mat[4];
sub[1] = mat[0] * mat[6] - mat[2] * mat[4];
sub[2] = mat[0] * mat[7] - mat[3] * mat[4];
sub[3] = mat[0] * vec[1] - vec[0] * mat[4];
sub[4] = mat[1] * mat[6] - mat[2] * mat[5];
sub[5] = mat[1] * mat[7] - mat[3] * mat[5];
sub[6] = mat[1] * vec[1] - vec[0] * mat[5];
sub[7] = mat[2] * mat[7] - mat[3] * mat[6];
sub[8] = mat[2] * vec[1] - vec[0] * mat[6];
sub[9] = mat[3] * vec[1] - vec[0] * mat[7];
}
// Solve a 4-dimensional matrix inverse using inverse determinant method:
// x = A^(-1) * b, where A: mat, b: vec, x: sol
int solver_4d(int64_t *mat, int64_t *vec, int *precbits, int64_t *sol) {
int64_t a[10], b[10]; // values of 20 specific 2D subdeterminants
getsub_4d(&a[0], mat, vec);
getsub_4d(&b[0], mat + 8, vec + 2);
// Flexibly adjust range to avoid overflow without losing precision. This
// moves the bit depth of a[] and b[] within 29, so that det and sol will not
// overflow
int64_t max_el = 0;
for (int i = 0; i < 10; i++) {
max_el = AOMMAX(max_el, llabs(a[i]));
max_el = AOMMAX(max_el, llabs(b[i]));
}
int max_bits = get_msb_signed_64(max_el);
int subdet_reduce_bits = AOMMAX(0, max_bits - 28);
for (int i = 0; i < 10; i++) {
a[i] = ROUND_POWER_OF_TWO_SIGNED_64(a[i], subdet_reduce_bits);
b[i] = ROUND_POWER_OF_TWO_SIGNED_64(b[i], subdet_reduce_bits);
}
int64_t det = a[0] * b[7] + a[7] * b[0] + a[2] * b[4] + a[4] * b[2] -
a[5] * b[1] - a[1] * b[5];
if (det <= 0) return 0;
sol[0] = a[5] * b[8] + a[8] * b[5] - a[6] * b[7] - a[7] * b[6] - a[4] * b[9] -
a[9] * b[4];
sol[1] = a[1] * b[9] + a[9] * b[1] + a[3] * b[7] + a[7] * b[3] - a[2] * b[8] -
a[8] * b[2];
sol[2] = a[2] * b[6] + a[6] * b[2] - a[0] * b[9] - a[9] * b[0] - a[3] * b[5] -
a[5] * b[3];
sol[3] = a[0] * b[8] + a[8] * b[0] + a[3] * b[4] + a[4] * b[3] - a[6] * b[1] -
a[1] * b[6];
int max_det_msb = get_msb_signed_64(det);
for (int i = 0; i < 4; i++)
max_det_msb = AOMMAX(max_det_msb, get_msb_signed_64(sol[i]) + precbits[i]);
int det_red_bits = AOMMAX(0, max_det_msb - 60);
det = ROUND_POWER_OF_TWO_SIGNED_64(det, det_red_bits);
for (int i = 0; i < 4; i++) {
int reduce_bits = det_red_bits - precbits[i];
if (reduce_bits >= 0)
sol[i] = ROUND_POWER_OF_TWO_SIGNED_64(sol[i], reduce_bits);
else
sol[i] = clamp64(sol[i] * (1 << (-reduce_bits)), INT64_MIN, INT64_MAX);
}
sol[0] = divide_and_round_signed(sol[0], det);
sol[1] = divide_and_round_signed(sol[1], det);
sol[2] = divide_and_round_signed(sol[2], det);
sol[3] = divide_and_round_signed(sol[3], det);
return 1;
}
#endif // CONFIG_AFFINE_REFINEMENT
#if CONFIG_OPTFLOW_REFINEMENT
// Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity
// in hardware.
#define OPFL_CLAMP_MV_DELTA 1
#define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS)
// Divide d0 and d1 by their common factors (no divisions)
void reduce_temporal_dist(int *d0, int *d1) {
if (*d0 == 0 || *d1 == 0) return;
int sign0 = *d0 < 0;
int sign1 = *d1 < 0;
int mag0 = sign0 ? -(*d0) : (*d0);
int mag1 = sign1 ? -(*d1) : (*d1);
// Only do simple checks for the case |d0|=|d1| and for factor 2
if (mag0 == mag1) {
mag0 = mag1 = 1;
} else {
while (mag0 % 2 == 0 && mag1 % 2 == 0) {
assert(mag0 > 0 && mag1 > 0);
mag0 >>= 1;
mag1 >>= 1;
}
}
*d0 = sign0 ? -mag0 : mag0;
*d1 = sign1 ? -mag1 : mag1;
return;
}
void av1_opfl_build_inter_predictor(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst
#if CONFIG_REFINEMV
,
const MV *const src_mv, int pu_width, int pu_height
#endif // CONFIG_REFINEMV
) {
assert(cm->seq_params.order_hint_info.enable_order_hint);
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
#if CONFIG_OPTFLOW_ON_TIP
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
#endif // CONFIG_OPTFLOW_ON_TIP
// Do references one at a time
const int is_compound = 0;
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype),
is_warp_mode(mi->motion_mode) };
#if CONFIG_OPTFLOW_ON_TIP
const struct scale_factors *const sf =
is_tip
? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]);
#else
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
#endif // CONFIG_OPTFLOW_ON_TIP
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
#if CONFIG_REFINEMV
const int row_start = (bw == 4) && ss_y ? -1 : 0;
const int col_start = (bh == 4) && ss_x ? -1 : 0;
#else
const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y];
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
#endif // CONFIG_REFINEMV
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
#if CONFIG_OPTFLOW_ON_TIP
const struct buf_2d *const pre_buf =
is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref]
: (is_intrabc ? dst_buf : &pd->pre[ref]);
#else
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#endif // CONFIG_OPTFLOW_ON_TIP
av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
#if CONFIG_REFINEMV
inter_pred_params->original_pu_width = pu_width;
inter_pred_params->original_pu_height = pu_height;
#endif // CONFIG_REFINEMV
const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2);
const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2);
inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(pre_y);
inter_pred_params->dist_to_bottom_edge = GET_MV_SUBPEL(height - bh - pre_y);
inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(pre_x);
inter_pred_params->dist_to_right_edge = GET_MV_SUBPEL(width - bw - pre_x);
inter_pred_params->conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi);
if (inter_pred_params->mode == WARP_PRED) return;
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
av1_build_one_inter_predictor(pred_dst, bw,
#if CONFIG_REFINEMV
src_mv,
#else
&mi->mv[ref].as_mv,
#endif // CONFIG_REFINEMV
inter_pred_params, xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
// Note: grad_prec_bits param returned correspond to the precision
// of the gradient information in bits assuming gradient
// computed at unit pixel step normalization is 0 scale.
// Negative values indicate gradient returned at reduced precision, and
// positive values indicate gradient returned at higher precision.
void av1_compute_subpel_gradients_mc_highbd(
MACROBLOCKD *xd, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint16_t **mc_buf, InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, int *grad_prec_bits,
int16_t *x_grad, int16_t *y_grad) {
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
// Original predictor
const MV mv_orig = mi->mv[ref].as_mv;
MV mv_modified = mv_orig;
uint16_t tmp_buf1[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
uint16_t tmp_buf2[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 };
// X gradient
// Get predictor to the left
mv_modified.col = mv_orig.col - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor to the right
mv_modified.col = mv_orig.col + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
mv_modified.row = mv_orig.row;
av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_highbd_subtract_block(bh, bw, x_grad, bw, tmp_buf2, bw, tmp_buf1, bw,
xd->bd);
// Y gradient
// Get predictor below
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row - (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Get predictor above
mv_modified.col = mv_orig.col;
mv_modified.row = mv_orig.row + (1 << (3 - SUBPEL_GRAD_DELTA_BITS));
av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
// Compute difference.
// Note since the deltas are at +2^g/8 and -2^g/8 subpel locations
// (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is
// 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned
// is at reduced precision by 2-g bits. That explains the grad_prec_bits
// return value of g-2 at the end of this function.
aom_highbd_subtract_block(bh, bw, y_grad, bw, tmp_buf2, bw, tmp_buf1, bw,
xd->bd);
}
void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src,
int16_t *x_grad, int16_t *y_grad,
const int bw, const int bh) {
#if OPFL_BICUBIC_GRAD
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
int id_prev, id_prev2, id_next, id_next2, is_boundary;
int32_t temp = 0;
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_prev = AOMMAX(j - 1, 0);
id_prev2 = AOMMAX(j - 2, 0);
id_next = AOMMIN(j + 1, bw - 1);
id_next2 = AOMMIN(j + 2, bw - 1);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] -
pred_src[i * bw + id_prev]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[i * bw + id_next2] -
pred_src[i * bw + id_prev2]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_prev = AOMMAX(i - 1, 0);
id_prev2 = AOMMAX(i - 2, 0);
id_next = AOMMIN(i + 1, bh - 1);
id_next2 = AOMMIN(i + 2, bh - 1);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] -
pred_src[id_prev * bw + j]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[id_next2 * bw + j] -
pred_src[id_prev2 * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
}
}
#else
(void)pred_src;
(void)x_grad;
(void)y_grad;
(void)bw;
(void)bh;
#endif // OPFL_BICUBIC_GRAD
}
#if OPFL_BILINEAR_GRAD
void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad,
int16_t *y_grad, const int bw,
const int bh) {
int id_next, id_prev, is_boundary;
int32_t temp = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_next = AOMMIN(j + 1, bw - 1);
id_prev = AOMMAX(j - 1, 0);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_next = AOMMIN(i + 1, bh - 1);
id_prev = AOMMAX(i - 1, 0);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
}
}
}
#endif // OPFL_BILINEAR_GRAD
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh,
int *grad_prec_bits, int16_t *x_grad,
int16_t *y_grad) {
// Reuse pixels in pred_dst to compute gradients
#if OPFL_BILINEAR_GRAD
(void)is_hbd;
av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh);
#else
#if CONFIG_OPFL_MV_SEARCH
if (bw < 8 || bh < 8)
av1_bicubic_grad_interpolation_highbd_c(pred_dst, x_grad, y_grad, bw, bh);
else
#endif // CONFIG_OPFL_MV_SEARCH
av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh);
#endif // OPFL_BILINEAR_GRAD
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
}
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
#if CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH
// Apply average pooling to reduce the sizes of pred difference and gradients
// arrays. It reduces the complexity of the parameter solving routine
// TODO(kslu) add SIMD version, and/or combine this operation into
// av1_bicubic_grad* function
void avg_pooling_pdiff_gradients(int16_t *pdiff, const int pstride, int16_t *gx,
int16_t *gy, const int gstride, const int bw,
const int bh, const int n) {
const int bh_low = AOMMIN(bh, n);
const int bw_low = AOMMIN(bw, n);
const int step_h = bh / bh_low;
const int step_w = bw / bw_low;
int avg_stride = bw;
#if OPFL_DOWNSAMP_QUINCUNX
int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w) - 1;
#else
int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w);
#endif
for (int i = 0; i < bh_low; i++) {
for (int j = 0; j < bw_low; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0;
for (int k = 0; k < step_h; k++) {
for (int l = 0; l < step_w; l++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i * step_h + j * step_w + k + l) % 2 == 1) continue;
#endif
tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)];
}
}
gx[i * avg_stride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits);
gy[i * avg_stride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits);
pdiff[i * avg_stride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits);
}
}
}
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH
#if CONFIG_AFFINE_REFINEMENT
// Combine two set of affine parameters into one.
void combine_affine_params(AffineModelParams *am1,
const AffineModelParams *am2) {
am1->rot_angle += am2->rot_angle;
am1->scale_alpha += am2->scale_alpha;
am1->scale_beta += am2->scale_beta;
am1->tran_x += am2->tran_x;
am1->tran_y += am2->tran_y;
}
/* Map affine model parameters to warped motion parameters based on signed
temporal distance d (positive for past ref, negative for future ref).
For d < 0, let t = -d > 0, the affine model is
/x'\ = / cos(t*theta) -sin(t*theta) \ * /1+t*alpha 0 \ * /x\ + / t*tx \
\y'/ \ sin(t*theta) cos(t*theta) / \ 0 1+t*beta/ \y/ \ t*ty /
which is associated with warped motion matrix
/ (1+t*alpha)*cos(t*theta) -(1+t*beta)*sin(t*theta) t*tx \
A = | (1+t*alpha)*sin(t*theta) (1+t*beta)*cos(t*theta) t*ty |
\ 0 0 1 /
For d > 0, we let t = d > 0, and the warped motion matrix is given by the
inverse matrix of A. Approximate 1/(1+x) by 1-x, then
-1 / (1-t*alpha)*cos(t*theta) (1-t*alpha)*sin(t*theta) tx' \
A = | -(1-t*beta)*sin(t*theta) (1-t*beta)*cos(t*theta) ty' |
\ 0 0 1 /,
where tx' = -t*(1-t*alpha)*[cos(t*theta)*tx+sin(t*theta)*ty]
ty' = t*(1-t*beta)*[cos(t*theta)*tx+sin(t*theta)*ty]
*/
void get_ref_affine_params(int bw, int bh, int mi_x, int mi_y,
const AffineModelParams *am_params,
WarpedMotionParams *wm, const int d,
const MV *const mv) {
wm->invalid = 1;
const int unit_offset = 1 << WARPEDMODEL_PREC_BITS;
int64_t cos_angle = unit_offset;
int64_t sin_angle = 0;
const int64_t scale_x = unit_offset - d * am_params->scale_alpha;
const int64_t scale_y = unit_offset - d * am_params->scale_beta;
const int angle = -d * am_params->rot_angle;
cos_angle = unit_offset;
sin_angle = angle * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
wm->wmmat[2] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * cos_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[5] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * cos_angle,
WARPEDMODEL_PREC_BITS);
if (d > 0) {
// Parameters of A^-1
wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_x * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * sin_angle,
WARPEDMODEL_PREC_BITS);
int64_t tmp_tx = (int64_t)wm->wmmat[2] * (int64_t)am_params->tran_x -
(int64_t)wm->wmmat[3] * (int64_t)am_params->tran_y;
int64_t tmp_ty = (int64_t)wm->wmmat[4] * (int64_t)am_params->tran_x +
(int64_t)wm->wmmat[5] * (int64_t)am_params->tran_y;
wm->wmmat[0] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_tx,
WARPEDMODEL_PREC_BITS);
wm->wmmat[1] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_ty,
WARPEDMODEL_PREC_BITS);
} else {
// Parameters of A
wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_y * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[0] = -d * am_params->tran_x;
wm->wmmat[1] = -d * am_params->tran_y;
}
#if CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[6] = wm->wmmat[7] = 0;
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_reduce_warp_model(wm);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_EXT_WARP_FILTER
av1_get_shear_params(wm);
#else
// check compatibility with the fast warp filter
if (!av1_get_shear_params(wm)) {
wm->wmmat[2] = default_warp_params.wmmat[2];
wm->wmmat[3] = default_warp_params.wmmat[3];
wm->wmmat[4] = default_warp_params.wmmat[4];
wm->wmmat[5] = default_warp_params.wmmat[5];
wm->alpha = wm->beta = wm->gamma = wm->delta = 0;
}
#endif // CONFIG_EXT_WARP_FILTER
// Apply offset based on the coordinate of the block center and the MV to
// convert the base point of warped motion from block center to the top-left
// pixel of the frame.
const int center_x = mi_x + bw / 2 - 1;
const int center_y = mi_y + bh / 2 - 1;
wm->wmmat[0] +=
mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * (wm->wmmat[2] - unit_offset) + center_y * wm->wmmat[3]);
wm->wmmat[1] +=
mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * wm->wmmat[4] + center_y * (wm->wmmat[5] - unit_offset));
#if CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
#else
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - 1);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - 1);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
wm->wmtype = AFFINE;
wm->invalid = 0;
}
// Find the maximum element of p/gx/gy in absolute value
int64_t find_max_matrix_element(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1) {
// TODO(kslu) do it in a better way to remove repeated computations, or
// handle this in gradient computation
int64_t max_el = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
max_el = AOMMAX(max_el, abs(d0 * (int)gx0[i * gstride + j] -
d1 * (int)gx1[i * gstride + j]));
max_el = AOMMAX(max_el, abs(d0 * (int)gy0[i * gstride + j] -
d1 * (int)gy1[i * gstride + j]));
max_el = AOMMAX(
max_el, abs((int)p0[i * pstride0 + j] - (int)p1[i * pstride1 + j]));
}
}
return max_el;
}
// Derivation of two parameters in the rotation-scale affine model
int derive_rotation_scale_2p(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1,
int grad_prec_bits, AffineModelParams *am_params) {
int bw_log2 = get_msb_signed(bw);
int bh_log2 = get_msb_signed(bh);
// Check range of gradient and prediction differences. If maximum absolute
// value is very large, matrix A is likely to be clamped. To improve
// stability, we adaptively reduce the dynamic range here
int64_t max_el = find_max_matrix_element(p0, pstride0, p1, pstride1, gx0, gy0,
gx1, gy1, gstride, bw, bh, d0, d1);
int max_diff_bits = get_msb_signed_64(max_el);
const int grad_bits =
AOMMAX(0, max_diff_bits * 2 + bh_log2 + bw_log2 +
AOMMAX(bh_log2, bw_log2) - AFFINE_GRAD_BITS_THR);
const int coords_bits =
AOMMAX(0, ((bh_log2 + bw_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS);
int64_t su2 = 0;
int64_t sv2 = 0;
int64_t suv = 0;
int64_t suw = 0;
int64_t svw = 0;
int64_t tmp[2];
int64_t u = 0;
int64_t v = 0;
int64_t w = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
int gidx = i * gstride + j;
const int x = j - bw / 2 + 1;
const int y = i - bh / 2 + 1;
tmp[0] = d0 * (int)gx0[gidx] - d1 * (int)gx1[gidx];
tmp[1] = d0 * (int)gy0[gidx] - d1 * (int)gy1[gidx];
u = ROUND_POWER_OF_TWO_SIGNED_64(-tmp[0] * y + tmp[1] * x, coords_bits);
v = ROUND_POWER_OF_TWO_SIGNED_64(tmp[0] * x + tmp[1] * y, coords_bits);
u = clamp64(u, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
v = clamp64(v, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
w = (int64_t)p0[i * pstride0 + j] - (int64_t)p1[i * pstride1 + j];
su2 += ROUND_POWER_OF_TWO_SIGNED_64(u * u, grad_bits);
suv += ROUND_POWER_OF_TWO_SIGNED_64(u * v, grad_bits);
sv2 += ROUND_POWER_OF_TWO_SIGNED_64(v * v, grad_bits);
suw += ROUND_POWER_OF_TWO_SIGNED_64(u * w, grad_bits);
svw += ROUND_POWER_OF_TWO_SIGNED_64(v * w, grad_bits);
}
}
int bits = grad_prec_bits + AFFINE_PREC_BITS - coords_bits;
const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM;
su2 += rls_alpha;
sv2 += rls_alpha;
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = clamp64(su2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
sv2 = clamp64(sv2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
suv = clamp64(suv, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
suw = clamp64(suw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
svw = clamp64(svw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det <= 0) return 1;
const int64_t det_x = (sv2 * suw - suv * svw) * (1 << bits);
const int64_t det_y = (su2 * svw - suv * suw) * (1 << bits);
const int angle = (int)divide_and_round_signed(det_x, det);
const int alpha = (int)divide_and_round_signed(det_y, det);
assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0);
am_params->rot_angle = angle;
am_params->scale_alpha =
alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->scale_beta =
alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
return 0;
}
// Derivation of four parameters in the rotation-scale-translation affine model
int derive_rotation_scale_translation_4p(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0,
int d1, int grad_prec_bits,
AffineModelParams *am_params) {
int bw_log2 = get_msb_signed(bw);
int bh_log2 = get_msb_signed(bh);
// Check range of gradient and prediction differences. If maximum absolute
// value is very large, matrix A is likely to be clamped. To improve
// stability, we adaptively reduce the dynamic range here
int64_t max_el = find_max_matrix_element(p0, pstride0, p1, pstride1, gx0, gy0,
gx1, gy1, gstride, bw, bh, d0, d1);
int max_diff_bits = get_msb_signed_64(max_el);
const int grad_bits =
AOMMAX(0, max_diff_bits * 2 + bh_log2 + bw_log2 +
AOMMAX(bh_log2, bw_log2) - AFFINE_GRAD_BITS_THR);
const int coords_bits =
AOMMAX(0, ((bh_log2 + bw_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS);
int64_t mat_a[16] = { 0 };
int64_t vec_b[4] = { 0 };
int64_t vec_x[4];
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
int a[4];
int tmp[2];
int gidx = i * gstride + j;
const int x = j - bw / 2 + 1;
const int y = i - bh / 2 + 1;
tmp[0] = d0 * (int)gx0[gidx] - d1 * (int)gx1[gidx];
tmp[1] = d0 * (int)gy0[gidx] - d1 * (int)gy1[gidx];
a[0] = ROUND_POWER_OF_TWO_SIGNED(-tmp[0] * y + tmp[1] * x, coords_bits);
a[1] = ROUND_POWER_OF_TWO_SIGNED(tmp[0] * x + tmp[1] * y, coords_bits);
a[2] = tmp[0];
a[3] = tmp[1];
for (int s = 0; s < 4; ++s)
a[s] = clamp(a[s], -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
const int d = (int)p0[i * pstride0 + j] - (int)p1[i * pstride1 + j];
for (int s = 0; s < 4; ++s) {
for (int t = 0; t <= s; ++t) {
mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED_64(
(int64_t)a[s] * (int64_t)a[t], grad_bits);
}
vec_b[s] +=
ROUND_POWER_OF_TWO_SIGNED_64((int64_t)a[s] * (int64_t)d, grad_bits);
}
}
}
for (int s = 0; s < 4; ++s) {
for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s];
}
const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM;
mat_a[0] += rls_alpha;
mat_a[5] += rls_alpha;
mat_a[10] += rls_alpha;
mat_a[15] += rls_alpha;
// Bit depths for each stage (assuming d0 and d1 are within [-16,16])
// gx0/gy0/gx1/gy1/p0/p1: 16
// d = p0 - p1: 17
// tmp, a[1], a[2]: 16(g)+5(d0/d1)+1(sum)=22
// a[0]: 22(tmp)+max(0,(log2(bw)+log2(bh))/2-2)=27 (max)
// a[s] bit depths are all clamped to 16.
// A (original): 16*2 + 7*2(bh*bw), clamped to 31
// b: 16 + 17 + 7*2(bh*bw) - grad_bits, clamped to 31
// Note that all the clampings here typically take no effect.
for (int s = 0; s < 4; ++s) {
for (int t = 0; t < 4; ++t) {
mat_a[s * 4 + t] = clamp64(mat_a[s * 4 + t], -AFFINE_COV_CLAMP_VAL,
AFFINE_COV_CLAMP_VAL);
}
vec_b[s] = clamp64(vec_b[s], -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
}
int prec_bits[4] = {
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS,
grad_prec_bits + AFFINE_PREC_BITS,
};
if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1;
for (int i = 0; i < 4; i++)
vec_x[i] = clamp64(vec_x[i], -AFFINE_PARAMS_MAX, AFFINE_PARAMS_MAX);
assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0);
am_params->rot_angle = (int)vec_x[0];
am_params->scale_alpha =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->scale_beta =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_x =
(int)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_y =
(int)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
return 0;
}
#if OPFL_COMBINE_INTERP_GRAD_LS
// Find the maximum element of pdiff/gx/gy in absolute value
// TODO(kslu) add SIMD version
int64_t find_max_matrix_element_interp_grad(const int16_t *pdiff, int pstride,
const int16_t *gx,
const int16_t *gy, int gstride,
int bw, int bh) {
// TODO(kslu) do it in a better way to remove repeated computations, or
// handle this in gradient computation
int64_t max_el = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
#if AFFINE_AVERAGING_BITS > 0
if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue;
#endif
max_el = AOMMAX(max_el, abs((int)gx[i * gstride + j]));
max_el = AOMMAX(max_el, abs((int)gy[i * gstride + j]));
max_el = AOMMAX(max_el, abs((int)pdiff[i * pstride + j]));
}
}
return max_el;
}
// Derivation of two parameters in the rotation-scale affine model (in the
// pipeline where gradients are computed directly from d0*P0-d1*P1)
int derive_rotation_scale_2p_interp_grad(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh,
int grad_prec_bits,
AffineModelParams *am_params) {
int x_range_log2 = get_msb_signed(bw);
int y_range_log2 = get_msb_signed(bh);
#if AFFINE_AVERAGING_BITS > 0
int step_h = AOMMAX(1, bh >> (7 - AFFINE_AVERAGING_BITS));
int step_w = AOMMAX(1, bw >> (7 - AFFINE_AVERAGING_BITS));
int npel_log2 = AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bw)) +
AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bh));
#else
int npel_log2 = x_range_log2 + y_range_log2;
#endif
#if OPFL_DOWNSAMP_QUINCUNX
npel_log2--;
#endif
// Check range of gradient and prediction differences. If maximum absolute
// value is very large, matrix A is likely to be clamped. To improve
// stability, we adaptively reduce the dynamic range here
int64_t max_el = find_max_matrix_element_interp_grad(pdiff, pstride, gx, gy,
gstride, bw, bh);
int max_diff_bits = get_msb_signed_64(max_el);
const int grad_bits =
AOMMAX(0, max_diff_bits * 2 + npel_log2 +
AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR);
const int coords_bits = AOMMAX(
0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS);
int64_t su2 = 0;
int64_t sv2 = 0;
int64_t suv = 0;
int64_t suw = 0;
int64_t svw = 0;
int64_t u = 0;
int64_t v = 0;
int64_t w = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
#if AFFINE_AVERAGING_BITS > 0
if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue;
const int x = step_w * j - bw / 2 + 1;
const int y = step_h * i - bh / 2 + 1;
#else
const int x = j - bw / 2 + 1;
const int y = i - bh / 2 + 1;
#endif
int gidx = i * gstride + j;
u = ROUND_POWER_OF_TWO_SIGNED_64(-gx[gidx] * y + gy[gidx] * x,
coords_bits);
v = ROUND_POWER_OF_TWO_SIGNED_64(gx[gidx] * x + gy[gidx] * y,
coords_bits);
u = clamp64(u, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
v = clamp64(v, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
w = (int64_t)pdiff[i * pstride + j];
su2 += ROUND_POWER_OF_TWO_SIGNED_64(u * u, grad_bits);
suv += ROUND_POWER_OF_TWO_SIGNED_64(u * v, grad_bits);
sv2 += ROUND_POWER_OF_TWO_SIGNED_64(v * v, grad_bits);
suw += ROUND_POWER_OF_TWO_SIGNED_64(u * w, grad_bits);
svw += ROUND_POWER_OF_TWO_SIGNED_64(v * w, grad_bits);
}
}
int bits = grad_prec_bits + AFFINE_PREC_BITS - coords_bits;
const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM;
su2 += rls_alpha;
sv2 += rls_alpha;
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = clamp64(su2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
sv2 = clamp64(sv2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
suv = clamp64(suv, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
suw = clamp64(suw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
svw = clamp64(svw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det <= 0) return 1;
const int64_t det_x = (sv2 * suw - suv * svw) * (1 << bits);
const int64_t det_y = (su2 * svw - suv * suw) * (1 << bits);
int angle = (int)divide_and_round_signed(det_x, det);
int alpha = (int)divide_and_round_signed(det_y, det);
assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0);
am_params->rot_angle = angle;
am_params->scale_alpha =
alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->scale_beta =
alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
return 0;
}
// Derivation of four parameters in the rotation-scale-translation affine model
// (in the pipeline where gradients are computed directly from d0*P0-d1*P1)
int derive_rotation_scale_translation_4p_interp_grad(
const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int grad_prec_bits,
AffineModelParams *am_params) {
int x_range_log2 = get_msb_signed(bw);
int y_range_log2 = get_msb_signed(bh);
#if AFFINE_AVERAGING_BITS > 0
int step_h = AOMMAX(1, bh >> (7 - AFFINE_AVERAGING_BITS));
int step_w = AOMMAX(1, bw >> (7 - AFFINE_AVERAGING_BITS));
int npel_log2 = AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bw)) +
AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bh));
#else
int npel_log2 = x_range_log2 + y_range_log2;
#endif
#if OPFL_DOWNSAMP_QUINCUNX
npel_log2--;
#endif
// Check range of gradient and prediction differences. If maximum absolute
// value is very large, matrix A is likely to be clamped. To improve
// stability, we adaptively reduce the dynamic range here
int64_t max_el = find_max_matrix_element_interp_grad(pdiff, pstride, gx, gy,
gstride, bw, bh);
int max_diff_bits = get_msb_signed_64(max_el);
const int grad_bits =
AOMMAX(0, max_diff_bits * 2 + npel_log2 +
AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR);
const int coords_bits = AOMMAX(
0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS);
int64_t mat_a[16] = { 0 };
int64_t vec_b[4] = { 0 };
int64_t vec_x[4];
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
#if AFFINE_AVERAGING_BITS > 0
if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue;
const int x = step_w * j - bw / 2 + 1;
const int y = step_h * i - bh / 2 + 1;
#else
const int x = j - bw / 2 + 1;
const int y = i - bh / 2 + 1;
#endif
int gidx = i * gstride + j;
int a[4];
a[0] =
ROUND_POWER_OF_TWO_SIGNED(-gx[gidx] * y + gy[gidx] * x, coords_bits);
a[1] =
ROUND_POWER_OF_TWO_SIGNED(gx[gidx] * x + gy[gidx] * y, coords_bits);
a[2] = gx[gidx];
a[3] = gy[gidx];
for (int s = 0; s < 4; ++s)
a[s] = clamp(a[s], -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL);
const int d = pdiff[i * pstride + j];
for (int s = 0; s < 4; ++s) {
for (int t = 0; t <= s; ++t) {
mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED_64(
(int64_t)a[s] * (int64_t)a[t], grad_bits);
}
vec_b[s] +=
ROUND_POWER_OF_TWO_SIGNED_64((int64_t)a[s] * (int64_t)d, grad_bits);
}
}
}
for (int s = 0; s < 4; ++s) {
for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s];
}
const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM;
mat_a[0] += rls_alpha;
mat_a[5] += rls_alpha;
mat_a[10] += rls_alpha;
mat_a[15] += rls_alpha;
for (int s = 0; s < 4; ++s) {
for (int t = 0; t < 4; ++t) {
mat_a[s * 4 + t] = clamp64(mat_a[s * 4 + t], -AFFINE_COV_CLAMP_VAL,
AFFINE_COV_CLAMP_VAL);
}
vec_b[s] = clamp64(vec_b[s], -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL);
}
int prec_bits[4] = {
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS,
grad_prec_bits + AFFINE_PREC_BITS,
};
if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1;
for (int i = 0; i < 4; i++)
vec_x[i] = clamp64(vec_x[i], -AFFINE_PARAMS_MAX, AFFINE_PARAMS_MAX);
assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0);
am_params->rot_angle = (int)vec_x[0];
am_params->scale_alpha =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->scale_beta =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_x =
(int)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_y =
(int)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
return 0;
}
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#endif // CONFIG_AFFINE_REFINEMENT
// Optical flow based mv refinement computation function:
//
// p0, pstride0: predictor 0 and its stride
// p1, pstride1: predictor 1 and its stride
// gx0, gy0: x and y gradients for p0
// gx1, gy1: x and y gradients for p1
// gstride: stride for all the gradients assumed to be the same
// bw, bh: block dimensions
// d0: distances of p0 to current frame, where positive value refers to p0
// before the current frame.
// d1: distances of p1 to current frame, where positive value refers to p1
// before the current frame.
// max_prec_bits: maximum offset in bits
// vx0, vy0: output high resolution mv offset for p0
// vx1, vy1: output high resolution mv offset for p1
void av1_opfl_mv_refinement_highbd(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1,
int grad_prec_bits, int mv_prec_bits,
int *vx0, int *vy0, int *vx1, int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int64_t u = d0 * gx0[i * gstride + j] - d1 * gx1[i * gstride + j];
const int64_t v = d0 * gy0[i * gstride + j] - d1 * gy1[i * gstride + j];
const int64_t w = p0[i * pstride0 + j] - p1[i * pstride1 + j];
su2 += (u * u);
suv += (u * v);
sv2 += (v * v);
suw += (u * w);
svw += (v * w);
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = clamp64(su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
sv2 = clamp64(sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suv = clamp64(suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suw = clamp64(suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
svw = clamp64(svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det <= 0) return;
const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits);
const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits);
*vx0 = (int)divide_and_round_signed(det_x, det);
*vy0 = (int)divide_and_round_signed(det_y, det);
*vx1 = (*vx0) * d1;
*vy1 = (*vy0) * d1;
*vx0 = (*vx0) * d0;
*vy0 = (*vy0) * d0;
}
#if OPFL_COMBINE_INTERP_GRAD_LS
// Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
void av1_opfl_mv_refinement_interp_grad(const int16_t *pdiff, int pstride0,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int d0,
int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int u = gx[i * gstride + j];
const int v = gy[i * gstride + j];
const int w = pdiff[i * pstride0 + j];
su2 += (u * u);
suv += (u * v);
sv2 += (v * v);
suw += (u * w);
svw += (v * w);
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and
// det_y
su2 = clamp64(su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
sv2 = clamp64(sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suv = clamp64(suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
suw = clamp64(suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
svw = clamp64(svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL);
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
const int64_t det = su2 * sv2 - suv * suv;
if (det <= 0) return;
const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits);
const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits);
*vx0 = (int)divide_and_round_signed(det_x, det);
*vy0 = (int)divide_and_round_signed(det_y, det);
*vx1 = (*vx0) * d1;
*vy1 = (*vy0) * d1;
*vx0 = (*vx0) * d0;
*vy0 = (*vy0) * d0;
}
#if CONFIG_AFFINE_REFINEMENT
typedef int (*affine_params_solver_interp_grad)(const int16_t *pdiff,
int pstride, const int16_t *gx,
const int16_t *gy, int gstride,
int bw, int bh,
int grad_prec_bits,
AffineModelParams *am_params);
affine_params_solver_interp_grad get_affine_params_solver_interp_grad(
CompoundRefineType comp_refine_type) {
switch (comp_refine_type) {
case COMP_REFINE_ROTZOOM4P_SUBBLK2P:
return derive_rotation_scale_translation_4p_interp_grad;
case COMP_REFINE_ROTZOOM2P_SUBBLK2P:
return derive_rotation_scale_2p_interp_grad;
default: assert(0); return derive_rotation_scale_translation_4p_interp_grad;
}
}
// Solve the affine model given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
// TODO(kslu) add SIMD version
void av1_opfl_affine_refinement_mxn_interp_grad_c(
const int16_t *pdiff, int pstride0, const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int d0, int d1, int mi_x, int mi_y,
const MB_MODE_INFO *mbmi,
#if CONFIG_REFINEMV
const MV *const src_mv,
#endif // CONFIG_REFINEMV
AffineModelParams *ams, int grad_prec_bits, WarpedMotionParams *wms) {
const CompoundRefineType comp_refine_type = mbmi->comp_refine_type;
AffineModelParams affine_params = default_affine_params;
affine_params_solver_interp_grad solver =
get_affine_params_solver_interp_grad(comp_refine_type);
// In some rare cases, the determinant in the solver may be zero or
// negative due to numerical errors. In this case we still set invalid=0,
// but the warped parameters remain the default values.
if (!solver(pdiff, pstride0, gx, gy, gstride, bw, bh, grad_prec_bits,
&affine_params)) {
combine_affine_params(ams, &affine_params);
#if CONFIG_REFINEMV
get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms, d0, &src_mv[0]);
get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms + 1, d1, &src_mv[1]);
#else
get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms, d0, &mbmi->mv[0].as_mv);
get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms + 1, d1,
&mbmi->mv[1].as_mv);
#endif // CONFIG_REFINEMV
}
}
#endif // CONFIG_AFFINE_REFINEMENT
#endif // OPFL_COMBINE_INTERP_GRAD_LS
int av1_opfl_mv_refinement_nxn_interp_grad_c(
const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int n, int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0, int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
#if OPFL_COMBINE_INTERP_GRAD_LS
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement_interp_grad(
pdiff + (i * pstride + j), pstride, gx + (i * gstride + j),
gy + (i * gstride + j), gstride, n, n, d0, d1, grad_prec_bits,
mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, vx1 + n_blocks,
vy1 + n_blocks);
n_blocks++;
}
}
#else
(void)pdiff;
(void)pstride;
(void)gx;
(void)gy;
(void)gstride;
(void)bw;
(void)bh;
(void)n;
(void)d0;
(void)d1;
(void)grad_prec_bits;
(void)mv_prec_bits;
(void)vx0;
(void)vy0;
(void)vx1;
(void)vy1;
#endif // OPFL_COMBINE_INTERP_GRAD_LS
return n_blocks;
}
// Function to compute optical flow offsets in nxn blocks
int av1_opfl_mv_refinement_nxn_highbd_c(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int n,
int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement_highbd(
p0 + (i * pstride0 + j), pstride0, p1 + (i * pstride1 + j), pstride1,
gx0 + (i * gstride + j), gy0 + (i * gstride + j),
gx1 + (i * gstride + j), gy1 + (i * gstride + j), gstride, n, n, d0,
d1, grad_prec_bits, mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks,
vx1 + n_blocks, vy1 + n_blocks);
n_blocks++;
}
}
return n_blocks;
}
#if CONFIG_AFFINE_REFINEMENT
typedef int (*affine_params_solver)(const uint16_t *p0, int pstride0,
const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0,
const int16_t *gx1, const int16_t *gy1,
int gstride, int bw, int bh, int d0, int d1,
int grad_prec_bits,
AffineModelParams *am_params);
affine_params_solver get_affine_params_solver(
CompoundRefineType comp_refine_type) {
switch (comp_refine_type) {
case COMP_REFINE_ROTZOOM4P_SUBBLK2P:
return derive_rotation_scale_translation_4p;
case COMP_REFINE_ROTZOOM2P_SUBBLK2P: return derive_rotation_scale_2p;
default: assert(0); return derive_rotation_scale_translation_4p;
}
}
void av1_opfl_affine_refinement_mxn_c(
const uint16_t *p0, int pstride0, const uint16_t *p1, int pstride1,
const int16_t *gx0, const int16_t *gy0, const int16_t *gx1,
const int16_t *gy1, int gstride, int bw, int bh, int d0, int d1, int mi_x,
int mi_y, const MB_MODE_INFO *mbmi, int grad_prec_bits,
WarpedMotionParams *wms) {
const CompoundRefineType comp_refine_type = mbmi->comp_refine_type;
AffineModelParams affine_params = default_affine_params;
affine_params_solver solver = get_affine_params_solver(comp_refine_type);
// In some rare cases, the determinant in the solver may be zero or
// negative due to numerical errors. In this case we still set invalid=0,
// but the warped parameters remain the default values.
if (!solver(p0, pstride0, p1, pstride1, gx0, gy0, gx1, gy1, gstride, bw, bh,
d0, d1, grad_prec_bits, &affine_params)) {
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, wms, d0,
&mbmi->mv[0].as_mv);
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, wms + 1, d1,
&mbmi->mv[1].as_mv);
}
}
#if AFFINE_OPFL_BASED_ON_SAD
// TODO(kslu) use SIMD versions
static INLINE unsigned int sad_generic(const uint16_t *a, int a_stride,
const uint16_t *b, int b_stride,
int width, int height) {
int y, x;
unsigned int sad = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
sad += abs(a[x] - b[x]);
}
a += a_stride;
b += b_stride;
}
return sad;
}
#endif // AFFINE_OPFL_BASED_ON_SAD
#endif // CONFIG_AFFINE_REFINEMENT
#if OPFL_COMBINE_INTERP_GRAD_LS
#if CONFIG_AFFINE_REFINEMENT
// Update predicted blocks (P0 & P1) and their gradients based on the affine
// model derived from the first DAMR step
void update_pred_grad_with_affine_model(MACROBLOCKD *xd, int plane, int bw,
int bh, WarpedMotionParams *wms,
int mi_x, int mi_y, int16_t *tmp0,
int16_t *tmp1, int16_t *gx0,
int16_t *gy0, const int d0,
const int d1, int *grad_prec_bits) {
uint16_t *dst_warped =
(uint16_t *)aom_memalign(16, 2 * bw * bh * sizeof(uint16_t));
struct macroblockd_plane *const pd = &xd->plane[plane];
ConvolveParams conv_params =
get_conv_params_no_round(0, plane, NULL, 0, 0, xd->bd);
for (int ref = 0; ref < 2; ref++) {
struct buf_2d *const pre_buf = &pd->pre[ref];
#if AFFINE_FAST_WARP_METHOD == 3
av1_warp_plane_bilinear(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 2
av1_warp_plane_bicubic(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER
av1_warp_plane_ext(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#else // AFFINE_FAST_WARP_METHOD == 0
av1_warp_plane(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride, &dst_warped[ref * bw * bh],
mi_x, mi_y, bw, bh, bw, pd->subsampling_x, pd->subsampling_y,
&conv_params);
#endif // AFFINE_FAST_WARP_METHOD == 3
}
av1_copy_pred_array_highbd(&dst_warped[0], &dst_warped[bw * bh], tmp0, tmp1,
bw, bh, d0, d1, 0);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, grad_prec_bits, gx0, gy0);
aom_free(dst_warped);
}
#endif // CONFIG_AFFINE_REFINEMENT
static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd(
const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2,
int bw, int bh, int d0, int d1, int centered) {
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
// To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1.
int32_t tmp_dst =
d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j];
if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1);
dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
if (dst2) {
tmp_dst = (int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j];
dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
}
}
}
}
#endif // OPFL_COMBINE_INTERP_GRAD_LS
void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2,
int16_t *dst1, int16_t *dst2, int bw, int bh,
int d0, int d1, int centered) {
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
#if OPFL_COMBINE_INTERP_GRAD_LS
compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1,
centered);
#else
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
for (int i = 0; i < bh; ++i)
for (int j = 0; j < bw; ++j) dst1[i * bw + j] = (int16_t)src1[i * bw + j];
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
(void)src1;
(void)dst1;
(void)src2;
(void)dst2;
(void)d0;
(void)d1;
(void)bw;
(void)bh;
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
}
void av1_get_optflow_based_mv_highbd(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi,
int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0,
int16_t *gx1, int16_t *gy1,
#if CONFIG_AFFINE_REFINEMENT
WarpedMotionParams *wms, int *use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int *vx0, int *vy0, int *vx1, int *vy1, uint16_t *dst0, uint16_t *dst1
#if CONFIG_OPTFLOW_ON_TIP
,
int do_pred, int use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
#if CONFIG_REFINEMV
,
MV *best_mv_ref, int pu_width, int pu_height
#endif // CONFIG_REFINEMV
) {
#if CONFIG_AFFINE_REFINEMENT
*use_affine_opfl = 0;
#endif // CONFIG_AFFINE_REFINEMENT
const int target_prec = MV_REFINE_PREC_BITS;
const int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
int n_blocks = (bw / n) * (bh / n);
// Convert output MV to 1/16th pel
assert(MV_REFINE_PREC_BITS >= 3);
const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3);
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv.row =
clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2].as_mv.col =
clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2 + 1].as_mv.row = clamp(
mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2 + 1].as_mv.col = clamp(
mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, INT16_MIN, INT16_MAX);
}
// Obtain d0 and d1
int d0, d1;
#if CONFIG_OPTFLOW_ON_TIP
if (mbmi->ref_frame[0] == TIP_FRAME) {
d0 = cm->tip_ref.ref_offset[0];
d1 = cm->tip_ref.ref_offset[1];
} else {
#endif // CONFIG_OPTFLOW_ON_TIP
const RefCntBuffer *const r0_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const RefCntBuffer *const r1_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[1]);
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r0_buf->display_order_hint);
d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r1_buf->display_order_hint);
#else
d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r0_buf->order_hint);
d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r1_buf->order_hint);
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
#if CONFIG_OPTFLOW_ON_TIP
}
#endif // CONFIG_OPTFLOW_ON_TIP
if (d0 == 0 || d1 == 0) return;
reduce_temporal_dist(&d0, &d1);
#if CONFIG_OPTFLOW_ON_TIP
if (do_pred) {
#endif // CONFIG_OPTFLOW_ON_TIP
// Obrain P0 and P1
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0
#if CONFIG_REFINEMV
,
&best_mv_ref[0], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1
#if CONFIG_REFINEMV
,
&best_mv_ref[1], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
#if CONFIG_OPTFLOW_ON_TIP
}
#endif // CONFIG_OPTFLOW_ON_TIP
int grad_prec_bits;
#if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
// Compute gradients of P0 and P1 with interpolation
#if OPFL_COMBINE_INTERP_GRAD_LS
(void)gx1;
(void)gy1;
// Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1
#if CONFIG_OPTFLOW_ON_TIP
const int tmp_w = (mbmi->ref_frame[0] == TIP_FRAME) ? bw : MAX_SB_SIZE;
const int tmp_h = (mbmi->ref_frame[0] == TIP_FRAME) ? bh : MAX_SB_SIZE;
int16_t *tmp0 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t));
int16_t *tmp1 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t));
#else
int16_t *tmp0 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
int16_t *tmp1 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
#endif // CONFIG_OPTFLOW_ON_TIP
av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1, 0);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0);
#if CONFIG_AFFINE_REFINEMENT
#if AFFINE_OPFL_BASED_ON_SAD
const unsigned int sad_thr = 1;
if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms) {
unsigned int sad_pred = sad_generic(dst0, bw, dst1, bw, bw, bh);
if (sad_pred >= sad_thr * bw * bh) *use_affine_opfl = 1;
}
#endif
if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms &&
*use_affine_opfl) {
AffineModelParams affine_params = default_affine_params;
#if AFFINE_AVERAGING_BITS > 0
const int block_len_low = 1 << (7 - AFFINE_AVERAGING_BITS);
avg_pooling_pdiff_gradients(tmp1, bw, gx0, gy0, bw, bw, bh, block_len_low);
#endif // AFFINE_AVERAGING_BITS > 0
av1_opfl_affine_refinement_mxn_interp_grad_c(
tmp1, bw, gx0, gy0, bw, bw, bh, d0, d1, mi_x, mi_y, mbmi,
#if CONFIG_REFINEMV
best_mv_ref,
#endif // CONFIG_REFINEMV
&affine_params, grad_prec_bits, wms);
update_pred_grad_with_affine_model(xd, plane, bw, bh, wms, mi_x, mi_y, tmp0,
tmp1, gx0, gy0, d0, d1, &grad_prec_bits);
// Subblock wise translational refinement
if (damr_refine_subblock(plane, bw, bh, mbmi->comp_refine_type, n)) {
// Find translational parameters per subblock.
n_blocks = av1_opfl_mv_refinement_nxn_interp_grad(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits,
target_prec, vx0, vy0, vx1, vy1);
}
} else {
n_blocks = av1_opfl_mv_refinement_nxn_interp_grad(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec,
vx0, vy0, vx1, vy1);
}
#else
n_blocks = av1_opfl_mv_refinement_nxn_interp_grad(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec,
vx0, vy0, vx1, vy1);
#endif // CONFIG_AFFINE_REFINEMENT
aom_free(tmp0);
aom_free(tmp1);
#else
int16_t *tmp =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
av1_copy_pred_array_highbd(dst0, NULL, tmp, NULL, bw, bh, d0, d1, 0);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx0, gy0);
av1_copy_pred_array_highbd(dst1, NULL, tmp, NULL, bw, bh, d0, d1, 0);
av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx1, gy1);
#if CONFIG_AFFINE_REFINEMENT
if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START) {
av1_opfl_affine_refinement_mxn_c(dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw,
bw, bh, d0, d1, mi_x, mi_y, mbmi,
grad_prec_bits, wms);
} else {
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
}
#else
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
#endif // CONFIG_AFFINE_REFINEMENT
aom_free(tmp);
#endif // OPFL_COMBINE_INTERP_GRAD_LS
#else
// Compute gradients of P0 and P1 with MC
av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params0, calc_subpel_params_func, 0,
&grad_prec_bits, gx0, gy0);
av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf,
&params1, calc_subpel_params_func, 1,
&grad_prec_bits, gx1, gy1);
#if CONFIG_AFFINE_REFINEMENT
if (mbmi->comp_refine_type >= COMP_REFINE_AFFINE_START) {
av1_opfl_affine_refinement_mxn_c(dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw,
bw, bh, d0, d1, mi_x, mi_y, mbmi,
grad_prec_bits, wms);
} else {
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
}
#else
n_blocks = av1_opfl_mv_refinement_nxn_highbd(
dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1,
grad_prec_bits, target_prec, vx0, vy0, vx1, vy1);
#endif // CONFIG_AFFINE_REFINEMENT
#endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD
for (int i = 0; i < n_blocks; i++) {
#if OPFL_CLAMP_MV_DELTA
vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
#endif
mv_refined[i * 2].as_mv.row =
clamp(mv_refined[i * 2].as_mv.row + vy0[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2].as_mv.col =
clamp(mv_refined[i * 2].as_mv.col + vx0[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2 + 1].as_mv.row =
clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2 + 1].as_mv.col =
clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], INT16_MIN, INT16_MAX);
}
}
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_D071_IMP_MSK_BLD
int is_out_of_frame_block(const InterPredParams *inter_pred_params,
int frame_width, int frame_height, int sub_block_id) {
for (int ref = 0; ref < 2; ref++) {
const BacpBlockData *const b_data =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref];
if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 ||
b_data->x1 > frame_width
|| b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 ||
b_data->y1 > frame_height) {
return 1;
}
}
return 0;
}
#endif // CONFIG_D071_IMP_MSK_BLD
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
init_wedge_masks();
init_smooth_interintra_masks();
}
static AOM_INLINE void build_masked_compound_no_round(
uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, InterPredParams *inter_pred_params) {
#if CONFIG_D071_IMP_MSK_BLD
const int ssy = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_y;
const int ssx = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_x;
#else
const int ssy = inter_pred_params->subsampling_y;
const int ssx = inter_pred_params->subsampling_x;
#endif // CONFIG_D071_IMP_MSK_BLD
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
const int mask_stride = block_size_wide[sb_type];
aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, mask_stride, w, h, ssx, ssy,
&inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
#if !CONFIG_D071_IMP_MSK_BLD
static
#endif
void
make_masked_inter_predictor(const uint16_t *pre, int pre_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
int use_bacp, int sub_block_id
#endif // CONFIG_D071_IMP_MSK_BLD
) {
const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
BLOCK_SIZE sb_type = inter_pred_params->sb_type;
// We're going to call av1_make_inter_predictor to generate a prediction into
// a temporary buffer, then will blend that temporary buffer with that from
// the other reference.
DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]);
const int tmp_buf_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
int org_dst_stride = inter_pred_params->conv_params.dst_stride;
CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
inter_pred_params->conv_params.dst = tmp_buf16;
inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
assert(inter_pred_params->conv_params.do_average == 0);
// This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE,
inter_pred_params, subpel_params);
if (!inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_DIFFWTD) {
av1_build_compound_diffwtd_mask_d16(
comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
inter_pred_params->block_width, &inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
#if CONFIG_D071_IMP_MSK_BLD
// Mask is generated from luma and reuse for chroma
const int generate_mask_for_this_plane =
(!inter_pred_params->conv_params.plane ||
comp_data->type == COMPOUND_AVERAGE);
if (use_bacp && generate_mask_for_this_plane) {
uint8_t *mask = comp_data->seg_mask;
int mask_stride = block_size_wide[sb_type];
BacpBlockData *b_data_0 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0];
BacpBlockData *b_data_1 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1];
for (int i = 0; i < inter_pred_params->block_height; ++i) {
for (int j = 0; j < inter_pred_params->block_width; ++j) {
int x = b_data_0->x0 + j;
int y = b_data_0->y0 + i;
int p0_available =
(x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 &&
y < inter_pred_params->ref_frame_buf.height);
x = b_data_1->x0 + j;
y = b_data_1->y0 + i;
int p1_available =
(x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 &&
y < inter_pred_params->ref_frame_buf.height);
if (p0_available && !p1_available) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT;
} else if (!p0_available && p1_available) {
mask[j] = DEFAULT_IMP_MSK_WT;
} else if (comp_data->type == COMPOUND_AVERAGE) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1;
}
}
mask += mask_stride;
}
}
#endif // CONFIG_D071_IMP_MSK_BLD
build_masked_compound_no_round(
dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
comp_data, sb_type, inter_pred_params->block_height,
inter_pred_params->block_width, inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
// restore to previous state
inter_pred_params->conv_params.dst = org_dst;
inter_pred_params->conv_params.dst_stride = org_dst_stride;
#endif // CONFIG_D071_IMP_MSK_BLD
}
#if CONFIG_OPTFLOW_REFINEMENT
// Makes the interpredictor for the region by dividing it up into nxn blocks
// and running the interpredictor code on each one.
void make_inter_pred_of_nxn(
uint16_t *dst, int dst_stride, int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
#if CONFIG_AFFINE_REFINEMENT
int plane, CompoundRefineType comp_refine_type, WarpedMotionParams *wms,
int_mv *mv, const int use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func,
int n, SubpelParams *subpel_params) {
int n_blocks = 0;
int bw = inter_pred_params->orig_block_width;
int bh = inter_pred_params->orig_block_height;
int sub_bw = n;
int sub_bh = n;
#if CONFIG_AFFINE_REFINEMENT
MV ref_mv, cur_mv;
ref_mv.row = mv_refined[ref].as_mv.row;
ref_mv.col = mv_refined[ref].as_mv.col;
if (comp_refine_type >= COMP_AFFINE_REFINE_START &&
!damr_refine_subblock(plane, bw, bh, comp_refine_type, n)) {
sub_bw = bw;
sub_bh = bh;
}
const int unit_offset = 1 << WARPEDMODEL_PREC_BITS;
WarpedMotionParams ref_wm = wms ? wms[ref] : default_warp_params;
#if AFFINE_CHROMA_REFINE_METHOD >= 2
if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START && plane) {
// Apply offsets based on the affine parameters. bw, bh, and wm are
// for luma plane, so compute the warp MV in luma and then scale it
// for chroma
const int32_t blk_offset_x_hp =
ref_wm.wmmat[0] - mv->as_mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) +
mi_x * (ref_wm.wmmat[2] - unit_offset) + mi_y * ref_wm.wmmat[3];
const int32_t blk_offset_y_hp =
ref_wm.wmmat[1] - mv->as_mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) +
mi_x * ref_wm.wmmat[4] + mi_y * (ref_wm.wmmat[5] - unit_offset);
ref_mv.col += ROUND_POWER_OF_TWO_SIGNED(
blk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
ref_mv.row += ROUND_POWER_OF_TWO_SIGNED(
blk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
}
#else
(void)mv;
#endif
#endif // CONFIG_AFFINE_REFINEMENT
assert(bw % sub_bw == 0);
assert(bh % sub_bh == 0);
CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst;
inter_pred_params->block_width = sub_bw;
inter_pred_params->block_height = sub_bh;
MV *subblock_mv;
uint16_t *pre;
int src_stride = 0;
// Process whole nxn blocks.
for (int j = 0; j < bh; j += sub_bh) {
for (int i = 0; i < bw; i += sub_bw) {
#if CONFIG_AFFINE_REFINEMENT
if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START &&
use_affine_opfl) {
// If warped model is not valid, wmmat[0] and wmmat[1] remain the
// translational offset parameters in block-relative coordinates. Here
// they are applied as MV offsets for simple translational prediction
WarpedMotionParams this_wm = wms[ref];
if (this_wm.invalid
#if !CONFIG_EXT_WARP_FILTER
|| sub_bh < 8 || sub_bw < 8
#endif // !CONFIG_EXT_WARP_FILTER
#if AFFINE_CHROMA_REFINE_METHOD >= 2
|| plane
#endif // AFFINE_CHROMA_REFINE_METHOD >= 2
) {
// When warp prediction is not allowed, apply translational prediction
// based on warp parameters
inter_pred_params->mode = TRANSLATION_PRED;
cur_mv = ref_mv;
// Apply offsets based on current subblock center position
const int subblk_center_x = (i + sub_bw / 2 - 1)
<< inter_pred_params->subsampling_x;
const int subblk_center_y = (j + sub_bh / 2 - 1)
<< inter_pred_params->subsampling_y;
const int32_t subblk_offset_x_hp =
subblk_center_x * (ref_wm.wmmat[2] - unit_offset) +
subblk_center_y * ref_wm.wmmat[3];
const int32_t subblk_offset_y_hp =
subblk_center_x * ref_wm.wmmat[4] +
subblk_center_y * (ref_wm.wmmat[5] - unit_offset);
cur_mv.col += ROUND_POWER_OF_TWO_SIGNED(
subblk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
cur_mv.row += ROUND_POWER_OF_TWO_SIGNED(
subblk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
#if AFFINE_CHROMA_REFINE_METHOD == 3
if ((comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P ||
comp_refine_type == COMP_REFINE_ROTZOOM2P_SUBBLK2P)
#if !CONFIG_EXT_WARP_FILTER
&& n > 4
#endif // !CONFIG_EXT_WARP_FILTER
) {
// If this is a 4x4 colocated chroma block of a 8x8 luma block,
// colocated subblocks will be 2x2. In this case we take the average
// of 4 refined MVs and use it to refine prediction at 4x4 level.
if (bw == 4 && bh == 4 && n == 4) {
cur_mv.col += ROUND_POWER_OF_TWO_SIGNED(
xd->mv_delta[0].mv[ref].as_mv.col +
xd->mv_delta[1].mv[ref].as_mv.col +
xd->mv_delta[2].mv[ref].as_mv.col +
xd->mv_delta[3].mv[ref].as_mv.col,
2);
cur_mv.row += ROUND_POWER_OF_TWO_SIGNED(
xd->mv_delta[0].mv[ref].as_mv.row +
xd->mv_delta[1].mv[ref].as_mv.row +
xd->mv_delta[2].mv[ref].as_mv.row +
xd->mv_delta[3].mv[ref].as_mv.row,
2);
} else {
cur_mv.col += xd->mv_delta[n_blocks].mv[ref].as_mv.col;
cur_mv.row += xd->mv_delta[n_blocks].mv[ref].as_mv.row;
}
}
#endif // AFFINE_CHROMA_REFINE_METHOD == 3
subblock_mv = &cur_mv;
subblock_mv->col = clamp(subblock_mv->col, MV_LOW + 1, MV_UPP - 1);
subblock_mv->row = clamp(subblock_mv->row, MV_LOW + 1, MV_UPP - 1);
} else {
// Overwrite inter_pred_params to trigger warped prediction in
// av1_make_inter_predictor()
inter_pred_params->mode = WARP_PRED;
inter_pred_params->warp_params = this_wm;
if ((comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P ||
comp_refine_type == COMP_REFINE_ROTZOOM2P_SUBBLK2P)
#if !CONFIG_EXT_WARP_FILTER
&& n > 4
#endif // !CONFIG_EXT_WARP_FILTER
) {
// If this is a 4x4 colocated chroma block of a 8x8 luma block,
// colocated subblocks will be 2x2. In this case we take the average
// of 4 refined MVs and use it to refine prediction at 4x4 level.
if (bw == 4 && bh == 4 && n == 4) {
inter_pred_params->warp_params.wmmat[0] +=
(xd->mv_delta[0].mv[ref].as_mv.col +
xd->mv_delta[1].mv[ref].as_mv.col +
xd->mv_delta[2].mv[ref].as_mv.col +
xd->mv_delta[3].mv[ref].as_mv.col) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2));
inter_pred_params->warp_params.wmmat[1] +=
(xd->mv_delta[0].mv[ref].as_mv.row +
xd->mv_delta[1].mv[ref].as_mv.row +
xd->mv_delta[2].mv[ref].as_mv.row +
xd->mv_delta[3].mv[ref].as_mv.row) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2));
} else {
inter_pred_params->warp_params.wmmat[0] +=
xd->mv_delta[n_blocks].mv[ref].as_mv.col *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS));
inter_pred_params->warp_params.wmmat[1] +=
xd->mv_delta[n_blocks].mv[ref].as_mv.row *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS));
}
#if CONFIG_EXTENDED_WARP_PREDICTION
inter_pred_params->warp_params.wmmat[0] =
clamp(inter_pred_params->warp_params.wmmat[0],
-WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
inter_pred_params->warp_params.wmmat[1] =
clamp(inter_pred_params->warp_params.wmmat[1],
-WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
#else
inter_pred_params->warp_params.wmmat[0] =
clamp(inter_pred_params->warp_params.wmmat[0],
-WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
inter_pred_params->warp_params.wmmat[1] =
clamp(inter_pred_params->warp_params.wmmat[1],
-WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
subblock_mv = &mv_refined[ref].as_mv;
}
} else {
subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv);
}
#else
subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv);
#endif // CONFIG_AFFINE_REFINEMENT
calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i,
mi_y + j, ref, 1, mc_buf, &pre, subpel_params,
&src_stride);
#if CONFIG_D071_IMP_MSK_BLD
int use_bacp = 0;
assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE);
assert(inter_pred_params->comp_mode == UNIFORM_COMP);
int stored_do_average = inter_pred_params->conv_params.do_average;
InterCompMode stored_comp_mode = inter_pred_params->comp_mode;
uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 =
subpel_params->x0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 =
subpel_params->x1;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 =
subpel_params->y0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 =
subpel_params->y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, n_blocks);
if (use_bacp &&
inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
if (use_bacp) {
assert(inter_pred_params->comp_mode == MASK_COMP);
make_masked_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params, use_bacp,
n_blocks);
} else {
#endif
av1_make_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params);
#if CONFIG_D071_IMP_MSK_BLD
}
// Restored to original inter_pred_params
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = stored_do_average;
inter_pred_params->comp_mode = stored_comp_mode;
inter_pred_params->mask_comp.seg_mask = stored_seg_mask;
}
#endif // CONFIG_D071_IMP_MSK_BLD
n_blocks++;
dst += sub_bw;
inter_pred_params->conv_params.dst += sub_bw;
inter_pred_params->pix_col += sub_bw;
}
dst -= bw;
inter_pred_params->conv_params.dst -= bw;
inter_pred_params->pix_col -= bw;
dst += sub_bh * dst_stride;
inter_pred_params->conv_params.dst +=
sub_bh * inter_pred_params->conv_params.dst_stride;
inter_pred_params->pix_row += sub_bh;
}
inter_pred_params->conv_params.dst = orig_conv_dst;
}
// Use a second pass of motion compensation to rebuild inter predictor
void av1_opfl_rebuild_inter_predictor(
uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
#if CONFIG_AFFINE_REFINEMENT
CompoundRefineType comp_refine_type, WarpedMotionParams *wms, int_mv *mv,
const int use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
int use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
) {
SubpelParams subpel_params;
int w = inter_pred_params->block_width;
int h = inter_pred_params->block_height;
int n = opfl_get_subblock_size(w, h, plane
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
make_inter_pred_of_nxn(
dst, dst_stride, mv_refined, inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
plane, comp_refine_type, wms, mv, use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func, n, &subpel_params);
}
#endif // CONFIG_OPTFLOW_REFINEMENT
void av1_build_one_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
#if CONFIG_OPTFLOW_REFINEMENT
0, /* use_optflow_refinement */
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, &src, &subpel_params, &src_stride);
#if CONFIG_D071_IMP_MSK_BLD
int use_bacp = 0;
int sub_block_id = 0;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 =
subpel_params.x0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 =
subpel_params.x1;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 =
subpel_params.y0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 =
subpel_params.y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, sub_block_id);
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
#endif // CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
#if CONFIG_D071_IMP_MSK_BLD
assert(IMPLIES(use_bacp, ref == 0));
assert(use_bacp == 0);
#endif // CONFIG_D071_IMP_MSK_BLD
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
use_bacp, 0
#endif // CONFIG_D071_IMP_MSK_BLD
);
#if CONFIG_D071_IMP_MSK_BLD
assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1));
#endif // CONFIG_D071_IMP_MSK_BLD
}
}
#if CONFIG_EXPLICIT_BAWP
// Derive the offset value of block adaptive weighted prediction
// mode. One row from the top boundary and one column from the left boundary
// are used in the less square error process.
static void derive_explicit_bawp_offsets(MACROBLOCKD *xd, uint16_t *recon_top,
uint16_t *recon_left, int rec_stride,
uint16_t *ref_top, uint16_t *ref_left,
int ref_stride, int ref, int plane,
int bw, int bh) {
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_BAWP_CHROMA
assert(mbmi->bawp_flag[0] > 1);
#else
assert(mbmi->bawp_flag > 1);
#endif // CONFIG_BAWP_CHROMA
// only integer position of reference, may need to consider
// fractional position of ref samples
int count = 0;
int sum_x = 0, sum_y = 0;
if (xd->up_available) {
for (int i = 0; i < bw; ++i) {
sum_x += ref_top[i];
sum_y += recon_top[i];
}
count += bw;
}
if (xd->left_available) {
for (int i = 0; i < bh; ++i) {
sum_x += ref_left[0];
sum_y += recon_left[0];
recon_left += rec_stride;
ref_left += ref_stride;
}
count += bh;
}
const int16_t shift = 8; // maybe a smaller value can be used
if (count > 0) {
mbmi->bawp_beta[plane][ref] =
((sum_y << shift) - sum_x * mbmi->bawp_alpha[plane][ref]) / count;
} else {
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
}
#endif // CONFIG_EXPLICIT_BAWP
#if CONFIG_BAWP
// Derive the scaling factor and offset of block adaptive weighted prediction
// mode. One row from the top boundary and one column from the left boundary
// are used in the less square error process.
static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top,
uint16_t *recon_left, int rec_stride,
uint16_t *ref_top, uint16_t *ref_left,
int ref_stride, int ref, int plane, int bw,
int bh) {
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_BAWP_CHROMA
assert(mbmi->bawp_flag[0] >= 1);
#else
assert(mbmi->bawp_flag == 1);
#endif // CONFIG_BAWP_CHROMA
// only integer position of reference, may need to consider
// fractional position of ref samples
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
if (xd->up_available) {
for (int i = 0; i < bw; ++i) {
sum_x += ref_top[i];
sum_y += recon_top[i];
sum_xy += ref_top[i] * recon_top[i];
sum_xx += ref_top[i] * ref_top[i];
}
count += bw;
}
if (xd->left_available) {
for (int i = 0; i < bh; ++i) {
sum_x += ref_left[0];
sum_y += recon_left[0];
sum_xy += ref_left[0] * recon_left[0];
sum_xx += ref_left[0] * ref_left[0];
recon_left += rec_stride;
ref_left += ref_stride;
}
count += bh;
}
const int16_t shift = 8; // maybe a smaller value can be used
if (count > 0) {
int32_t der = sum_xx - (int32_t)((int64_t)sum_x * sum_x / count);
int32_t nor = sum_xy - (int32_t)((int64_t)sum_x * sum_y / count);
// Add a small portion to both self-correlation and cross-correlation to
// keep mode stable and have scaling factor leaning to value 1.0
// Temporal design, to be further updated
nor += der / 16;
der += der / 16;
#if CONFIG_BAWP_CHROMA
if (plane == 0) {
if (nor && der)
mbmi->bawp_alpha[plane][ref] = resolve_divisor_32_CfL(nor, der, shift);
else
mbmi->bawp_alpha[plane][ref] = 1 << shift;
} else {
mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref];
}
#else
if (nor && der)
mbmi->bawp_alpha[plane][ref] = resolve_divisor_32_CfL(nor, der, shift);
else
mbmi->bawp_alpha[plane][ref] = 1 << shift;
#endif // CONFIG_BAWP_CHROMA
mbmi->bawp_beta[plane][ref] =
((sum_y << shift) - sum_x * mbmi->bawp_alpha[plane][ref]) / count;
} else {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
}
// generate inter prediction of a block coded in bwap mode enabled
void av1_build_one_bawp_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd,
const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref,
int plane, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
#if CONFIG_OPTFLOW_REFINEMENT
0, /* use_optflow_refinement */
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params->comp_mode == UNIFORM_SINGLE);
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
0, 0
#endif // CONFIG_D071_IMP_MSK_BLD
);
}
const int shift = 8;
MB_MODE_INFO *mbmi = xd->mi[0];
const int x_off = mbmi->mv[ref].as_mv.col >> 3;
const int y_off = mbmi->mv[ref].as_mv.row >> 3;
const int x_off_p = x_off >> inter_pred_params->subsampling_x;
const int y_off_p = y_off >> inter_pred_params->subsampling_y;
const int mi_x_p = mi_x >> inter_pred_params->subsampling_x;
const int mi_y_p = mi_y >> inter_pred_params->subsampling_y;
const int width_p = cm->width >> inter_pred_params->subsampling_x;
const int height_p = cm->height >> inter_pred_params->subsampling_y;
int ref_w = bw;
if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p;
int ref_h = bh;
if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p;
if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 ||
(mi_y_p + y_off_p - BAWP_REF_LINES) < 0 ||
(mi_x_p + ref_w + x_off_p) >= width_p ||
(mi_y_p + ref_h + y_off_p) >= height_p) {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
} else {
uint16_t *recon_buf = xd->plane[plane].dst.buf;
int recon_stride = xd->plane[plane].dst.stride;
if (dst_orig != NULL) {
recon_buf = dst_orig->plane[plane];
recon_stride = dst_orig->stride[plane];
}
uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride;
uint16_t *recon_left = recon_buf - BAWP_REF_LINES;
// the picture boundary limitation to be checked.
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref_stride = pd->pre[ref].stride;
uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p;
uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride;
uint16_t *ref_left = ref_buf - BAWP_REF_LINES;
#if CONFIG_EXPLICIT_BAWP
#if CONFIG_BAWP_CHROMA
if (mbmi->bawp_flag[0] > 1 && plane == 0) {
#else
if (mbmi->bawp_flag > 1) {
#endif // CONFIG_BAWP_CHROMA
const int first_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[0]];
const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 },
{ -2, 2 },
{ -3, 3 } };
const int list_index =
(mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2);
#if CONFIG_BAWP_CHROMA
int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2];
#else
int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag - 2];
#endif // CONFIG_BAWP_CHROMA
const int delta_sign = delta_scales > 0 ? 1 : -1;
const int delta_magtitude = delta_sign * delta_scales;
if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1);
mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16);
derive_explicit_bawp_offsets(xd, recon_top, recon_left, recon_stride,
ref_top, ref_left, ref_stride, ref, plane,
ref_w, ref_h);
} else
#endif // CONFIG_EXPLICIT_BAWP
derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top,
ref_left, ref_stride, ref, plane, ref_w, ref_h);
}
int16_t alpha = mbmi->bawp_alpha[plane][ref];
int32_t beta = mbmi->bawp_beta[plane][ref];
for (int j = 0; j < bh; ++j) {
for (int i = 0; i < bw; ++i) {
dst[j * dst_stride + i] = clip_pixel_highbd(
(dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd);
}
}
}
#endif // CONFIG_BAWP
// True if the following hold:
// 1. Not intrabc and not build_for_obmc
// 2. At least one dimension is size 4 with subsampling
// 3. If sub-sampled, none of the previous blocks around the sub-sample
// are intrabc or inter-blocks
static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *mi, int plane, int is_intrabc,
int build_for_obmc) {
if (is_intrabc || build_for_obmc) {
return false;
}
if (!(plane &&
(mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base)))
return false;
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates
// for the top-left corner of the prediction source. So, we need to find the
// correct top-left corner (row_start, col_start).
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int row_start =
plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0;
const int col_start =
plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
// Scan through all the blocks in the current chroma unit
for (int row = 0; row < plane_mi_height; ++row) {
const int row_coord = row_start + row;
if (mi_row + row_coord >= mi_rows) break;
for (int col = 0; col < plane_mi_width; ++col) {
const int col_coord = col_start + col;
if (mi_col + col_coord >= mi_cols) break;
// For the blocks at the lower right of the final chroma block, the mis
// are not set up correctly yet, so we do not check them.
if ((row_coord >= 0 && col_coord > 0) ||
(col_coord >= 0 && row_coord > 0)) {
break;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[row_coord * xd->mi_stride + col_coord];
assert(this_mbmi != NULL);
if (!is_inter_block(this_mbmi, xd->tree_type)) return false;
if (is_intrabc_block(this_mbmi, xd->tree_type)) return false;
}
}
return true;
}
static void build_inter_predictors_sub8x8(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const bool ss_x = pd->subsampling_x;
const bool ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
assert(!is_intrabc_block(mi, xd->tree_type));
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0;
const int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
const int mi_stride = xd->mi_stride;
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
const int mb_to_top_edge_start = xd->mb_to_top_edge;
const int mb_to_left_edge_start = xd->mb_to_left_edge;
const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge;
const int mb_to_right_edge_start = xd->mb_to_right_edge;
// Row progress keeps track of which mi block in the row has been set.
SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 };
assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE);
for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) {
if (xd->mi_row + row_start + mi_row >= mi_rows) break;
for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) {
if (xd->mi_col + col_start + mi_col >= mi_cols) break;
const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col);
if (row_progress[mi_row] & check_flag) {
continue;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)];
assert(this_mbmi != NULL);
const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y];
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int row = row_start + mi_row + xd->mi_row;
int col = col_start + mi_col + xd->mi_col;
xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE);
xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE));
xd->mb_to_right_edge =
GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE);
// The flag here is a block of mi_width many 1s offset by the mi_col.
// For example, if the current mi_col is 2, and the mi_width is 2, then
// the flag will be 00110000. We or this with row_progress to update the
// blocks that have been coded.
// Note that because we are always coding in a causal order, we could
// technically simplify the bitwise operation, and use the flag 11110000
// in the above example instead. However, we are not taking this approach
// here to keep the logic simpler.
const SUB_8_BITMASK_T set_flag =
((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) &
SUB_8_BITMASK_ON) >>
mi_col;
for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) {
row_progress[mi_row + mi_row_offset] |= set_flag;
}
assert(is_inter_block(this_mbmi, xd->tree_type));
const int chroma_width = block_size_wide[bsize] >> ss_x;
const int chroma_height = block_size_high[bsize] >> ss_y;
const int pixel_row = (MI_SIZE * mi_row >> ss_y);
const int pixel_col = (MI_SIZE * mi_col >> ss_x);
#if CONFIG_EXT_RECUR_PARTITIONS
// TODO(yuec): enabling compound prediction in none sub8x8 mbs in the
// group
bool is_compound = 0;
#else
bool is_compound = has_second_ref(this_mbmi);
#endif // CONFIG_EXT_RECUR_PARTITIONS
struct buf_2d *const dst_buf = &pd->dst;
uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col;
int ref = 0;
const RefCntBuffer *ref_buf =
get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *const sf = ref_scale_factors;
const struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
const MV mv = this_mbmi->mv[ref].as_mv;
InterPredParams inter_pred_params;
av1_init_inter_params(
&inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row,
pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr);
inter_pred_params.conv_params =
get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd);
av1_build_one_inter_predictor(
dst, dst_buf->stride, &mv, &inter_pred_params, xd, mi_x + pixel_col,
mi_y + pixel_row, ref, mc_buf, calc_subpel_params_func);
}
}
xd->mb_to_top_edge = mb_to_top_edge_start;
xd->mb_to_bottom_edge = mb_to_bottom_edge_start;
xd->mb_to_left_edge = mb_to_left_edge_start;
xd->mb_to_right_edge = mb_to_right_edge_start;
}
#if CONFIG_REFINEMV
// Padding if the pixel position falls outside of the defined reference area
static void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int x0,
int y0, int b_w, int b_h,
const ReferenceArea *ref_area) {
// Get a pointer to the start of the real data for this row.
const uint16_t *ref_row = src - x0 - y0 * src_stride;
if (y0 >= ref_area->pad_block.y1)
ref_row += (ref_area->pad_block.y1 - 1) * src_stride;
else if (y0 >= ref_area->pad_block.y0)
ref_row += y0 * src_stride;
else
ref_row += ref_area->pad_block.y0 * src_stride;
do {
int right = 0, copy;
int left = x0 < ref_area->pad_block.x0 ? ref_area->pad_block.x0 - x0 : 0;
if (left > b_w) left = b_w;
if (x0 + b_w > ref_area->pad_block.x1)
right = x0 + b_w - ref_area->pad_block.x1;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) aom_memset16(dst, ref_row[0], left);
if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t));
if (right)
aom_memset16(dst + left + copy, ref_row[ref_area->pad_block.x1 - 1],
right);
dst += dst_stride;
++y0;
if (y0 > ref_area->pad_block.y0 && y0 < ref_area->pad_block.y1)
ref_row += src_stride;
} while (--b_h);
}
// check if padding is required during motion compensation
// return 1 means reference pixel is outside of the reference range and padding
// is required return 0 means no padding.
int update_extend_mc_border_params(const struct scale_factors *const sf,
struct buf_2d *const pre_buf, MV32 scaled_mv,
PadBlock *block, int subpel_x_mv,
int subpel_y_mv, int do_warp, int is_intrabc,
int *x_pad, int *y_pad,
const ReferenceArea *ref_area) {
// Get reference width and height.
int frame_width = pre_buf->width;
int frame_height = pre_buf->height;
// Do border extension if there is motion or
// width/height is not a multiple of 8 pixels.
// Extension is needed in optical flow refinement to obtain MV offsets
(void)scaled_mv;
if (!is_intrabc && !do_warp) {
if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
block->x0 -= AOM_INTERP_EXTEND - 1;
block->x1 += AOM_INTERP_EXTEND;
*x_pad = 1;
}
if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
block->y0 -= AOM_INTERP_EXTEND - 1;
block->y1 += AOM_INTERP_EXTEND;
*y_pad = 1;
}
// Skip border extension if block is inside the frame.
if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
block->y1 > frame_height - 1) {
return 1;
}
if (ref_area) {
// Skip border extension if block is in the reference area.
if (block->x0 < ref_area->pad_block.x0 ||
block->x1 > ref_area->pad_block.x1 ||
block->y0 < ref_area->pad_block.y0 ||
block->y1 > ref_area->pad_block.y1) {
return 1;
}
}
}
return 0;
};
// perform padding of the motion compensated block if requires.
// Padding is performed if the motion compensated block is partially out of the
// reference area.
static void refinemv_extend_mc_border(
const struct scale_factors *const sf, struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc, uint16_t *paded_ref_buf,
int paded_ref_buf_stride, uint16_t **pre, int *src_stride,
const ReferenceArea *ref_area) {
int x_pad = 0, y_pad = 0;
if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
subpel_x_mv, subpel_y_mv, do_warp,
is_intrabc, &x_pad, &y_pad, ref_area)) {
// printf(" Out of border \n");
// Get reference block pointer.
const uint16_t *const buf_ptr =
pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
int buf_stride = pre_buf->stride;
const int b_w = block.x1 - block.x0;
const int b_h = block.y1 - block.y0;
refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf,
paded_ref_buf_stride, block.x0, block.y0, b_w,
b_h, ref_area);
*src_stride = paded_ref_buf_stride;
*pre = paded_ref_buf +
y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride +
x_pad * (AOM_INTERP_EXTEND - 1);
}
}
// Derive the sub-pixel related parameters of TIP blocks
// Sub-pel related parameters are stored in the structures pointed by
// "subpel_params" and "block"
void tip_dec_calc_subpel_params(const MV *const src_mv,
InterPredParams *const inter_pred_params,
int mi_x, int mi_y, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride,
PadBlock *block,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
MV32 *scaled_mv, int *subpel_x_mv,
int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
#if CONFIG_REFINEMV
const int bw = inter_pred_params->original_pu_width;
const int bh = inter_pred_params->original_pu_height;
#else
#if CONFIG_OPTFLOW_REFINEMENT
// Use original block size to clamp MV and to extend block boundary
const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width
: inter_pred_params->block_width;
const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height
: inter_pred_params->block_height;
#else
const int bw = inter_pred_params->block_width;
const int bh = inter_pred_params->block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
#endif // CONFIG_REFINEMV
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
const int ssx = inter_pred_params->subsampling_x;
const int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
#else
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
#endif // CONFIG_OPTFLOW_REFINEMENT
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
#if CONFIG_D071_IMP_MSK_BLD
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
#else
// Get reference block bottom right coordinate.
block->x1 =
((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
block->y1 =
((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;
#endif // CONFIG_D071_IMP_MSK_BLD
MV temp_mv;
temp_mv = tip_clamp_mv_to_umv_border_sb(inter_pred_params, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = tip_clamp_mv_to_umv_border_sb(
inter_pred_params, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
pos_x = (pos_x >> SUBPEL_BITS);
pos_y = (pos_y >> SUBPEL_BITS);
block->x0 = pos_x;
block->y0 = pos_y;
// Get reference block bottom right coordinate.
#if CONFIG_D071_IMP_MSK_BLD
block->x1 = pos_x + inter_pred_params->block_width;
block->y1 = pos_y + inter_pred_params->block_height;
#else
block->x1 = pos_x + bw;
block->y1 = pos_y + bh;
#endif // CONFIG_D071_IMP_MSK_BLD
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
#if CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
#endif // CONFIG_D071_IMP_MSK_BLD
}
void tip_common_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params,
int *src_stride) {
(void)ref;
(void)mc_buf;
(void)xd;
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
assert(inter_pred_params->use_ref_padding);
tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
const int paded_ref_buf_stride =
inter_pred_params->ref_area->paded_ref_buf_stride;
refinemv_extend_mc_border(
inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
scaled_mv, block, subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
&inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre,
src_stride, inter_pred_params->ref_area);
}
void dec_calc_subpel_params(const MV *const src_mv,
InterPredParams *const inter_pred_params,
const MACROBLOCKD *const xd, int mi_x, int mi_y,
uint16_t **pre, SubpelParams *subpel_params,
int *src_stride, PadBlock *block,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
MV32 *scaled_mv, int *subpel_x_mv,
int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
#if CONFIG_REFINEMV
const int bw = inter_pred_params->original_pu_width;
const int bh = inter_pred_params->original_pu_height;
#else
#if CONFIG_OPTFLOW_REFINEMENT
// Use original block size to clamp MV and to extend block boundary
const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width
: inter_pred_params->block_width;
const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height
: inter_pred_params->block_height;
#else
const int bw = inter_pred_params->block_width;
const int bh = inter_pred_params->block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
#endif // CONFIG_REFINEMV
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
#else
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
#endif // CONFIG_OPTFLOW_REFINEMENT
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
MV temp_mv;
temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
block->x0 = pos_x >> SUBPEL_BITS;
block->y0 = pos_y >> SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
(pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1;
block->y1 =
(pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1;
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
#if CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
#endif // CONFIG_D071_IMP_MSK_BLD
}
void common_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params,
int *src_stride) {
(void)ref;
(void)mc_buf;
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
assert(inter_pred_params->use_ref_padding);
dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
// printf(" Use ref padding \n");
const int paded_ref_buf_stride =
inter_pred_params->ref_area->paded_ref_buf_stride;
refinemv_extend_mc_border(
inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
scaled_mv, block, subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
&inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre,
src_stride, inter_pred_params->ref_area);
}
static void get_ref_area_info(const MV *const src_mv,
InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
uint16_t **pre, SubpelParams *subpel_params,
int *src_stride, ReferenceArea *ref_area,
int is_tip) {
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
if (is_tip) {
tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
} else {
dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
}
struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf;
int frame_height = pre_buf->height;
int frame_width = pre_buf->width;
block.x0 -= REF_LEFT_BORDER;
block.x1 += REF_RIGHT_BORDER;
block.y0 -= REF_TOP_BORDER;
block.y1 += REF_BOTTOM_BORDER;
ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1);
ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1);
ref_area->pad_block.x1 = CLIP(block.x1, 0, frame_width);
ref_area->pad_block.y1 = CLIP(block.y1, 0, frame_height);
}
void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi, int bw,
int bh, int mi_x, int mi_y,
ReferenceArea ref_area[2],
const int comp_pixel_x,
const int comp_pixel_y) {
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(IMPLIES(!is_tip, has_second_ref(mi)));
assert(!is_intrabc_block(mi, xd->tree_type));
struct macroblockd_plane *const pd = &xd->plane[plane];
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = is_tip
? comp_pixel_x
: ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x);
const int pre_y = is_tip
? comp_pixel_y
: ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y);
for (int ref = 0; ref < 2; ++ref) {
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
const struct buf_2d *const pre_buf =
is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref] : &pd->pre[ref];
// initialize the reference buffer
ref_area[ref].pad_block.x0 = 0;
ref_area[ref].pad_block.y0 = 0;
ref_area[ref].pad_block.x1 = cm->width;
ref_area[ref].pad_block.y1 = cm->height;
ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf,
is_tip ? MULTITAP_SHARP : mi->interp_fltr);
inter_pred_params.original_pu_width = bw;
inter_pred_params.original_pu_height = bh;
const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2);
const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2);
inter_pred_params.dist_to_top_edge = -GET_MV_SUBPEL(pre_y);
inter_pred_params.dist_to_bottom_edge = GET_MV_SUBPEL(height - bh - pre_y);
inter_pred_params.dist_to_left_edge = -GET_MV_SUBPEL(pre_x);
inter_pred_params.dist_to_right_edge = GET_MV_SUBPEL(width - bw - pre_x);
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
assert(!inter_pred_params.use_ref_padding);
MV *src_mv = ref == 0 ? &mi->mv[0].as_mv : &mi->mv[1].as_mv;
get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_OPTFLOW_REFINEMENT
0, /* use_optflow_refinement */
#endif // CONFIG_OPTFLOW_REFINEMENT
&src, &subpel_params, &src_stride, &ref_area[ref],
is_tip);
}
}
int av1_refinemv_build_predictors_and_get_sad(
MACROBLOCKD *xd, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst_ref0,
uint16_t *dst_ref1, MV mv0, MV mv1, InterPredParams *inter_pred_params) {
for (int ref = 0; ref < 2; ref++) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1;
MV *src_mv = ref == 0 ? &mv0 : &mv1;
calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y,
ref,
#if CONFIG_OPTFLOW_REFINEMENT
0, /* use_optflow_refinement */
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE ||
inter_pred_params[ref].comp_mode == UNIFORM_COMP);
av1_make_inter_predictor(src, src_stride, dst_ref, bw,
&inter_pred_params[ref], &subpel_params);
}
return get_refinemv_sad(dst_ref0, dst_ref1, bw, bh, xd->bd);
}
void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func,
int pre_x, int pre_y, uint16_t *dst_ref0,
uint16_t *dst_ref1, MV *best_mv_ref, int pu_width,
int pu_height) {
// initialize basemv as best MV
best_mv_ref[0] = mi->mv[0].as_mv;
best_mv_ref[1] = mi->mv[1].as_mv;
const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] };
assert(mi->refinemv_flag < REFINEMV_NUM_MODES);
assert(cm->seq_params.enable_refinemv);
// Generate MV independent inter_pred_params for both references
InterPredParams inter_pred_params[2];
for (int ref = 0; ref < 2; ref++) {
const int is_compound = 0;
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(is_intrabc == 0);
assert(plane == 0);
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity
: xd->block_ref_scale_factors[ref]);
const struct buf_2d *const pre_buf =
is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref]
: (is_intrabc ? dst_buf : &pd->pre[ref]);
av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, BILINEAR);
#if CONFIG_REFINEMV
inter_pred_params[ref].original_pu_width = pu_width;
inter_pred_params[ref].original_pu_height = pu_height;
#endif // CONFIG_REFINEMV
const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2);
const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2);
inter_pred_params[ref].dist_to_top_edge = -GET_MV_SUBPEL(pre_y);
inter_pred_params[ref].dist_to_bottom_edge =
GET_MV_SUBPEL(height - bh - pre_y);
inter_pred_params[ref].dist_to_left_edge = -GET_MV_SUBPEL(pre_x);
inter_pred_params[ref].dist_to_right_edge =
GET_MV_SUBPEL(width - bw - pre_x);
inter_pred_params[ref].conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
assert(inter_pred_params[ref].mode == TRANSLATION_PRED);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE);
assert(inter_pred_params[ref].conv_params.is_compound == 0);
assert(inter_pred_params[ref].conv_params.do_average == 0);
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
}
#if !SINGLE_STEP_SEARCH
// Search integer-delta values
int search_range = 2;
#endif
int switchable_refinemv_flags =
(mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi);
assert(mi->refinemv_flag);
// If we signal the refinemv_flags we do not select sad0
// Set sad0 a large value so that it does not be selected
int sad0 = switchable_refinemv_flags
? (INT32_MAX >> 1)
: av1_refinemv_build_predictors_and_get_sad(
xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func,
dst_ref0, dst_ref1, center_mvs[0], center_mvs[1],
inter_pred_params);
assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8));
if (mi->ref_frame[0] == TIP_FRAME) {
const int tip_sad_thres = bw * bh;
if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return;
}
if (!switchable_refinemv_flags) {
int shift = 3;
int th = (bw * bh) << 1;
sad0 -= (sad0 >> shift);
assert(sad0 >= 0);
if (sad0 < th) return;
}
int min_sad = sad0;
MV refined_mv0, refined_mv1;
refined_mv0 = center_mvs[0];
refined_mv1 = center_mvs[1];
int et_sad_th = (bw * bh) << 1;
#if !SINGLE_STEP_SEARCH
uint8_t already_searched[5][5];
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
already_searched[i][j] = 0;
}
}
#endif
MV best_offset = { 0, 0 };
#if SINGLE_STEP_SEARCH
const int num_neighbors = 24;
static const MV neighbors[24] = {
{ -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 },
{ 1, -1 }, { 0, -1 }, { 0, -2 }, { -1, -2 }, { -2, -2 }, { -2, -1 },
{ -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, 2 }, { 0, 2 }, { 1, 2 },
{ 2, 2 }, { 2, 1 }, { 2, 0 }, { 2, -1 }, { 2, -2 }, { 1, -2 }
};
#else
const int num_neighbors = 8;
// Apply two-step full pel refinement
static const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } };
const int num_iterations = search_range;
already_searched[0 + search_range][0 + search_range] =
1; // center point is already searched before
for (int ite = 0; ite < num_iterations; ++ite) {
#endif // SINGLE_STEP_SEARCH
int best_idx = -1;
for (int idx = 0; idx < num_neighbors; ++idx) {
MV offset = { best_offset.row + neighbors[idx].row,
best_offset.col + neighbors[idx].col };
#if !SINGLE_STEP_SEARCH
if (already_searched[offset.row + search_range][offset.col + search_range])
continue;
#endif
refined_mv0.row = center_mvs[0].row + 8 * offset.row;
refined_mv0.col = center_mvs[0].col + 8 * offset.col;
refined_mv1.row = center_mvs[1].row - 8 * offset.row;
refined_mv1.col = center_mvs[1].col - 8 * offset.col;
int this_sad = av1_refinemv_build_predictors_and_get_sad(
xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0,
dst_ref1, refined_mv0, refined_mv1, inter_pred_params);
#if !SINGLE_STEP_SEARCH
already_searched[offset.row + search_range][offset.col + search_range] = 1;
#endif
if (this_sad < min_sad) {
min_sad = this_sad;
best_idx = idx;
// if the SAD is less than predefined threshold consider this candidate
// as good enough to skip rest of the search.
if (min_sad < et_sad_th) {
best_mv_ref[0] = refined_mv0;
best_mv_ref[1] = refined_mv1;
return;
}
}
}
// if the center is best, skip rest of the search.
if (best_idx == -1) {
best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row;
best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col;
best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row;
best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col;
return;
}
if (best_idx >= 0) {
best_offset.row += neighbors[best_idx].row;
best_offset.col += neighbors[best_idx].col;
}
#if !SINGLE_STEP_SEARCH
}
#endif
best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row;
best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col;
best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row;
best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col;
assert(min_sad <= sad0);
assert(IMPLIES(switchable_refinemv_flags,
!(best_mv_ref[0].row == center_mvs[0].row &&
best_mv_ref[0].col == center_mvs[0].col &&
best_mv_ref[1].row == center_mvs[1].row &&
best_mv_ref[1].col == center_mvs[1].col)));
}
static void build_inter_predictors_8x8_and_bigger_refinemv(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride,
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
int subblk_start_x, int subblk_start_y,
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
int pu_width, int pu_height, uint16_t *dst0_16_refinemv,
uint16_t *dst1_16_refinemv, int16_t *opt_gx0, int16_t *opt_gx1,
int row_start, int col_start, MV *sb_refined_mv, MV *chroma_refined_mv,
int build_for_refine_mv_only, ReferenceArea ref_area[2]) {
const int is_compound = has_second_ref(mi);
struct macroblockd_plane *const pd = &xd->plane[plane];
assert(!is_intrabc_block(mi, xd->tree_type));
assert(is_compound);
#if CONFIG_BAWP_CHROMA
assert(!mi->bawp_flag[0]);
#else
assert(!mi->bawp_flag);
#endif // CONFIG_BAWP_CHROMA
assert(!build_for_obmc);
assert(!is_masked_compound_type(mi->interinter_comp.type));
assert(!is_tip_ref_frame(mi->ref_frame[0]));
assert(mi->cwp_idx == CWP_EQUAL);
int is_global[2] = { 0, 0 };
for (int ref = 0; ref < 1 + is_compound; ++ref) {
if (!is_tip_ref_frame(mi->ref_frame[ref])) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
assert(!is_global[0] && !is_global[1]);
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
int apply_refinemv = (plane == 0);
MV best_mv_ref[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } };
if (apply_refinemv) {
uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL;
dst_ref0 = &dst0_16_refinemv[0];
dst_ref1 = &dst1_16_refinemv[0];
assert(IMPLIES(!mi->skip_mode,
is_refinemv_allowed(cm, mi, mi->sb_type[PLANE_TYPE_Y])));
assert(IMPLIES(mi->skip_mode, is_refinemv_allowed_skip_mode(cm, mi)));
apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf,
calc_subpel_params_func, pre_x, pre_y, dst_ref0,
dst_ref1, best_mv_ref, pu_width, pu_height);
if (sb_refined_mv) {
// store the DMVR refined MV so that chroma can use it
sb_refined_mv[0] = best_mv_ref[0];
sb_refined_mv[1] = best_mv_ref[1];
}
assert(IMPLIES(plane, !build_for_refine_mv_only));
// if build_for_refine_mv_only is non-zero, we build only to get the
// refinemv values The actual prediction values are not necessary
if (build_for_refine_mv_only) {
return;
}
} else {
best_mv_ref[0] = chroma_refined_mv[0];
best_mv_ref[1] = chroma_refined_mv[1];
}
#if CONFIG_OPTFLOW_REFINEMENT
int_mv mv_refined[2 * N_OF_OFFSETS];
memset(mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv));
const int use_optflow_refinement = opfl_allowed_for_cur_block(cm, mi);
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
assert(IMPLIES(use_optflow_refinement, !build_for_obmc));
// Optical flow refinement with masked comp types or with non-sharp
// interpolation filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP,
cm->features.opfl_refine_type == REFINE_ALL));
// Arrays to hold optical flow offsets.
int vx0[N_OF_OFFSETS] = { 0 };
int vx1[N_OF_OFFSETS] = { 0 };
int vy0[N_OF_OFFSETS] = { 0 };
int vy1[N_OF_OFFSETS] = { 0 };
// Pointers to gradient and dst buffers
int16_t *gx0, *gy0, *gx1, *gy1;
uint16_t *dst0 = NULL, *dst1 = NULL;
int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
1
#endif // CONFIG_OPTFLOW_ON_TIP
);
const int n_blocks = (bw / n) * (bh / n);
#if CONFIG_AFFINE_REFINEMENT
int do_affine = 0;
WarpedMotionParams wms[2];
int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START;
wms[0] = default_warp_params;
wms[1] = default_warp_params;
if (use_optflow_refinement && plane) {
wms[0] = mi->wm_params[0];
wms[1] = mi->wm_params[1];
}
#endif // CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement && plane == 0) {
// Allocate gradient and dst buffers
gx0 = &opt_gx0[0];
gx1 = &opt_gx1[0];
gy0 = gx0 + (REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT);
gy1 = gx1 + (REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT);
// Initialize refined mv
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv = mv0;
mv_refined[mvi * 2 + 1].as_mv = mv1;
}
// Refine MV using optical flow. The final output MV will be in 1/16
// precision.
dst0 = &dst0_16_refinemv[0];
dst1 = &dst1_16_refinemv[0];
av1_get_optflow_based_mv_highbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x,
mi_y, mc_buf, calc_subpel_params_func, gx0,
gy0, gx1, gy1,
#if CONFIG_AFFINE_REFINEMENT
do_affine ? wms : NULL, &use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
vx0, vy0, vx1, vy1, dst0, dst1,
#if CONFIG_OPTFLOW_ON_TIP
1, 1,
#endif // CONFIG_OPTFLOW_ON_TIP
best_mv_ref, pu_width, pu_height);
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
const int mvi_stride = pu_width / n;
const int subblk_rows = bh / n;
const int subblk_cols = bw / n;
const int cur_subblk_idx =
(subblk_start_y / n) * mvi_stride + (subblk_start_x / n);
for (int i = 0; i < subblk_rows; i++) {
for (int j = 0; j < subblk_cols; j++) {
int mvi_idx = cur_subblk_idx + i * mvi_stride + j;
int mv_delta_idx = i * subblk_cols + j;
xd->mv_delta[mvi_idx].mv[0].as_mv.row = vy0[mv_delta_idx];
xd->mv_delta[mvi_idx].mv[0].as_mv.col = vx0[mv_delta_idx];
xd->mv_delta[mvi_idx].mv[1].as_mv.row = vy1[mv_delta_idx];
xd->mv_delta[mvi_idx].mv[1].as_mv.col = vx1[mv_delta_idx];
}
}
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
#if CONFIG_AFFINE_REFINEMENT
mi->wm_params[0] = wms[0];
mi->wm_params[1] = wms[1];
#endif // CONFIG_AFFINE_REFINEMENT
}
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_D071_IMP_MSK_BLD
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp = !build_for_obmc && use_border_aware_compound(cm, mi) &&
mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf = xd->block_ref_scale_factors[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
const MV mv = best_mv_ref[ref];
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
#if CONFIG_REFINEMV
inter_pred_params.use_ref_padding = 1;
inter_pred_params.ref_area = &ref_area[ref];
#endif // CONFIG_REFINEMV
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
if (is_compound) av1_init_comp_mode(&inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point to the first ref
#endif // CONFIG_D071_IMP_MSK_BLD
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
if (!build_for_obmc) {
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
assert(inter_pred_params.mode != WARP_PRED);
}
#if CONFIG_D071_IMP_MSK_BLD
if (is_compound) {
inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
#endif // CONFIG_D071_IMP_MSK_BLD
#if CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement && (do_affine || plane == 0)) {
#else
if (use_optflow_refinement && plane == 0) {
#endif // CONFIG_AFFINE_REFINEMENT
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n);
av1_opfl_rebuild_inter_predictor(dst, dst_stride, plane, mv_refined,
&inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
mi->comp_refine_type,
do_affine ? wms : NULL, &mi->mv[ref],
use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
1
#endif // CONFIG_OPTFLOW_ON_TIP
);
continue;
}
#endif // CONFIG_OPTFLOW_REFINEMENT
av1_build_one_inter_predictor(dst, dst_stride, &mv, &inter_pred_params, xd,
mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
#if CONFIG_AFFINE_REFINEMENT
const int apply_pef_opfl =
(mi->comp_refine_type == COMP_REFINE_SUBBLK2P && plane == 0) ||
(damr_refine_subblock(plane, bw, bh, mi->comp_refine_type, n) &&
do_affine);
#endif // CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement && plane == 0) {
enhance_prediction(cm, xd, plane, dst, dst_stride, bw, bh
#if CONFIG_OPTFLOW_REFINEMENT
,
mv_refined,
use_optflow_refinement
#if CONFIG_AFFINE_REFINEMENT
&& apply_pef_opfl
#endif // CONFIG_AFFINE_REFINEMENT
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
,
0, NULL
#endif // CONFIG_REFINEMV
#if CONFIG_EXT_WARP_FILTER
,
false
#endif // CONFIG_EXT_WARP_FILTER
);
}
}
#endif // CONFIG_REFINEMV
static void build_inter_predictors_8x8_and_bigger(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
#if CONFIG_BAWP
const BUFFER_SET *dst_orig,
#endif // CONFIG_BAWP
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func
#if CONFIG_REFINEMV
,
int build_for_refine_mv_only
#endif // CONFIG_REFINEMV
) {
const int is_compound = has_second_ref(mi);
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
assert(IMPLIES(is_intrabc, !is_compound));
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint16_t *const dst = dst_buf->buf;
#if CONFIG_REFINEMV
assert(IMPLIES(mi->refinemv_flag, !is_intrabc));
assert(IMPLIES(mi->refinemv_flag && !build_for_obmc, is_compound));
assert(IMPLIES(
!build_for_obmc && mi->refinemv_flag && switchable_refinemv_flag(cm, mi),
mi->interinter_comp.type == COMPOUND_AVERAGE));
#if CONFIG_BAWP_CHROMA
assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0));
#else
assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag == 0));
#endif // CONFIG_BAWP_CHROMA
assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP));
int apply_sub_block_refinemv =
mi->refinemv_flag && (!build_for_obmc) &&
#if CONFIG_AFFINE_REFINEMENT
mi->comp_refine_type < COMP_AFFINE_REFINE_START &&
#endif // CONFIG_AFFINE_REFINEMENT
!is_tip_ref_frame(mi->ref_frame[0]);
#if CONFIG_AFFINE_REFINEMENT
if (apply_sub_block_refinemv && default_refinemv_modes(cm, mi))
#else
if (apply_sub_block_refinemv && default_refinemv_modes(mi))
#endif // CONFIG_AFFINE_REFINEMENT
apply_sub_block_refinemv &= (mi->comp_group_idx == 0 &&
mi->interinter_comp.type == COMPOUND_AVERAGE);
if (apply_sub_block_refinemv) {
assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL));
int refinemv_sb_size_width =
AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw);
int refinemv_sb_size_height =
AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh);
uint16_t
dst0_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT];
uint16_t
dst1_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT];
DECLARE_ALIGNED(
32, int16_t,
opt_gx0[2 * REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]);
DECLARE_ALIGNED(
32, int16_t,
opt_gx1[2 * REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]);
ReferenceArea ref_area[2];
av1_get_reference_area_with_padding(cm, xd, plane, mi, bw, bh, mi_x, mi_y,
ref_area, 0, 0);
int dst_stride = dst_buf->stride;
CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst;
assert(bw % refinemv_sb_size_width == 0);
assert(bh % refinemv_sb_size_height == 0);
for (int h = 0; h < bh; h += refinemv_sb_size_height) {
for (int w = 0; w < bw; w += refinemv_sb_size_width) {
dst_buf->buf = dst + h * dst_stride + w;
xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
MV luma_refined_mv[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row,
mi->mv[1].as_mv.col } };
MV chroma_refined_mv[2] = {
{ mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row, mi->mv[1].as_mv.col }
};
if (plane != 0) {
int luma_h = (h << pd->subsampling_y);
int luma_w = (w << pd->subsampling_x);
REFINEMV_SUBMB_INFO *refinemv_subinfo =
&xd->refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(luma_w >> MI_SIZE_LOG2)];
chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv;
chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv;
}
// mi_x, and mi_y are the top-left position of the luma samples of the
// sub-block
build_inter_predictors_8x8_and_bigger_refinemv(
cm, xd, plane, mi, build_for_obmc, refinemv_sb_size_width,
refinemv_sb_size_height, mi_x + w * (1 << pd->subsampling_x),
mi_y + h * (1 << pd->subsampling_y), mc_buf,
calc_subpel_params_func, dst_buf->buf, dst_stride,
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
w, h,
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
bw, bh, dst0_16_refinemv, dst1_16_refinemv, opt_gx0, opt_gx1,
row_start, col_start, plane == 0 ? luma_refined_mv : NULL,
chroma_refined_mv, build_for_refine_mv_only, ref_area);
if (plane == 0) {
REFINEMV_SUBMB_INFO *refinemv_subinfo =
&xd->refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(w >> MI_SIZE_LOG2)];
fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width,
refinemv_sb_size_height, luma_refined_mv[0],
luma_refined_mv[1]);
}
}
}
enhance_prediction(cm, xd, plane, dst, dst_stride, bw, bh
#if CONFIG_OPTFLOW_REFINEMENT
,
NULL, 0
#endif // CONFIG_OPTFLOW_REFINEMENT
,
apply_sub_block_refinemv, &xd->refinemv_subinfo[0]
#if CONFIG_EXT_WARP_FILTER
,
false
#endif // CONFIG_EXT_WARP_FILTER
);
dst_buf->buf = dst;
xd->tmp_conv_dst = tmp_conv_dst;
return;
}
#endif // CONFIG_REFINEMV
int is_global[2] = { 0, 0 };
for (int ref = 0; ref < 1 + is_compound; ++ref) {
if (!is_tip_ref_frame(mi->ref_frame[ref])) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
int row_start = 0;
int col_start = 0;
if (!build_for_obmc) {
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
}
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
#if CONFIG_REFINEMV
MV best_mv_ref[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } };
#endif // CONFIG_REFINEMV
#if CONFIG_OPTFLOW_REFINEMENT
int_mv mv_refined[2 * N_OF_OFFSETS];
memset(mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv));
const int use_optflow_refinement = opfl_allowed_for_cur_block(cm, mi);
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
assert(IMPLIES(use_optflow_refinement, !build_for_obmc));
// Optical flow refinement with masked comp types or with non-sharp
// interpolation filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP,
cm->features.opfl_refine_type == REFINE_ALL));
#if CONFIG_AFFINE_REFINEMENT
int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START;
WarpedMotionParams wms[2];
wms[0] = default_warp_params;
wms[1] = default_warp_params;
#if AFFINE_CHROMA_REFINE_METHOD > 0
if (use_optflow_refinement && plane) {
wms[0] = mi->wm_params[0];
wms[1] = mi->wm_params[1];
}
#endif
#endif // CONFIG_AFFINE_REFINEMENT
// Arrays to hold optical flow offsets.
int vx0[N_OF_OFFSETS] = { 0 };
int vx1[N_OF_OFFSETS] = { 0 };
int vy0[N_OF_OFFSETS] = { 0 };
int vy1[N_OF_OFFSETS] = { 0 };
// Pointers to gradient and dst buffers
if (use_optflow_refinement && plane == 0) {
#if CONFIG_AFFINE_REFINEMENT
assert(mi->comp_refine_type > COMP_REFINE_NONE);
assert(IMPLIES(mi->comp_refine_type >= COMP_AFFINE_REFINE_START,
is_affine_refinement_allowed(cm, xd, mi->mode)));
#endif // CONFIG_AFFINE_REFINEMENT
// Allocate gradient and dst buffers
const int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
1
#endif // CONFIG_OPTFLOW_ON_TIP
);
const int n_blocks = (bw / n) * (bh / n);
int16_t *gx0, *gy0, *gx1, *gy1;
DECLARE_ALIGNED(32, int16_t, g0_buf[2 * MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, g1_buf[2 * MAX_SB_SQUARE]);
gx0 = g0_buf;
gx1 = g1_buf;
gy0 = g0_buf + MAX_SB_SQUARE;
gy1 = g1_buf + MAX_SB_SQUARE;
// Initialize refined mv
#if CONFIG_REFINEMV
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
#else
const MV mv0 = mi->mv[0].as_mv;
const MV mv1 = mi->mv[1].as_mv;
#endif // CONFIG_REFINEMV
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv = mv0;
mv_refined[mvi * 2 + 1].as_mv = mv1;
}
// Refine MV using optical flow. The final output MV will be in 1/16
// precision.
uint16_t dst0[MAX_SB_SQUARE], dst1[MAX_SB_SQUARE];
av1_get_optflow_based_mv_highbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x,
mi_y, mc_buf, calc_subpel_params_func, gx0,
gy0, gx1, gy1,
#if CONFIG_AFFINE_REFINEMENT
wms, &use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
vx0, vy0, vx1, vy1, dst0, dst1
#if CONFIG_OPTFLOW_ON_TIP
,
1, 1
#endif // CONFIG_OPTFLOW_ON_TIP
#if CONFIG_REFINEMV
,
best_mv_ref, bw, bh
#endif // CONFIG_REFINEMV
);
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) {
xd->mv_delta[mvi].mv[0].as_mv.row = vy0[mvi];
xd->mv_delta[mvi].mv[0].as_mv.col = vx0[mvi];
xd->mv_delta[mvi].mv[1].as_mv.row = vy1[mvi];
xd->mv_delta[mvi].mv[1].as_mv.col = vx1[mvi];
}
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
#if CONFIG_AFFINE_REFINEMENT
// parameters derived are saved here and may be reused by chroma
mi->wm_params[0] = wms[0];
mi->wm_params[1] = wms[1];
#endif // CONFIG_AFFINE_REFINEMENT
}
int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
1
#endif // CONFIG_OPTFLOW_ON_TIP
);
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_D071_IMP_MSK_BLD
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp = !build_for_obmc && use_border_aware_compound(cm, mi) &&
mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
#if CONFIG_EXT_WARP_FILTER
// Track whether we used the extended warp filter for either ref frame,
// so that we can apply PEF
bool ext_warp_used = false;
#endif // CONFIG_EXT_WARP_FILTER
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
const MV mv = mi->mv[ref].as_mv;
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
if (is_compound) av1_init_comp_mode(&inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point to the first ref
#endif // CONFIG_D071_IMP_MSK_BLD
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
if (!build_for_obmc) {
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
#if CONFIG_EXT_WARP_FILTER
if (inter_pred_params.mode == WARP_PRED &&
!inter_pred_params.warp_params.use_affine_filter) {
ext_warp_used = true;
}
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement &&
mi->comp_refine_type >= COMP_AFFINE_REFINE_START && n == 4)
ext_warp_used = true;
#endif // CONFIG_AFFINE_REFINEMENT
#endif // CONFIG_EXT_WARP_FILTER
}
#if CONFIG_D071_IMP_MSK_BLD
if (is_compound) {
inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
#endif // CONFIG_D071_IMP_MSK_BLD
if (is_masked_compound_type(mi->interinter_comp.type)) {
#if !CONFIG_D071_IMP_MSK_BLD
inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
#endif // !CONFIG_D071_IMP_MSK_BLD
if (ref == 1) {
inter_pred_params.conv_params.do_average = 0;
inter_pred_params.comp_mode = MASK_COMP;
}
// Assign physical buffer.
inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
}
if (ref == 1 && inter_pred_params.conv_params.do_average == 1) {
if (get_cwp_idx(mi) != CWP_EQUAL) {
int8_t weight = get_cwp_idx(mi);
assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX);
inter_pred_params.conv_params.fwd_offset = weight;
inter_pred_params.conv_params.bck_offset =
(1 << CWP_WEIGHT_BITS) - weight;
}
}
#if CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement &&
#if AFFINE_CHROMA_REFINE_METHOD > 0
(mi->comp_refine_type >= COMP_AFFINE_REFINE_START || plane == 0)
#else
mi->comp_refine_type >= COMP_AFFINE_REFINE_START && plane == 0
#endif
) {
#else
if (use_optflow_refinement && plane == 0) {
#endif // CONFIG_AFFINE_REFINEMENT
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n);
av1_opfl_rebuild_inter_predictor(dst, dst_buf->stride, plane, mv_refined,
&inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
mi->comp_refine_type, wms, &mi->mv[ref],
use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
1
#endif // CONFIG_OPTFLOW_ON_TIP
);
continue;
}
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_BAWP
#if CONFIG_BAWP_CHROMA
if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1]) &&
!build_for_obmc) {
#else
if (mi->bawp_flag > 0 && plane == 0 && !build_for_obmc) {
#endif // CONFIG_BAWP_CHROMA
av1_build_one_bawp_inter_predictor(
dst, dst_buf->stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw,
bh, mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func);
continue;
}
#endif // CONFIG_BAWP
av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
#if CONFIG_AFFINE_REFINEMENT
const int apply_pef_opfl =
(mi->comp_refine_type == COMP_REFINE_SUBBLK2P && plane == 0) ||
damr_refine_subblock(plane, bw, bh, mi->comp_refine_type, n);
#endif // CONFIG_AFFINE_REFINEMENT
enhance_prediction(cm, xd, plane, dst, dst_buf->stride, bw, bh
#if CONFIG_OPTFLOW_REFINEMENT
,
mv_refined,
use_optflow_refinement
#if CONFIG_AFFINE_REFINEMENT
&& apply_pef_opfl
#endif // CONFIG_AFFINE_REFINEMENT
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
,
0, NULL
#endif // CONFIG_REFINEMV
#if CONFIG_EXT_WARP_FILTER
,
ext_warp_used
#endif // CONFIG_EXT_WARP_FILTER
);
}
void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi,
#if CONFIG_BAWP
const BUFFER_SET *dst_orig,
#endif
#if CONFIG_REFINEMV
int build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
int build_for_obmc, int bw, int bh, int mi_x,
int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
#if CONFIG_EXTENDED_WARP_PREDICTION
// just for debugging purpose
// Can be removed later on
if (mi->mode == WARPMV) {
#if CONFIG_SEP_COMP_DRL
assert(mi->ref_mv_idx[0] == 0);
assert(mi->ref_mv_idx[1] == 0);
#else
assert(mi->ref_mv_idx == 0);
#endif // CONFIG_SEP_COMP_DRL
assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARPED_CAUSAL);
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type),
build_for_obmc)) {
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(bw < 8 || bh < 8);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf,
calc_subpel_params_func);
} else {
build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi,
#if CONFIG_BAWP
dst_orig,
#endif
build_for_obmc, bw, bh, mi_x, mi_y,
mc_buf, calc_subpel_params_func
#if CONFIG_REFINEMV
,
build_for_refine_mv_only
#endif // CONFIG_REFINEMV
);
}
}
void av1_setup_dst_planes(struct macroblockd_plane *planes,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end,
const CHROMA_REF_INFO *chroma_ref_info) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &planes[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf, const int num_planes,
const CHROMA_REF_INFO *chroma_ref_info) {
if (src != NULL) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, sf, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
}
}
}
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 };
DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 64, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
64, 64, 64, 64, 64, 64, 64, 64 };
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
case 64: return obmc_mask_64;
default: assert(0); return NULL;
}
}
static INLINE void increment_uint8_t_ptr(MACROBLOCKD *xd, int rel_mi_row,
int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *mi,
void *fun_ctxt, const int num_planes) {
(void)xd;
(void)rel_mi_row;
(void)rel_mi_col;
(void)op_mi_size;
(void)dir;
(void)mi;
++*(uint8_t *)fun_ctxt;
(void)num_planes;
}
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->overlappable_neighbors[0] = 0;
mbmi->overlappable_neighbors[1] = 0;
if (!is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y],
xd->mi_row, xd->mi_col))
return;
foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[0], true);
if (mbmi->overlappable_neighbors[0]) return;
foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
// block-size of current plane is smaller than 8x8, always only blend with the
// left neighbor(s) (skip blending with the above side).
#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd, int dir) {
const BLOCK_SIZE bsize_plane =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return 1; break;
#else
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return dir == 0; break;
#endif
default: return 0;
}
}
void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
return;
}
struct obmc_inter_pred_ctxt {
uint16_t **adjacent;
int *adjacent_stride;
};
static INLINE void build_obmc_inter_pred_above(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) {
(void)above_mi;
(void)rel_mi_row;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
const int dst_stride = pd->dst.stride;
uint16_t *const dst = &pd->dst.buf[plane_col];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint16_t *const tmp = &ctxt->adjacent[plane][plane_col];
const uint8_t *const mask = av1_get_obmc_mask(bh);
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
}
}
static INLINE void build_obmc_inter_pred_left(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) {
(void)left_mi;
(void)rel_mi_col;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y;
const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
const int dst_stride = pd->dst.stride;
uint16_t *const dst = &pd->dst.buf[plane_row * dst_stride];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint16_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
const uint8_t *const mask = av1_get_obmc_mask(bw);
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
}
}
// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint16_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
// handle above row
struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
foreach_overlappable_nb_above(
cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_obmc_inter_pred_above, &ctxt_above, false);
// handle left column
struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_obmc_inter_pred_left, &ctxt_left);
}
void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint16_t **dst_buf1,
uint16_t **dst_buf2) {
dst_buf1[0] = xd->tmp_obmc_bufs[0];
dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
dst_buf2[0] = xd->tmp_obmc_bufs[1];
dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}
void av1_setup_build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
const int num_planes) {
const int above_mi_col = xd->mi_col + rel_mi_col;
av1_modify_neighbor_predictor_for_obmc(above_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
NULL, pd->subsampling_x, pd->subsampling_y, NULL);
}
const int num_refs = 1 + has_second_ref(above_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const sf =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = sf;
if ((!av1_is_valid_scale(sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf,
num_planes, NULL);
}
xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
xd->mb_to_right_edge =
ctxt->mb_to_far_edge +
(xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8;
}
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi,
struct build_prediction_ctxt *ctxt,
const int num_planes) {
const int left_mi_row = xd->mi_row + rel_mi_row;
av1_modify_neighbor_predictor_for_obmc(left_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
NULL, pd->subsampling_x, pd->subsampling_y, NULL);
}
const int num_refs = 1 + has_second_ref(left_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const ref_scale_factors =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = ref_scale_factors;
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col,
ref_scale_factors, num_planes, NULL);
}
xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row));
xd->mb_to_bottom_edge =
ctxt->mb_to_far_edge +
GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE);
}
static AOM_INLINE void combine_interintra_highbd(
INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint16_t *comppred8, int compstride, const uint16_t *interpred8,
int interstride, const uint16_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (av1_is_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * mi_size_high[bsize] == bh;
const int subw = 2 * mi_size_wide[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bw, bh, subw, subh, bd);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bw, bh, 0, 0,
bd);
}
#if CONFIG_EXT_RECUR_PARTITIONS
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd, int plane,
const BUFFER_SET *ctx,
uint16_t *dst, int dst_stride) {
#else
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
const BUFFER_SET *ctx,
uint16_t *dst, int dst_stride) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
#if CONFIG_EXT_RECUR_PARTITIONS
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
#else
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
#endif // CONFIG_EXT_RECUR_PARTITIONS
PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0);
av1_predict_intra_block(cm, xd, pd->width, pd->height,
max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
FILTER_INTRA_MODES, ctx->plane[plane],
ctx->stride[plane], dst, dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint16_t *inter_pred, int inter_stride,
const uint16_t *intra_pred, int intra_stride) {
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize == get_plane_block_size(bsize, ssx, ssy));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
combine_interintra_highbd(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride, xd->bd);
}
// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t *pred, int stride,
const BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor,
MAX_SB_SIZE);
#else
av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
intrapredictor, MAX_SB_SIZE);
#endif // CONFIG_EXT_RECUR_PARTITIONS
av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
MAX_SB_SIZE);
}
int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) {
(void)cm;
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_mpp_flag =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? (above_mi->most_probable_pb_mv_precision ==
above_mi->pb_mv_precision)
: 0;
const int left_mpp_flag =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART))
? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision)
: 0;
return (above_mpp_flag + left_mpp_flag);
}
#if CONFIG_REFINEMV
// Derive the context index for refinemv flag
int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd,
BLOCK_SIZE bsize) {
(void)cm;
(void)bsize;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (mbmi->skip_mode) return 0;
return (1 + (mbmi->mode - NEAR_NEARMV));
}
#endif // CONFIG_REFINEMV
int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_down =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? above_mi->max_mv_precision - above_mi->pb_mv_precision
: 0;
const int left_down =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART)) // && !left_mi->skip_mode)
? left_mi->max_mv_precision - left_mi->pb_mv_precision
: 0;
assert(above_down >= 0);
assert(left_down >= 0);
return (above_down + left_down > 0);
}
int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) {
return pb_mv_precision;
}
void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision = precision;
}
#if BUGFIX_AMVD_AMVR
// set the mv precision for amvd applied mode
void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision =
precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL;
}
#endif // BUGFIX_AMVD_AMVR
int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx;
}
}
assert(0);
return coded_precision_idx;
}
MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi,
int precision_idx_coded_value) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (coded_precision_idx == precision_idx_coded_value)
return pb_mv_precision;
}
}
assert(0);
return pb_mv_precision;
}
void set_most_probable_mv_precision(const AV1_COMMON *const cm,
MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
mbmi->most_probable_pb_mv_precision =
precision_def->precision[precision_def->num_precisions - 1];
#if CONFIG_DEBUG
int mpp_found = 0;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) {
mpp_found = 1;
break;
}
}
(void)mpp_found;
assert(mpp_found);
#endif
}
void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize,
#if CONFIG_SEP_COMP_DRL
int *ref_mv_idx) {
#else
uint8_t ref_mv_idx) {
#endif // CONFIG_SEP_COMP_DRL
(void)bsize;
(void)cm;
(void)xd;
(void)ref_mv_idx;
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
}
void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
}
void set_default_max_mv_precision(MB_MODE_INFO *mbmi,
MvSubpelPrecision precision) {
mbmi->max_mv_precision = precision;
}
MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm,
const SB_INFO *sbi,
const MB_MODE_INFO *mbmi) {
(void)mbmi;
(void)sbi;
return cm->features.fr_mv_precision;
}
int is_pb_mv_precision_active(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0;
return cm->seq_params.enable_flex_mvres &&
(mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) &&
cm->features.use_pb_mv_precision &&
have_newmv_in_inter_mode(mbmi->mode);
}
#if CONFIG_REFINEMV
// Copy mv0 and mv1 to the sub-blocks
// submi is the top-left corner of the sub-block need to fill
// bw is the block width in the unit of pixel
// bh is the block height in unit of pixel
void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw,
int bh, MV mv0, MV mv1) {
const int stride = MAX_MIB_SIZE;
for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) {
for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) {
refinemv_subinfo[x].refinemv[0].as_mv = mv0;
refinemv_subinfo[x].refinemv[1].as_mv = mv1;
}
refinemv_subinfo += stride;
}
}
#endif // CONFIG_REFINEMV