| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "av1/common/enums.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| // This function will determine whether or not to create a warped |
| // prediction. |
| int av1_allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, |
| #if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| int ref, |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| int build_for_obmc, const struct scale_factors *const sf, |
| WarpedMotionParams *final_warp_params) { |
| // Note: As per the spec, we must test the fixed point scales here, which are |
| // at a higher precision (1 << 14) than the xs and ys in subpel_params (that |
| // have 1 << 10 precision). |
| if (av1_is_scaled(sf)) return 0; |
| |
| if (final_warp_params != NULL) *final_warp_params = default_warp_params; |
| |
| if (build_for_obmc) return 0; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params[ref], |
| sizeof(*final_warp_params)); |
| return 1; |
| #else |
| if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params)); |
| return 1; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| } else if (warp_types->global_warp_allowed && !gm_params->invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, |
| int block_height, int pix_row, int pix_col, |
| int subsampling_x, int subsampling_y, int bit_depth, |
| int is_intrabc, const struct scale_factors *sf, |
| const struct buf_2d *ref_buf, |
| InterpFilter interp_filter) { |
| inter_pred_params->block_width = block_width; |
| inter_pred_params->block_height = block_height; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->orig_block_width = block_width; |
| inter_pred_params->orig_block_height = block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| #if CONFIG_REFINEMV |
| inter_pred_params->original_pu_width = block_width; |
| inter_pred_params->original_pu_height = block_height; |
| #endif // CONFIG_REFINEMV |
| |
| inter_pred_params->pix_row = pix_row; |
| inter_pred_params->pix_col = pix_col; |
| inter_pred_params->subsampling_x = subsampling_x; |
| inter_pred_params->subsampling_y = subsampling_y; |
| inter_pred_params->bit_depth = bit_depth; |
| inter_pred_params->is_intrabc = is_intrabc; |
| inter_pred_params->scale_factors = sf; |
| inter_pred_params->ref_frame_buf = *ref_buf; |
| inter_pred_params->mode = TRANSLATION_PRED; |
| inter_pred_params->comp_mode = UNIFORM_SINGLE; |
| |
| #if CONFIG_REFINEMV |
| inter_pred_params->use_ref_padding = 0; |
| inter_pred_params->ref_area = NULL; |
| #endif // CONFIG_REFINEMV |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| inter_pred_params->border_data.enable_bacp = 0; |
| inter_pred_params->border_data.bacp_block_data = NULL; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| if (is_intrabc) { |
| inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; |
| inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; |
| } else { |
| inter_pred_params->interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_width); |
| inter_pred_params->interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_height); |
| } |
| } |
| |
| void av1_init_comp_mode(InterPredParams *inter_pred_params) { |
| inter_pred_params->comp_mode = UNIFORM_COMP; |
| } |
| |
| void av1_init_warp_params(InterPredParams *inter_pred_params, |
| const WarpTypesAllowed *warp_types, int ref, |
| const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { |
| if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8) |
| return; |
| |
| if (is_tip_ref_frame(mi->ref_frame[0])) return; |
| |
| #if CONFIG_REFINEMV |
| // We do not do refineMV for warp blocks |
| // We may need to return from here. |
| if (mi->refinemv_flag) return; |
| #endif // CONFIG_REFINEMV |
| |
| if (xd->cur_frame_force_integer_mv) return; |
| |
| if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], |
| #if CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| ref, |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION || CONFIG_AFFINE_REFINEMENT |
| 0, inter_pred_params->scale_factors, |
| &inter_pred_params->warp_params)) |
| inter_pred_params->mode = WARP_PRED; |
| } |
| |
| void av1_make_inter_predictor(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| assert(IMPLIES(inter_pred_params->conv_params.is_compound, |
| inter_pred_params->conv_params.dst != NULL)); |
| |
| // TODO(jingning): av1_warp_plane() can be further cleaned up. |
| if (inter_pred_params->mode == WARP_PRED) { |
| av1_warp_plane( |
| &inter_pred_params->warp_params, inter_pred_params->bit_depth, |
| inter_pred_params->ref_frame_buf.buf0, |
| inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, |
| inter_pred_params->ref_frame_buf.stride, dst, |
| inter_pred_params->pix_col, inter_pred_params->pix_row, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| dst_stride, inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y, &inter_pred_params->conv_params); |
| } else if (inter_pred_params->mode == TRANSLATION_PRED) { |
| highbd_inter_predictor( |
| src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params, inter_pred_params->bit_depth); |
| } |
| } |
| |
| #if !CONFIG_WEDGE_MOD_EXT |
| static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, |
| 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, |
| 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, |
| 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| #else |
| /* clang-format off */ |
| #if WEDGE_BLD_SIG |
| // rounded cosine and sine look-up tables given by round(32*cos(i)) |
| static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 32, 31, 29, 23, 14, |
| // 8, 10, 12, 14, 15, |
| 0,-14,-23,-29,-31, |
| // 16, 17, 18, 20, 22, |
| -32,-31,-29,-23,-14, |
| // 24, 26, 28, 30, 31 |
| 0, 14, 23, 29, 31 |
| }; |
| static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 0, -8,-14,-23,-29, |
| // 8, 10, 12, 14, 15, |
| -32,-29,-23,-14, -8, |
| // 16, 17, 18, 20, 22, |
| 0, 8, 14, 23, 29, |
| // 24, 26, 28, 30, 31 |
| 32, 29, 23, 14, 8 |
| }; |
| |
| // rounded sigmoid function look-up talbe given by round(1/(1+exp(-x))) |
| static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={ |
| 32, 32, 33, 33, 34, 34, 35, 35, |
| 36, 36, 37, 37, 38, 38, 39, 39, |
| 40, 40, 41, 41, 42, 42, 43, 43, |
| 43, 44, 44, 45, 45, 46, 46, 46, |
| 47, 47, 48, 48, 48, 49, 49, 49, |
| 50, 50, 50, 51, 51, 51, 52, 52, |
| 52, 53, 53, 53, 53, 54, 54, 54, |
| 55, 55, 55, 55, 55, 56, 56, 56, |
| 56, 57, 57, 57, 57, 57, 58, 58, |
| 58, 58, 58, 58, 59, 59, 59, 59, |
| 59, 59, 59, 60, 60, 60, 60, 60, |
| 60, 60, 60, 60, 61, 61, 61, 61, |
| 61, 61, 61, 61, 61, 61, 61, 62, |
| 62, 62, 62, 62, 62, 62, 62, 62, |
| 62, 62, 62, 62, 62, 62, 62, 62, |
| 63, 63, 63, 63, 63, 63, 63, 64 |
| }; |
| |
| static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={ |
| 32, 32, 31, 31, 30, 30, 29, 29, |
| 28, 28, 27, 27, 26, 26, 25, 25, |
| 24, 24, 23, 23, 22, 22, 21, 21, |
| 21, 20, 20, 19, 19, 18, 18, 18, |
| 17, 17, 16, 16, 16, 15, 15, 15, |
| 14, 14, 14, 13, 13, 13, 12, 12, |
| 12, 11, 11, 11, 11, 10, 10, 10, |
| 9, 9, 9, 9, 9, 8, 8, 8, |
| 8, 7, 7, 7, 7, 7, 6, 6, |
| 6, 6, 6, 6, 5, 5, 5, 5, |
| 5, 5, 5, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, |
| 1, 1, 1, 1, 1, 1, 1, 0 |
| }; |
| #else |
| static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 8, 8, 8, 4, 4, |
| // 8, 10, 12, 14, 15, |
| 0, -4, -4, -8, -8, |
| // 16, 17, 18, 20, 22, |
| -8, -8, -8, -4, -4, |
| // 24, 26, 28, 30, 31 |
| 0, 4, 4, 8, 8 |
| }; |
| static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 0, -2, -4, -4, -8, |
| // 8, 10, 12, 14, 15, |
| -8, -8, -4, -4, -2, |
| // 16, 17, 18, 20, 22, |
| 0, 2, 4, 4, 8, |
| // 24, 26, 28, 30, 31 |
| 8, 8, 4, 4, 2 |
| }; |
| #endif |
| /* clang-format on */ |
| #endif // !CONFIG_WEDGE_MOD_EXT |
| |
| #if !CONFIG_WEDGE_MOD_EXT |
| static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift, |
| int width) { |
| if (shift >= 0) { |
| memcpy(dst + shift, src, width - shift); |
| memset(dst, src[0], shift); |
| } else { |
| shift = -shift; |
| memcpy(dst, src + shift, width - shift); |
| memset(dst + width - shift, src[width - 1], shift); |
| } |
| } |
| |
| /* clang-format off */ |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| #if CONFIG_BLOCK_256 |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| #endif // CONFIG_BLOCK_256 |
| { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| #if CONFIG_FLEX_PARTITION |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| /* clang-format on */ |
| #endif // !CONFIG_WEDGE_MOD_EXT |
| |
| // [negative][direction] |
| #if CONFIG_WEDGE_MOD_EXT |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #else |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| #if CONFIG_WEDGE_MOD_EXT |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| DECLARE_ALIGNED(16, static uint8_t, |
| smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] |
| [MAX_WEDGE_SQUARE]); |
| |
| DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]); |
| |
| static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = { |
| { WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 }, |
| { WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 }, |
| { WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 }, |
| { WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 }, |
| { WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 }, |
| { WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 }, |
| { WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 }, |
| { WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 }, |
| { WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 }, |
| { WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 }, |
| { WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 }, |
| { WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 }, |
| { WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 }, |
| { WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 }, |
| { WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 }, |
| { WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 }, |
| { WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 }, |
| { WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 }, |
| { WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 }, |
| { WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 }, |
| { WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 }, |
| { WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 }, |
| { WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 }, |
| }; |
| #else |
| static const wedge_code_type wedge_codebook_16_hgtw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_hltw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_heqw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #if CONFIG_BLOCK_256 |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #endif // CONFIG_BLOCK_256 |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16] }, |
| #if CONFIG_FLEX_PARTITION |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| #else |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], |
| wedge_masks[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], |
| wedge_masks[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], |
| wedge_masks[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], |
| wedge_masks[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], |
| wedge_masks[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], |
| wedge_masks[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], |
| wedge_masks[BLOCK_32X32] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #if CONFIG_BLOCK_256 |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #endif // CONFIG_BLOCK_256 |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], |
| wedge_masks[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], |
| wedge_masks[BLOCK_32X8] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #if CONFIG_FLEX_PARTITION |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| #endif |
| |
| // Init the cwp masks, called by init_cwp_masks |
| static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, int8_t w) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) mask[j] = w; |
| mask += stride; |
| } |
| } |
| // Init the cwp masks |
| void init_cwp_masks() { |
| const int bs = BLOCK_128X128; |
| const int bw = block_size_wide[bs]; |
| for (int list_idx = 0; list_idx < 2; ++list_idx) { |
| for (int idx = 0; idx < MAX_CWP_NUM; ++idx) { |
| int8_t weight = cwp_weighting_factor[list_idx][idx] * 4; |
| build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight); |
| } |
| } |
| } |
| // Return the associated cwp mask |
| const int8_t *av1_get_cwp_mask(int list_idx, int idx) { |
| return cwp_mask[list_idx][idx]; |
| } |
| |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| av1_wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| #if !CONFIG_WEDGE_MOD_EXT |
| const uint8_t wsignflip = |
| av1_wedge_params_lookup[sb_type].signflip[wedge_index]; |
| #endif |
| |
| assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| #if CONFIG_WEDGE_MOD_EXT |
| master = wedge_master_mask[neg][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| #else |
| master = wedge_mask_obl[neg ^ wsignflip][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| #endif // CONFIG_WEDGE_MOD_EXT |
| return master; |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| #if !CONFIG_D071_IMP_MSK_BLD |
| assert(is_masked_compound_type(comp_data->type)); |
| #endif // !CONFIG_D071_IMP_MSK_BLD |
| (void)sb_type; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| #if CONFIG_D071_IMP_MSK_BLD |
| case COMPOUND_AVERAGE: |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| case COMPOUND_DIFFWTD: return comp_data->seg_mask; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static AOM_INLINE void diffwtd_mask_d16( |
| uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| int round = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); |
| diff = ROUND_POWER_OF_TWO(diff, round); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_d16_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void diffwtd_mask_highbd( |
| uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| const unsigned int bd) { |
| assert(bd >= 8); |
| if (bd == 8) { |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } else { |
| const unsigned int bd_shift = bd - 8; |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_highbd_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_INLINE void init_wedge_master_masks() { |
| #if CONFIG_WEDGE_MOD_EXT |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| for (int angle = 0; angle < WEDGE_ANGLES; angle++) { |
| int idx = 0; |
| // printf("angle: %d\n", angle); |
| for (int n = 0; n < h; n++) { |
| int y = ((n << 1) - h + 1) * wedge_sin_lut[angle]; |
| for (int m = 0; m < w; m++, idx++) { |
| int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y; |
| #if WEDGE_BLD_SIG |
| const int clamp_d = clamp(d, -127, 127); |
| wedge_master_mask[0][angle][idx] = |
| clamp_d >= 0 ? pos_dist_2_bld_weight[clamp_d] |
| : neg_dist_2_bld_weight[-clamp_d]; |
| #else |
| wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64); |
| #endif |
| wedge_master_mask[1][angle][idx] = |
| 64 - wedge_master_mask[0][angle][idx]; |
| } |
| } |
| } |
| #else |
| int i, j; |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| const int stride = MASK_MASTER_STRIDE; |
| |
| // Note: index [0] stores the masters, and [1] its complement. |
| // Generate prototype by shifting the masters |
| int shift = h / 4; |
| for (i = 0; i < h; i += 2) { |
| shift_copy(wedge_master_oblique_even, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, |
| MASK_MASTER_SIZE); |
| shift--; |
| shift_copy(wedge_master_oblique_odd, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, |
| MASK_MASTER_SIZE); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| } |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; |
| wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; |
| const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; |
| wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - mskx; |
| } |
| } |
| #endif |
| } |
| |
| static AOM_INLINE void init_wedge_masks() { |
| uint8_t *dst = wedge_mask_buf; |
| BLOCK_SIZE bsize; |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; |
| const int wtypes = wedge_params->wedge_types; |
| if (wtypes == 0) continue; |
| const uint8_t *mask; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int w; |
| for (w = 0; w < wtypes; ++w) { |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| dst += bw * bh; |
| } |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| } |
| } |
| |
| /* clang-format off */ |
| static const uint8_t ii_weights1d[MAX_SB_SIZE] = { |
| 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, |
| 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, |
| 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, |
| 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| }; |
| static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| #if CONFIG_BLOCK_256 |
| 0, 0, 0, // unused |
| #endif // CONFIG_BLOCK_256 |
| 8, 8, 4, 4, 2, 2, |
| #if CONFIG_FLEX_PARTITION |
| 4, 4, 2, 2, 2, 2, |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| /* clang-format on */ |
| |
| static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, |
| INTERINTRA_MODE mode) { |
| int i, j; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_SMOOTH_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) |
| mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, 32, bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| } |
| } |
| |
| static AOM_INLINE void init_smooth_interintra_masks() { |
| for (int m = 0; m < INTERINTRA_MODES; ++m) { |
| for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { |
| const int bw = block_size_wide[bs]; |
| const int bh = block_size_high[bs]; |
| if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; |
| build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, |
| m); |
| } |
| } |
| } |
| |
| #if CONFIG_REFINEMV |
| // Compute the SAD values for refineMV modes |
| int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int width, int height, |
| int bd) { |
| return get_highbd_sad(src1, width, src2, width, bd, width, height); |
| } |
| #endif // CONFIG_REFINEMV |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| #if AFFINE_FAST_WARP_METHOD == 2 |
| #define BICUBIC_PHASE_BITS 6 |
| #define BICUBIC_WARP_PREC_BITS 10 |
| // Warp prediction using bicubic interpolation (effectively 4-tap filter) |
| void av1_warp_plane_bicubic(WarpedMotionParams *wm, int bd, const uint16_t *ref, |
| int width, int height, int stride, uint16_t *pred, |
| int p_col, int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params) { |
| (void)conv_params; |
| assert(wm->wmtype <= AFFINE); |
| assert(!is_uneven_wtd_comp_avg(conv_params)); |
| assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
| const int32_t *const mat = wm->wmmat; |
| |
| // bicubic coefficient matrix is the following one divided by 6 |
| const int bicubic_mat[4][4] = { |
| { -1, 3, -3, 1 }, { 3, -6, 3, 0 }, { -2, -3, 6, -1 }, { 0, 6, 0, 0 } |
| }; |
| const int onesixth_bits = 12; |
| const int onesixth = 683; // Integerized (1 << onesixth_bits) / 6 |
| |
| int32_t sum = 0; |
| int32_t tmp[4] = { 0 }; |
| for (int i = p_row; i < p_row + p_height; i++) { |
| for (int j = p_col; j < p_col + p_width; j++) { |
| uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)]; |
| |
| // Project to luma coordinates (if in a subsampled chroma plane), apply |
| // the affine transformation, then convert back to the original |
| // coordinates (if necessary) |
| const int32_t src_x = j << subsampling_x; |
| const int32_t src_y = i << subsampling_y; |
| const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0]; |
| const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1]; |
| const int32_t x = dst_x >> subsampling_x; |
| const int32_t y = dst_y >> subsampling_y; |
| |
| const int32_t ix = x >> WARPEDMODEL_PREC_BITS; |
| const int32_t ixs[4] = { clamp(ix - 1, 0, width - 1), |
| clamp(ix, 0, width - 1), |
| clamp(ix + 1, 0, width - 1), |
| clamp(ix + 2, 0, width - 1) }; |
| const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| const int32_t iy = y >> WARPEDMODEL_PREC_BITS; |
| const int32_t iys[4] = { clamp(iy - 1, 0, height - 1), |
| clamp(iy, 0, height - 1), |
| clamp(iy + 1, 0, height - 1), |
| clamp(iy + 2, 0, height - 1) }; |
| const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| const int32_t spel_x = |
| ROUND_POWER_OF_TWO(sx, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS); |
| const int32_t spel_y = |
| ROUND_POWER_OF_TWO(sy, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS); |
| |
| int32_t xx[4] = { spel_x * spel_x * spel_x, spel_x * spel_x, spel_x, 1 }; |
| int32_t yy[4] = { spel_y * spel_y * spel_y, spel_y * spel_y, spel_y, 1 }; |
| assert(onesixth_bits - BICUBIC_WARP_PREC_BITS >= 0); |
| |
| // Horizontal filter |
| for (int k = 0; k < 4; k++) { |
| tmp[k] = 0; |
| for (int l = 0; l < 4; l++) { |
| int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits - |
| BICUBIC_WARP_PREC_BITS; |
| tmp[k] += ROUND_POWER_OF_TWO_SIGNED( |
| xx[l] * bicubic_mat[l][k] * onesixth, bits); |
| } |
| } |
| for (int k = 0; k < 4; k++) { |
| xx[k] = 0; |
| for (int l = 0; l < 4; l++) { |
| xx[k] += tmp[l] * ref[iys[k] * stride + ixs[l]]; |
| } |
| xx[k] = ROUND_POWER_OF_TWO(xx[k], BICUBIC_WARP_PREC_BITS); |
| } |
| |
| // Vertical filter |
| for (int k = 0; k < 4; k++) { |
| tmp[k] = 0; |
| for (int l = 0; l < 4; l++) { |
| int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits - |
| BICUBIC_WARP_PREC_BITS; |
| tmp[k] += ROUND_POWER_OF_TWO_SIGNED( |
| yy[l] * bicubic_mat[l][k] * onesixth, bits); |
| } |
| } |
| for (int l = 0; l < 4; l++) { |
| sum += tmp[l] * xx[l]; |
| } |
| sum = ROUND_POWER_OF_TWO(sum, BICUBIC_WARP_PREC_BITS); |
| *p = clip_pixel_highbd(sum, bd); |
| } |
| } |
| } |
| #endif // AFFINE_FAST_WARP_METHOD == 2 |
| #if AFFINE_FAST_WARP_METHOD == 3 |
| #define BILINEAR_WARP_PREC_BITS 12 |
| // Warp prediction using bilinear interpolation (effectively 2-tap filter) |
| void av1_warp_plane_bilinear(WarpedMotionParams *wm, int bd, |
| const uint16_t *ref, int width, int height, |
| int stride, uint16_t *pred, int p_col, int p_row, |
| int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params) { |
| (void)conv_params; |
| assert(wm->wmtype <= AFFINE); |
| assert(!is_uneven_wtd_comp_avg(conv_params)); |
| assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
| const int32_t *const mat = wm->wmmat; |
| |
| for (int i = p_row; i < p_row + p_height; i++) { |
| for (int j = p_col; j < p_col + p_width; j++) { |
| uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)]; |
| |
| // Project to luma coordinates (if in a subsampled chroma plane), apply |
| // the affine transformation, then convert back to the original |
| // coordinates (if necessary) |
| const int32_t src_x = j << subsampling_x; |
| const int32_t src_y = i << subsampling_y; |
| const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0]; |
| const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1]; |
| const int32_t x = dst_x >> subsampling_x; |
| const int32_t y = dst_y >> subsampling_y; |
| |
| const int32_t ix = x >> WARPEDMODEL_PREC_BITS; |
| const int32_t ix0 = clamp(ix, 0, width - 1); |
| const int32_t ix1 = clamp(ix + 1, 0, width - 1); |
| const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| const int32_t iy = y >> WARPEDMODEL_PREC_BITS; |
| const int32_t iy0 = clamp(iy, 0, height - 1); |
| const int32_t iy1 = clamp(iy + 1, 0, height - 1); |
| const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| |
| const int32_t unit_offset = 1 << BILINEAR_WARP_PREC_BITS; |
| const int32_t coeff_x = ROUND_POWER_OF_TWO( |
| sx, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS); |
| const int32_t coeff_y = ROUND_POWER_OF_TWO( |
| sy, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS); |
| |
| // Horizontal filter |
| int32_t tmp0 = ref[iy0 * stride + ix0] * (unit_offset - coeff_x) + |
| ref[iy0 * stride + ix1] * coeff_x; |
| tmp0 = ROUND_POWER_OF_TWO(tmp0, BILINEAR_WARP_PREC_BITS); |
| int32_t tmp1 = ref[iy1 * stride + ix0] * (unit_offset - coeff_x) + |
| ref[iy1 * stride + ix1] * coeff_x; |
| tmp1 = ROUND_POWER_OF_TWO(tmp1, BILINEAR_WARP_PREC_BITS); |
| |
| // Vertical filter |
| int32_t sum = tmp0 * (unit_offset - coeff_y) + tmp1 * coeff_y; |
| sum = ROUND_POWER_OF_TWO(sum, BILINEAR_WARP_PREC_BITS); |
| |
| *p = clip_pixel_highbd(sum, bd); |
| } |
| } |
| } |
| #endif // AFFINE_FAST_WARP_METHOD == 3 |
| |
| // Compute intermediate results for 4D linear solver. |
| void getsub_4d(int64_t *sub, int64_t *mat, int64_t *vec) { |
| sub[0] = mat[0] * mat[5] - mat[1] * mat[4]; |
| sub[1] = mat[0] * mat[6] - mat[2] * mat[4]; |
| sub[2] = mat[0] * mat[7] - mat[3] * mat[4]; |
| sub[3] = mat[0] * vec[1] - vec[0] * mat[4]; |
| sub[4] = mat[1] * mat[6] - mat[2] * mat[5]; |
| sub[5] = mat[1] * mat[7] - mat[3] * mat[5]; |
| sub[6] = mat[1] * vec[1] - vec[0] * mat[5]; |
| sub[7] = mat[2] * mat[7] - mat[3] * mat[6]; |
| sub[8] = mat[2] * vec[1] - vec[0] * mat[6]; |
| sub[9] = mat[3] * vec[1] - vec[0] * mat[7]; |
| } |
| |
| // Solve a 4-dimensional matrix inverse using inverse determinant method: |
| // x = A^(-1) * b, where A: mat, b: vec, x: sol |
| int solver_4d(int64_t *mat, int64_t *vec, int *precbits, int64_t *sol) { |
| int64_t a[10], b[10]; // values of 20 specific 2D subdeterminants |
| |
| getsub_4d(&a[0], mat, vec); |
| getsub_4d(&b[0], mat + 8, vec + 2); |
| |
| // Flexibly adjust range to avoid overflow without losing precision. This |
| // moves the bit depth of a[] and b[] within 29, so that det and sol will not |
| // overflow |
| int64_t max_el = 0; |
| for (int i = 0; i < 10; i++) { |
| max_el = AOMMAX(max_el, llabs(a[i])); |
| max_el = AOMMAX(max_el, llabs(b[i])); |
| } |
| int max_bits = get_msb_signed_64(max_el); |
| int subdet_reduce_bits = AOMMAX(0, max_bits - 28); |
| for (int i = 0; i < 10; i++) { |
| a[i] = ROUND_POWER_OF_TWO_SIGNED_64(a[i], subdet_reduce_bits); |
| b[i] = ROUND_POWER_OF_TWO_SIGNED_64(b[i], subdet_reduce_bits); |
| } |
| |
| int64_t det = a[0] * b[7] + a[7] * b[0] + a[2] * b[4] + a[4] * b[2] - |
| a[5] * b[1] - a[1] * b[5]; |
| |
| if (det <= 0) return 0; |
| sol[0] = a[5] * b[8] + a[8] * b[5] - a[6] * b[7] - a[7] * b[6] - a[4] * b[9] - |
| a[9] * b[4]; |
| sol[1] = a[1] * b[9] + a[9] * b[1] + a[3] * b[7] + a[7] * b[3] - a[2] * b[8] - |
| a[8] * b[2]; |
| sol[2] = a[2] * b[6] + a[6] * b[2] - a[0] * b[9] - a[9] * b[0] - a[3] * b[5] - |
| a[5] * b[3]; |
| sol[3] = a[0] * b[8] + a[8] * b[0] + a[3] * b[4] + a[4] * b[3] - a[6] * b[1] - |
| a[1] * b[6]; |
| |
| int max_det_msb = get_msb_signed_64(det); |
| for (int i = 0; i < 4; i++) |
| max_det_msb = AOMMAX(max_det_msb, get_msb_signed_64(sol[i]) + precbits[i]); |
| |
| int det_red_bits = AOMMAX(0, max_det_msb - 60); |
| det = ROUND_POWER_OF_TWO_SIGNED_64(det, det_red_bits); |
| |
| for (int i = 0; i < 4; i++) { |
| int reduce_bits = det_red_bits - precbits[i]; |
| if (reduce_bits >= 0) |
| sol[i] = ROUND_POWER_OF_TWO_SIGNED_64(sol[i], reduce_bits); |
| else |
| sol[i] = clamp64(sol[i] * (1 << (-reduce_bits)), INT64_MIN, INT64_MAX); |
| } |
| |
| sol[0] = divide_and_round_signed(sol[0], det); |
| sol[1] = divide_and_round_signed(sol[1], det); |
| sol[2] = divide_and_round_signed(sol[2], det); |
| sol[3] = divide_and_round_signed(sol[3], det); |
| return 1; |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity |
| // in hardware. |
| #define OPFL_CLAMP_MV_DELTA 1 |
| #define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS) |
| |
| // Divide d0 and d1 by their common factors (no divisions) |
| void reduce_temporal_dist(int *d0, int *d1) { |
| if (*d0 == 0 || *d1 == 0) return; |
| int sign0 = *d0 < 0; |
| int sign1 = *d1 < 0; |
| int mag0 = sign0 ? -(*d0) : (*d0); |
| int mag1 = sign1 ? -(*d1) : (*d1); |
| // Only do simple checks for the case |d0|=|d1| and for factor 2 |
| if (mag0 == mag1) { |
| mag0 = mag1 = 1; |
| } else { |
| while (mag0 % 2 == 0 && mag1 % 2 == 0) { |
| assert(mag0 > 0 && mag1 > 0); |
| mag0 >>= 1; |
| mag1 >>= 1; |
| } |
| } |
| *d0 = sign0 ? -mag0 : mag0; |
| *d1 = sign1 ? -mag1 : mag1; |
| return; |
| } |
| |
| void av1_opfl_build_inter_predictor( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst |
| #if CONFIG_REFINEMV |
| , |
| const MV *const src_mv, int pu_width, int pu_height |
| #endif // CONFIG_REFINEMV |
| ) { |
| assert(cm->seq_params.order_hint_info.enable_order_hint); |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| #if CONFIG_OPTFLOW_ON_TIP |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| // Do references one at a time |
| const int is_compound = 0; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype), |
| is_warp_mode(mi->motion_mode) }; |
| #if CONFIG_OPTFLOW_ON_TIP |
| const struct scale_factors *const sf = |
| is_tip |
| ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]); |
| #else |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| #if CONFIG_REFINEMV |
| const int row_start = (bw == 4) && ss_y ? -1 : 0; |
| const int col_start = (bh == 4) && ss_x ? -1 : 0; |
| #else |
| const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y]; |
| const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; |
| const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; |
| #endif // CONFIG_REFINEMV |
| |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| #if CONFIG_OPTFLOW_ON_TIP |
| const struct buf_2d *const pre_buf = |
| is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref] |
| : (is_intrabc ? dst_buf : &pd->pre[ref]); |
| #else |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| #if CONFIG_REFINEMV |
| inter_pred_params->original_pu_width = pu_width; |
| inter_pred_params->original_pu_height = pu_height; |
| #endif // CONFIG_REFINEMV |
| |
| const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); |
| const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); |
| inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(pre_y); |
| inter_pred_params->dist_to_bottom_edge = GET_MV_SUBPEL(height - bh - pre_y); |
| inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(pre_x); |
| inter_pred_params->dist_to_right_edge = GET_MV_SUBPEL(width - bw - pre_x); |
| |
| inter_pred_params->conv_params = get_conv_params_no_round( |
| 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi); |
| if (inter_pred_params->mode == WARP_PRED) return; |
| |
| assert(mi->interinter_comp.type == COMPOUND_AVERAGE); |
| |
| av1_build_one_inter_predictor(pred_dst, bw, |
| #if CONFIG_REFINEMV |
| src_mv, |
| #else |
| &mi->mv[ref].as_mv, |
| #endif // CONFIG_REFINEMV |
| inter_pred_params, xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| |
| // Note: grad_prec_bits param returned correspond to the precision |
| // of the gradient information in bits assuming gradient |
| // computed at unit pixel step normalization is 0 scale. |
| // Negative values indicate gradient returned at reduced precision, and |
| // positive values indicate gradient returned at higher precision. |
| void av1_compute_subpel_gradients_mc_highbd( |
| MACROBLOCKD *xd, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y, |
| uint16_t **mc_buf, InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, int *grad_prec_bits, |
| int16_t *x_grad, int16_t *y_grad) { |
| *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; |
| |
| // Original predictor |
| const MV mv_orig = mi->mv[ref].as_mv; |
| MV mv_modified = mv_orig; |
| uint16_t tmp_buf1[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 }; |
| uint16_t tmp_buf2[MAX_SB_SIZE * MAX_SB_SIZE] = { 0 }; |
| // X gradient |
| // Get predictor to the left |
| mv_modified.col = mv_orig.col - (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| mv_modified.row = mv_orig.row; |
| av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Get predictor to the right |
| mv_modified.col = mv_orig.col + (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| mv_modified.row = mv_orig.row; |
| av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Compute difference. |
| // Note since the deltas are at +2^g/8 and -2^g/8 subpel locations |
| // (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is |
| // 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned |
| // is at reduced precision by 2-g bits. That explains the grad_prec_bits |
| // return value of g-2 at the end of this function. |
| |
| aom_highbd_subtract_block(bh, bw, x_grad, bw, tmp_buf2, bw, tmp_buf1, bw, |
| xd->bd); |
| |
| // Y gradient |
| // Get predictor below |
| mv_modified.col = mv_orig.col; |
| mv_modified.row = mv_orig.row - (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| av1_build_one_inter_predictor(tmp_buf1, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Get predictor above |
| mv_modified.col = mv_orig.col; |
| mv_modified.row = mv_orig.row + (1 << (3 - SUBPEL_GRAD_DELTA_BITS)); |
| av1_build_one_inter_predictor(tmp_buf2, bw, &mv_modified, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| // Compute difference. |
| // Note since the deltas are at +2^g/8 and -2^g/8 subpel locations |
| // (g = 3 - SUBPEL_GRAD_DELTA_BITS), the actual unit pel gradient is |
| // 4/2^g = 2^(2-g) times the difference. Therefore the gradient returned |
| // is at reduced precision by 2-g bits. That explains the grad_prec_bits |
| // return value of g-2 at the end of this function. |
| |
| aom_highbd_subtract_block(bh, bw, y_grad, bw, tmp_buf2, bw, tmp_buf1, bw, |
| xd->bd); |
| } |
| |
| void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src, |
| int16_t *x_grad, int16_t *y_grad, |
| const int bw, const int bh) { |
| #if OPFL_BICUBIC_GRAD |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| int id_prev, id_prev2, id_next, id_next2, is_boundary; |
| int32_t temp = 0; |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_prev = AOMMAX(j - 1, 0); |
| id_prev2 = AOMMAX(j - 2, 0); |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_next2 = AOMMIN(j + 2, bw - 1); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next] - |
| pred_src[i * bw + id_prev]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next2] - |
| pred_src[i * bw + id_prev2]); |
| x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| INT16_MIN, INT16_MAX); |
| |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_prev = AOMMAX(i - 1, 0); |
| id_prev2 = AOMMAX(i - 2, 0); |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_next2 = AOMMIN(i + 2, bh - 1); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[id_next * bw + j] - |
| pred_src[id_prev * bw + j]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[id_next2 * bw + j] - |
| pred_src[id_prev2 * bw + j]); |
| y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| INT16_MIN, INT16_MAX); |
| } |
| } |
| #else |
| (void)pred_src; |
| (void)x_grad; |
| (void)y_grad; |
| (void)bw; |
| (void)bh; |
| #endif // OPFL_BICUBIC_GRAD |
| } |
| |
| #if OPFL_BILINEAR_GRAD |
| void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad, |
| int16_t *y_grad, const int bw, |
| const int bh) { |
| int id_next, id_prev, is_boundary; |
| int32_t temp = 0; |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_prev = AOMMAX(j - 1, 0); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]); |
| x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| INT16_MIN, INT16_MAX); |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_prev = AOMMAX(i - 1, 0); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]); |
| y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| INT16_MIN, INT16_MAX); |
| } |
| } |
| } |
| #endif // OPFL_BILINEAR_GRAD |
| |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh, |
| int *grad_prec_bits, int16_t *x_grad, |
| int16_t *y_grad) { |
| // Reuse pixels in pred_dst to compute gradients |
| #if OPFL_BILINEAR_GRAD |
| (void)is_hbd; |
| av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh); |
| #else |
| #if CONFIG_OPFL_MV_SEARCH |
| if (bw < 8 || bh < 8) |
| av1_bicubic_grad_interpolation_highbd_c(pred_dst, x_grad, y_grad, bw, bh); |
| else |
| #endif // CONFIG_OPFL_MV_SEARCH |
| av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh); |
| #endif // OPFL_BILINEAR_GRAD |
| *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; |
| } |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| |
| #if CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH |
| // Apply average pooling to reduce the sizes of pred difference and gradients |
| // arrays. It reduces the complexity of the parameter solving routine |
| // TODO(kslu) add SIMD version, and/or combine this operation into |
| // av1_bicubic_grad* function |
| void avg_pooling_pdiff_gradients(int16_t *pdiff, const int pstride, int16_t *gx, |
| int16_t *gy, const int gstride, const int bw, |
| const int bh, const int n) { |
| const int bh_low = AOMMIN(bh, n); |
| const int bw_low = AOMMIN(bw, n); |
| const int step_h = bh / bh_low; |
| const int step_w = bw / bw_low; |
| int avg_stride = bw; |
| #if OPFL_DOWNSAMP_QUINCUNX |
| int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w) - 1; |
| #else |
| int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w); |
| #endif |
| for (int i = 0; i < bh_low; i++) { |
| for (int j = 0; j < bw_low; j++) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0; |
| for (int k = 0; k < step_h; k++) { |
| for (int l = 0; l < step_w; l++) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i * step_h + j * step_w + k + l) % 2 == 1) continue; |
| #endif |
| tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)]; |
| tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)]; |
| tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)]; |
| } |
| } |
| gx[i * avg_stride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits); |
| gy[i * avg_stride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits); |
| pdiff[i * avg_stride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits); |
| } |
| } |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| // Combine two set of affine parameters into one. |
| void combine_affine_params(AffineModelParams *am1, |
| const AffineModelParams *am2) { |
| am1->rot_angle += am2->rot_angle; |
| am1->scale_alpha += am2->scale_alpha; |
| am1->scale_beta += am2->scale_beta; |
| am1->tran_x += am2->tran_x; |
| am1->tran_y += am2->tran_y; |
| } |
| |
| /* Map affine model parameters to warped motion parameters based on signed |
| temporal distance d (positive for past ref, negative for future ref). |
| |
| For d < 0, let t = -d > 0, the affine model is |
| /x'\ = / cos(t*theta) -sin(t*theta) \ * /1+t*alpha 0 \ * /x\ + / t*tx \ |
| \y'/ \ sin(t*theta) cos(t*theta) / \ 0 1+t*beta/ \y/ \ t*ty / |
| |
| which is associated with warped motion matrix |
| |
| / (1+t*alpha)*cos(t*theta) -(1+t*beta)*sin(t*theta) t*tx \ |
| A = | (1+t*alpha)*sin(t*theta) (1+t*beta)*cos(t*theta) t*ty | |
| \ 0 0 1 / |
| |
| For d > 0, we let t = d > 0, and the warped motion matrix is given by the |
| inverse matrix of A. Approximate 1/(1+x) by 1-x, then |
| |
| -1 / (1-t*alpha)*cos(t*theta) (1-t*alpha)*sin(t*theta) tx' \ |
| A = | -(1-t*beta)*sin(t*theta) (1-t*beta)*cos(t*theta) ty' | |
| \ 0 0 1 /, |
| |
| where tx' = -t*(1-t*alpha)*[cos(t*theta)*tx+sin(t*theta)*ty] |
| ty' = t*(1-t*beta)*[cos(t*theta)*tx+sin(t*theta)*ty] |
| */ |
| void get_ref_affine_params(int bw, int bh, int mi_x, int mi_y, |
| const AffineModelParams *am_params, |
| WarpedMotionParams *wm, const int d, |
| const MV *const mv) { |
| wm->invalid = 1; |
| |
| const int unit_offset = 1 << WARPEDMODEL_PREC_BITS; |
| int64_t cos_angle = unit_offset; |
| int64_t sin_angle = 0; |
| const int64_t scale_x = unit_offset - d * am_params->scale_alpha; |
| const int64_t scale_y = unit_offset - d * am_params->scale_beta; |
| |
| const int angle = -d * am_params->rot_angle; |
| cos_angle = unit_offset; |
| sin_angle = angle * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| wm->wmmat[2] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * cos_angle, |
| WARPEDMODEL_PREC_BITS); |
| wm->wmmat[5] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * cos_angle, |
| WARPEDMODEL_PREC_BITS); |
| if (d > 0) { |
| // Parameters of A^-1 |
| wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_x * sin_angle, |
| WARPEDMODEL_PREC_BITS); |
| wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * sin_angle, |
| WARPEDMODEL_PREC_BITS); |
| int64_t tmp_tx = (int64_t)wm->wmmat[2] * (int64_t)am_params->tran_x - |
| (int64_t)wm->wmmat[3] * (int64_t)am_params->tran_y; |
| int64_t tmp_ty = (int64_t)wm->wmmat[4] * (int64_t)am_params->tran_x + |
| (int64_t)wm->wmmat[5] * (int64_t)am_params->tran_y; |
| wm->wmmat[0] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_tx, |
| WARPEDMODEL_PREC_BITS); |
| wm->wmmat[1] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_ty, |
| WARPEDMODEL_PREC_BITS); |
| } else { |
| // Parameters of A |
| wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_y * sin_angle, |
| WARPEDMODEL_PREC_BITS); |
| wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * sin_angle, |
| WARPEDMODEL_PREC_BITS); |
| wm->wmmat[0] = -d * am_params->tran_x; |
| wm->wmmat[1] = -d * am_params->tran_y; |
| } |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| wm->wmmat[6] = wm->wmmat[7] = 0; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_reduce_warp_model(wm); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #if CONFIG_EXT_WARP_FILTER |
| av1_get_shear_params(wm); |
| #else |
| // check compatibility with the fast warp filter |
| if (!av1_get_shear_params(wm)) { |
| wm->wmmat[2] = default_warp_params.wmmat[2]; |
| wm->wmmat[3] = default_warp_params.wmmat[3]; |
| wm->wmmat[4] = default_warp_params.wmmat[4]; |
| wm->wmmat[5] = default_warp_params.wmmat[5]; |
| wm->alpha = wm->beta = wm->gamma = wm->delta = 0; |
| } |
| #endif // CONFIG_EXT_WARP_FILTER |
| |
| // Apply offset based on the coordinate of the block center and the MV to |
| // convert the base point of warped motion from block center to the top-left |
| // pixel of the frame. |
| const int center_x = mi_x + bw / 2 - 1; |
| const int center_y = mi_y + bh / 2 - 1; |
| wm->wmmat[0] += |
| mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3)) - |
| (center_x * (wm->wmmat[2] - unit_offset) + center_y * wm->wmmat[3]); |
| wm->wmmat[1] += |
| mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3)) - |
| (center_x * wm->wmmat[4] + center_y * (wm->wmmat[5] - unit_offset)); |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| #else |
| wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - 1); |
| wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - 1); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| wm->wmtype = AFFINE; |
| wm->invalid = 0; |
| } |
| |
| // Find the maximum element of p/gx/gy in absolute value |
| int64_t find_max_matrix_element(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1) { |
| // TODO(kslu) do it in a better way to remove repeated computations, or |
| // handle this in gradient computation |
| int64_t max_el = 0; |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| max_el = AOMMAX(max_el, abs(d0 * (int)gx0[i * gstride + j] - |
| d1 * (int)gx1[i * gstride + j])); |
| max_el = AOMMAX(max_el, abs(d0 * (int)gy0[i * gstride + j] - |
| d1 * (int)gy1[i * gstride + j])); |
| max_el = AOMMAX( |
| max_el, abs((int)p0[i * pstride0 + j] - (int)p1[i * pstride1 + j])); |
| } |
| } |
| return max_el; |
| } |
| |
| // Derivation of two parameters in the rotation-scale affine model |
| int derive_rotation_scale_2p(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1, |
| int grad_prec_bits, AffineModelParams *am_params) { |
| int bw_log2 = get_msb_signed(bw); |
| int bh_log2 = get_msb_signed(bh); |
| // Check range of gradient and prediction differences. If maximum absolute |
| // value is very large, matrix A is likely to be clamped. To improve |
| // stability, we adaptively reduce the dynamic range here |
| int64_t max_el = find_max_matrix_element(p0, pstride0, p1, pstride1, gx0, gy0, |
| gx1, gy1, gstride, bw, bh, d0, d1); |
| int max_diff_bits = get_msb_signed_64(max_el); |
| const int grad_bits = |
| AOMMAX(0, max_diff_bits * 2 + bh_log2 + bw_log2 + |
| AOMMAX(bh_log2, bw_log2) - AFFINE_GRAD_BITS_THR); |
| const int coords_bits = |
| AOMMAX(0, ((bh_log2 + bw_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS); |
| |
| int64_t su2 = 0; |
| int64_t sv2 = 0; |
| int64_t suv = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| int64_t tmp[2]; |
| int64_t u = 0; |
| int64_t v = 0; |
| int64_t w = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| int gidx = i * gstride + j; |
| const int x = j - bw / 2 + 1; |
| const int y = i - bh / 2 + 1; |
| tmp[0] = d0 * (int)gx0[gidx] - d1 * (int)gx1[gidx]; |
| tmp[1] = d0 * (int)gy0[gidx] - d1 * (int)gy1[gidx]; |
| u = ROUND_POWER_OF_TWO_SIGNED_64(-tmp[0] * y + tmp[1] * x, coords_bits); |
| v = ROUND_POWER_OF_TWO_SIGNED_64(tmp[0] * x + tmp[1] * y, coords_bits); |
| u = clamp64(u, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| v = clamp64(v, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| w = (int64_t)p0[i * pstride0 + j] - (int64_t)p1[i * pstride1 + j]; |
| su2 += ROUND_POWER_OF_TWO_SIGNED_64(u * u, grad_bits); |
| suv += ROUND_POWER_OF_TWO_SIGNED_64(u * v, grad_bits); |
| sv2 += ROUND_POWER_OF_TWO_SIGNED_64(v * v, grad_bits); |
| suw += ROUND_POWER_OF_TWO_SIGNED_64(u * w, grad_bits); |
| svw += ROUND_POWER_OF_TWO_SIGNED_64(v * w, grad_bits); |
| } |
| } |
| int bits = grad_prec_bits + AFFINE_PREC_BITS - coords_bits; |
| const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = clamp64(su2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| sv2 = clamp64(sv2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| suv = clamp64(suv, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| suw = clamp64(suw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| svw = clamp64(svw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det <= 0) return 1; |
| const int64_t det_x = (sv2 * suw - suv * svw) * (1 << bits); |
| const int64_t det_y = (su2 * svw - suv * suw) * (1 << bits); |
| |
| const int angle = (int)divide_and_round_signed(det_x, det); |
| const int alpha = (int)divide_and_round_signed(det_y, det); |
| |
| assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0); |
| am_params->rot_angle = angle; |
| am_params->scale_alpha = |
| alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->scale_beta = |
| alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| return 0; |
| } |
| |
| // Derivation of four parameters in the rotation-scale-translation affine model |
| int derive_rotation_scale_translation_4p(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, |
| int d1, int grad_prec_bits, |
| AffineModelParams *am_params) { |
| int bw_log2 = get_msb_signed(bw); |
| int bh_log2 = get_msb_signed(bh); |
| // Check range of gradient and prediction differences. If maximum absolute |
| // value is very large, matrix A is likely to be clamped. To improve |
| // stability, we adaptively reduce the dynamic range here |
| int64_t max_el = find_max_matrix_element(p0, pstride0, p1, pstride1, gx0, gy0, |
| gx1, gy1, gstride, bw, bh, d0, d1); |
| int max_diff_bits = get_msb_signed_64(max_el); |
| const int grad_bits = |
| AOMMAX(0, max_diff_bits * 2 + bh_log2 + bw_log2 + |
| AOMMAX(bh_log2, bw_log2) - AFFINE_GRAD_BITS_THR); |
| const int coords_bits = |
| AOMMAX(0, ((bh_log2 + bw_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS); |
| |
| int64_t mat_a[16] = { 0 }; |
| int64_t vec_b[4] = { 0 }; |
| int64_t vec_x[4]; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| int a[4]; |
| int tmp[2]; |
| int gidx = i * gstride + j; |
| const int x = j - bw / 2 + 1; |
| const int y = i - bh / 2 + 1; |
| tmp[0] = d0 * (int)gx0[gidx] - d1 * (int)gx1[gidx]; |
| tmp[1] = d0 * (int)gy0[gidx] - d1 * (int)gy1[gidx]; |
| a[0] = ROUND_POWER_OF_TWO_SIGNED(-tmp[0] * y + tmp[1] * x, coords_bits); |
| a[1] = ROUND_POWER_OF_TWO_SIGNED(tmp[0] * x + tmp[1] * y, coords_bits); |
| a[2] = tmp[0]; |
| a[3] = tmp[1]; |
| for (int s = 0; s < 4; ++s) |
| a[s] = clamp(a[s], -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| const int d = (int)p0[i * pstride0 + j] - (int)p1[i * pstride1 + j]; |
| for (int s = 0; s < 4; ++s) { |
| for (int t = 0; t <= s; ++t) { |
| mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED_64( |
| (int64_t)a[s] * (int64_t)a[t], grad_bits); |
| } |
| vec_b[s] += |
| ROUND_POWER_OF_TWO_SIGNED_64((int64_t)a[s] * (int64_t)d, grad_bits); |
| } |
| } |
| } |
| for (int s = 0; s < 4; ++s) { |
| for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s]; |
| } |
| const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM; |
| mat_a[0] += rls_alpha; |
| mat_a[5] += rls_alpha; |
| mat_a[10] += rls_alpha; |
| mat_a[15] += rls_alpha; |
| |
| // Bit depths for each stage (assuming d0 and d1 are within [-16,16]) |
| // gx0/gy0/gx1/gy1/p0/p1: 16 |
| // d = p0 - p1: 17 |
| // tmp, a[1], a[2]: 16(g)+5(d0/d1)+1(sum)=22 |
| // a[0]: 22(tmp)+max(0,(log2(bw)+log2(bh))/2-2)=27 (max) |
| // a[s] bit depths are all clamped to 16. |
| // A (original): 16*2 + 7*2(bh*bw), clamped to 31 |
| // b: 16 + 17 + 7*2(bh*bw) - grad_bits, clamped to 31 |
| // Note that all the clampings here typically take no effect. |
| for (int s = 0; s < 4; ++s) { |
| for (int t = 0; t < 4; ++t) { |
| mat_a[s * 4 + t] = clamp64(mat_a[s * 4 + t], -AFFINE_COV_CLAMP_VAL, |
| AFFINE_COV_CLAMP_VAL); |
| } |
| vec_b[s] = clamp64(vec_b[s], -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| } |
| |
| int prec_bits[4] = { |
| grad_prec_bits + AFFINE_PREC_BITS - coords_bits, |
| grad_prec_bits + AFFINE_PREC_BITS - coords_bits, |
| grad_prec_bits + AFFINE_PREC_BITS, |
| grad_prec_bits + AFFINE_PREC_BITS, |
| }; |
| if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1; |
| |
| for (int i = 0; i < 4; i++) |
| vec_x[i] = clamp64(vec_x[i], -AFFINE_PARAMS_MAX, AFFINE_PARAMS_MAX); |
| |
| assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0); |
| am_params->rot_angle = (int)vec_x[0]; |
| am_params->scale_alpha = |
| (int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->scale_beta = |
| (int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->tran_x = |
| (int)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->tran_y = |
| (int)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| return 0; |
| } |
| |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| // Find the maximum element of pdiff/gx/gy in absolute value |
| // TODO(kslu) add SIMD version |
| int64_t find_max_matrix_element_interp_grad(const int16_t *pdiff, int pstride, |
| const int16_t *gx, |
| const int16_t *gy, int gstride, |
| int bw, int bh) { |
| // TODO(kslu) do it in a better way to remove repeated computations, or |
| // handle this in gradient computation |
| int64_t max_el = 0; |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| #if AFFINE_AVERAGING_BITS > 0 |
| if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue; |
| #endif |
| max_el = AOMMAX(max_el, abs((int)gx[i * gstride + j])); |
| max_el = AOMMAX(max_el, abs((int)gy[i * gstride + j])); |
| max_el = AOMMAX(max_el, abs((int)pdiff[i * pstride + j])); |
| } |
| } |
| return max_el; |
| } |
| |
| // Derivation of two parameters in the rotation-scale affine model (in the |
| // pipeline where gradients are computed directly from d0*P0-d1*P1) |
| int derive_rotation_scale_2p_interp_grad(const int16_t *pdiff, int pstride, |
| const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, |
| int grad_prec_bits, |
| AffineModelParams *am_params) { |
| int x_range_log2 = get_msb_signed(bw); |
| int y_range_log2 = get_msb_signed(bh); |
| #if AFFINE_AVERAGING_BITS > 0 |
| int step_h = AOMMAX(1, bh >> (7 - AFFINE_AVERAGING_BITS)); |
| int step_w = AOMMAX(1, bw >> (7 - AFFINE_AVERAGING_BITS)); |
| int npel_log2 = AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bw)) + |
| AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bh)); |
| #else |
| int npel_log2 = x_range_log2 + y_range_log2; |
| #endif |
| #if OPFL_DOWNSAMP_QUINCUNX |
| npel_log2--; |
| #endif |
| // Check range of gradient and prediction differences. If maximum absolute |
| // value is very large, matrix A is likely to be clamped. To improve |
| // stability, we adaptively reduce the dynamic range here |
| int64_t max_el = find_max_matrix_element_interp_grad(pdiff, pstride, gx, gy, |
| gstride, bw, bh); |
| int max_diff_bits = get_msb_signed_64(max_el); |
| const int grad_bits = |
| AOMMAX(0, max_diff_bits * 2 + npel_log2 + |
| AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR); |
| const int coords_bits = AOMMAX( |
| 0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS); |
| |
| int64_t su2 = 0; |
| int64_t sv2 = 0; |
| int64_t suv = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| int64_t u = 0; |
| int64_t v = 0; |
| int64_t w = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| #if AFFINE_AVERAGING_BITS > 0 |
| if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue; |
| const int x = step_w * j - bw / 2 + 1; |
| const int y = step_h * i - bh / 2 + 1; |
| #else |
| const int x = j - bw / 2 + 1; |
| const int y = i - bh / 2 + 1; |
| #endif |
| int gidx = i * gstride + j; |
| u = ROUND_POWER_OF_TWO_SIGNED_64(-gx[gidx] * y + gy[gidx] * x, |
| coords_bits); |
| v = ROUND_POWER_OF_TWO_SIGNED_64(gx[gidx] * x + gy[gidx] * y, |
| coords_bits); |
| u = clamp64(u, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| v = clamp64(v, -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| w = (int64_t)pdiff[i * pstride + j]; |
| su2 += ROUND_POWER_OF_TWO_SIGNED_64(u * u, grad_bits); |
| suv += ROUND_POWER_OF_TWO_SIGNED_64(u * v, grad_bits); |
| sv2 += ROUND_POWER_OF_TWO_SIGNED_64(v * v, grad_bits); |
| suw += ROUND_POWER_OF_TWO_SIGNED_64(u * w, grad_bits); |
| svw += ROUND_POWER_OF_TWO_SIGNED_64(v * w, grad_bits); |
| } |
| } |
| int bits = grad_prec_bits + AFFINE_PREC_BITS - coords_bits; |
| const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = clamp64(su2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| sv2 = clamp64(sv2, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| suv = clamp64(suv, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| suw = clamp64(suw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| svw = clamp64(svw, -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det <= 0) return 1; |
| const int64_t det_x = (sv2 * suw - suv * svw) * (1 << bits); |
| const int64_t det_y = (su2 * svw - suv * suw) * (1 << bits); |
| |
| int angle = (int)divide_and_round_signed(det_x, det); |
| int alpha = (int)divide_and_round_signed(det_y, det); |
| |
| assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0); |
| am_params->rot_angle = angle; |
| am_params->scale_alpha = |
| alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->scale_beta = |
| alpha * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| return 0; |
| } |
| |
| // Derivation of four parameters in the rotation-scale-translation affine model |
| // (in the pipeline where gradients are computed directly from d0*P0-d1*P1) |
| int derive_rotation_scale_translation_4p_interp_grad( |
| const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int grad_prec_bits, |
| AffineModelParams *am_params) { |
| int x_range_log2 = get_msb_signed(bw); |
| int y_range_log2 = get_msb_signed(bh); |
| #if AFFINE_AVERAGING_BITS > 0 |
| int step_h = AOMMAX(1, bh >> (7 - AFFINE_AVERAGING_BITS)); |
| int step_w = AOMMAX(1, bw >> (7 - AFFINE_AVERAGING_BITS)); |
| int npel_log2 = AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bw)) + |
| AOMMIN(7 - AFFINE_AVERAGING_BITS, get_msb_signed(bh)); |
| #else |
| int npel_log2 = x_range_log2 + y_range_log2; |
| #endif |
| #if OPFL_DOWNSAMP_QUINCUNX |
| npel_log2--; |
| #endif |
| // Check range of gradient and prediction differences. If maximum absolute |
| // value is very large, matrix A is likely to be clamped. To improve |
| // stability, we adaptively reduce the dynamic range here |
| int64_t max_el = find_max_matrix_element_interp_grad(pdiff, pstride, gx, gy, |
| gstride, bw, bh); |
| int max_diff_bits = get_msb_signed_64(max_el); |
| const int grad_bits = |
| AOMMAX(0, max_diff_bits * 2 + npel_log2 + |
| AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR); |
| const int coords_bits = AOMMAX( |
| 0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS); |
| |
| int64_t mat_a[16] = { 0 }; |
| int64_t vec_b[4] = { 0 }; |
| int64_t vec_x[4]; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| #if AFFINE_AVERAGING_BITS > 0 |
| if (AOMMAX(i, j) >= (1 << (7 - AFFINE_AVERAGING_BITS))) continue; |
| const int x = step_w * j - bw / 2 + 1; |
| const int y = step_h * i - bh / 2 + 1; |
| #else |
| const int x = j - bw / 2 + 1; |
| const int y = i - bh / 2 + 1; |
| #endif |
| int gidx = i * gstride + j; |
| int a[4]; |
| a[0] = |
| ROUND_POWER_OF_TWO_SIGNED(-gx[gidx] * y + gy[gidx] * x, coords_bits); |
| a[1] = |
| ROUND_POWER_OF_TWO_SIGNED(gx[gidx] * x + gy[gidx] * y, coords_bits); |
| a[2] = gx[gidx]; |
| a[3] = gy[gidx]; |
| for (int s = 0; s < 4; ++s) |
| a[s] = clamp(a[s], -AFFINE_CLAMP_VAL, AFFINE_CLAMP_VAL); |
| const int d = pdiff[i * pstride + j]; |
| for (int s = 0; s < 4; ++s) { |
| for (int t = 0; t <= s; ++t) { |
| mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED_64( |
| (int64_t)a[s] * (int64_t)a[t], grad_bits); |
| } |
| vec_b[s] += |
| ROUND_POWER_OF_TWO_SIGNED_64((int64_t)a[s] * (int64_t)d, grad_bits); |
| } |
| } |
| } |
| for (int s = 0; s < 4; ++s) { |
| for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s]; |
| } |
| const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM; |
| mat_a[0] += rls_alpha; |
| mat_a[5] += rls_alpha; |
| mat_a[10] += rls_alpha; |
| mat_a[15] += rls_alpha; |
| |
| for (int s = 0; s < 4; ++s) { |
| for (int t = 0; t < 4; ++t) { |
| mat_a[s * 4 + t] = clamp64(mat_a[s * 4 + t], -AFFINE_COV_CLAMP_VAL, |
| AFFINE_COV_CLAMP_VAL); |
| } |
| vec_b[s] = clamp64(vec_b[s], -AFFINE_COV_CLAMP_VAL, AFFINE_COV_CLAMP_VAL); |
| } |
| |
| int prec_bits[4] = { |
| grad_prec_bits + AFFINE_PREC_BITS - coords_bits, |
| grad_prec_bits + AFFINE_PREC_BITS - coords_bits, |
| grad_prec_bits + AFFINE_PREC_BITS, |
| grad_prec_bits + AFFINE_PREC_BITS, |
| }; |
| if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1; |
| |
| for (int i = 0; i < 4; i++) |
| vec_x[i] = clamp64(vec_x[i], -AFFINE_PARAMS_MAX, AFFINE_PARAMS_MAX); |
| |
| assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0); |
| am_params->rot_angle = (int)vec_x[0]; |
| am_params->scale_alpha = |
| (int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->scale_beta = |
| (int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->tran_x = |
| (int)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| am_params->tran_y = |
| (int)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); |
| return 0; |
| } |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| // Optical flow based mv refinement computation function: |
| // |
| // p0, pstride0: predictor 0 and its stride |
| // p1, pstride1: predictor 1 and its stride |
| // gx0, gy0: x and y gradients for p0 |
| // gx1, gy1: x and y gradients for p1 |
| // gstride: stride for all the gradients assumed to be the same |
| // bw, bh: block dimensions |
| // d0: distances of p0 to current frame, where positive value refers to p0 |
| // before the current frame. |
| // d1: distances of p1 to current frame, where positive value refers to p1 |
| // before the current frame. |
| // max_prec_bits: maximum offset in bits |
| // vx0, vy0: output high resolution mv offset for p0 |
| // vx1, vy1: output high resolution mv offset for p1 |
| void av1_opfl_mv_refinement_highbd(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1, |
| int grad_prec_bits, int mv_prec_bits, |
| int *vx0, int *vy0, int *vx1, int *vy1) { |
| assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0)); |
| int64_t su2 = 0; |
| int64_t suv = 0; |
| int64_t sv2 = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| const int64_t u = d0 * gx0[i * gstride + j] - d1 * gx1[i * gstride + j]; |
| const int64_t v = d0 * gy0[i * gstride + j] - d1 * gy1[i * gstride + j]; |
| const int64_t w = p0[i * pstride0 + j] - p1[i * pstride1 + j]; |
| su2 += (u * u); |
| suv += (u * v); |
| sv2 += (v * v); |
| suw += (u * w); |
| svw += (v * w); |
| } |
| } |
| const int bits = mv_prec_bits + grad_prec_bits; |
| #if OPFL_REGULARIZED_LS |
| const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| #endif |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = clamp64(su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| sv2 = clamp64(sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suv = clamp64(suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suw = clamp64(suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| svw = clamp64(svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det <= 0) return; |
| const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits); |
| const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits); |
| |
| *vx0 = (int)divide_and_round_signed(det_x, det); |
| *vy0 = (int)divide_and_round_signed(det_y, det); |
| *vx1 = (*vx0) * d1; |
| *vy1 = (*vy0) * d1; |
| *vx0 = (*vx0) * d0; |
| *vy0 = (*vy0) * d0; |
| } |
| |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| // Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of |
| // d0 * P0 - d1 * P1. |
| void av1_opfl_mv_refinement_interp_grad(const int16_t *pdiff, int pstride0, |
| const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int d0, |
| int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, |
| int *vx1, int *vy1) { |
| assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0)); |
| int64_t su2 = 0; |
| int64_t suv = 0; |
| int64_t sv2 = 0; |
| int64_t suw = 0; |
| int64_t svw = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| #if OPFL_DOWNSAMP_QUINCUNX |
| if ((i + j) % 2 == 1) continue; |
| #endif |
| const int u = gx[i * gstride + j]; |
| const int v = gy[i * gstride + j]; |
| const int w = pdiff[i * pstride0 + j]; |
| su2 += (u * u); |
| suv += (u * v); |
| sv2 += (v * v); |
| suw += (u * w); |
| svw += (v * w); |
| } |
| } |
| const int bits = mv_prec_bits + grad_prec_bits; |
| #if OPFL_REGULARIZED_LS |
| const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM; |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| #endif |
| |
| // Clamp su2, sv2, suv, suw, and svw to avoid overflow in det, det_x, and |
| // det_y |
| su2 = clamp64(su2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| sv2 = clamp64(sv2, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suv = clamp64(suv, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| suw = clamp64(suw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| svw = clamp64(svw, -OPFL_COV_CLAMP_VAL, OPFL_COV_CLAMP_VAL); |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| const int64_t det = su2 * sv2 - suv * suv; |
| if (det <= 0) return; |
| const int64_t det_x = (suv * svw - sv2 * suw) * (1 << bits); |
| const int64_t det_y = (suv * suw - su2 * svw) * (1 << bits); |
| |
| *vx0 = (int)divide_and_round_signed(det_x, det); |
| *vy0 = (int)divide_and_round_signed(det_y, det); |
| *vx1 = (*vx0) * d1; |
| *vy1 = (*vy0) * d1; |
| *vx0 = (*vx0) * d0; |
| *vy0 = (*vy0) * d0; |
| } |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| typedef int (*affine_params_solver_interp_grad)(const int16_t *pdiff, |
| int pstride, const int16_t *gx, |
| const int16_t *gy, int gstride, |
| int bw, int bh, |
| int grad_prec_bits, |
| AffineModelParams *am_params); |
| affine_params_solver_interp_grad get_affine_params_solver_interp_grad( |
| CompoundRefineType comp_refine_type) { |
| switch (comp_refine_type) { |
| case COMP_REFINE_ROTZOOM4P_SUBBLK2P: |
| return derive_rotation_scale_translation_4p_interp_grad; |
| case COMP_REFINE_ROTZOOM2P_SUBBLK2P: |
| return derive_rotation_scale_2p_interp_grad; |
| default: assert(0); return derive_rotation_scale_translation_4p_interp_grad; |
| } |
| } |
| |
| // Solve the affine model given pdiff = P0 - P1 and the gradients gx/gy of |
| // d0 * P0 - d1 * P1. |
| // TODO(kslu) add SIMD version |
| void av1_opfl_affine_refinement_mxn_interp_grad_c( |
| const int16_t *pdiff, int pstride0, const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int d0, int d1, int mi_x, int mi_y, |
| const MB_MODE_INFO *mbmi, |
| #if CONFIG_REFINEMV |
| const MV *const src_mv, |
| #endif // CONFIG_REFINEMV |
| AffineModelParams *ams, int grad_prec_bits, WarpedMotionParams *wms) { |
| const CompoundRefineType comp_refine_type = mbmi->comp_refine_type; |
| |
| AffineModelParams affine_params = default_affine_params; |
| affine_params_solver_interp_grad solver = |
| get_affine_params_solver_interp_grad(comp_refine_type); |
| // In some rare cases, the determinant in the solver may be zero or |
| // negative due to numerical errors. In this case we still set invalid=0, |
| // but the warped parameters remain the default values. |
| if (!solver(pdiff, pstride0, gx, gy, gstride, bw, bh, grad_prec_bits, |
| &affine_params)) { |
| combine_affine_params(ams, &affine_params); |
| #if CONFIG_REFINEMV |
| get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms, d0, &src_mv[0]); |
| get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms + 1, d1, &src_mv[1]); |
| #else |
| get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms, d0, &mbmi->mv[0].as_mv); |
| get_ref_affine_params(bw, bh, mi_x, mi_y, ams, wms + 1, d1, |
| &mbmi->mv[1].as_mv); |
| #endif // CONFIG_REFINEMV |
| } |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| |
| int av1_opfl_mv_refinement_nxn_interp_grad_c( |
| const int16_t *pdiff, int pstride, const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int n, int d0, int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, int *vx1, int *vy1) { |
| assert(bw % n == 0 && bh % n == 0); |
| int n_blocks = 0; |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| for (int i = 0; i < bh; i += n) { |
| for (int j = 0; j < bw; j += n) { |
| av1_opfl_mv_refinement_interp_grad( |
| pdiff + (i * pstride + j), pstride, gx + (i * gstride + j), |
| gy + (i * gstride + j), gstride, n, n, d0, d1, grad_prec_bits, |
| mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, vx1 + n_blocks, |
| vy1 + n_blocks); |
| n_blocks++; |
| } |
| } |
| #else |
| (void)pdiff; |
| (void)pstride; |
| (void)gx; |
| (void)gy; |
| (void)gstride; |
| (void)bw; |
| (void)bh; |
| (void)n; |
| (void)d0; |
| (void)d1; |
| (void)grad_prec_bits; |
| (void)mv_prec_bits; |
| (void)vx0; |
| (void)vy0; |
| (void)vx1; |
| (void)vy1; |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| return n_blocks; |
| } |
| |
| // Function to compute optical flow offsets in nxn blocks |
| int av1_opfl_mv_refinement_nxn_highbd_c(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int n, |
| int d0, int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, |
| int *vx1, int *vy1) { |
| assert(bw % n == 0 && bh % n == 0); |
| int n_blocks = 0; |
| for (int i = 0; i < bh; i += n) { |
| for (int j = 0; j < bw; j += n) { |
| av1_opfl_mv_refinement_highbd( |
| p0 + (i * pstride0 + j), pstride0, p1 + (i * pstride1 + j), pstride1, |
| gx0 + (i * gstride + j), gy0 + (i * gstride + j), |
| gx1 + (i * gstride + j), gy1 + (i * gstride + j), gstride, n, n, d0, |
| d1, grad_prec_bits, mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, |
| vx1 + n_blocks, vy1 + n_blocks); |
| n_blocks++; |
| } |
| } |
| return n_blocks; |
| } |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| typedef int (*affine_params_solver)(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1, |
| int grad_prec_bits, |
| AffineModelParams *am_params); |
| affine_params_solver get_affine_params_solver( |
| CompoundRefineType comp_refine_type) { |
| switch (comp_refine_type) { |
| case COMP_REFINE_ROTZOOM4P_SUBBLK2P: |
| return derive_rotation_scale_translation_4p; |
| case COMP_REFINE_ROTZOOM2P_SUBBLK2P: return derive_rotation_scale_2p; |
| default: assert(0); return derive_rotation_scale_translation_4p; |
| } |
| } |
| |
| void av1_opfl_affine_refinement_mxn_c( |
| const uint16_t *p0, int pstride0, const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, const int16_t *gx1, |
| const int16_t *gy1, int gstride, int bw, int bh, int d0, int d1, int mi_x, |
| int mi_y, const MB_MODE_INFO *mbmi, int grad_prec_bits, |
| WarpedMotionParams *wms) { |
| const CompoundRefineType comp_refine_type = mbmi->comp_refine_type; |
| |
| AffineModelParams affine_params = default_affine_params; |
| affine_params_solver solver = get_affine_params_solver(comp_refine_type); |
| // In some rare cases, the determinant in the solver may be zero or |
| // negative due to numerical errors. In this case we still set invalid=0, |
| // but the warped parameters remain the default values. |
| if (!solver(p0, pstride0, p1, pstride1, gx0, gy0, gx1, gy1, gstride, bw, bh, |
| d0, d1, grad_prec_bits, &affine_params)) { |
| get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, wms, d0, |
| &mbmi->mv[0].as_mv); |
| get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, wms + 1, d1, |
| &mbmi->mv[1].as_mv); |
| } |
| } |
| |
| #if AFFINE_OPFL_BASED_ON_SAD |
| // TODO(kslu) use SIMD versions |
| static INLINE unsigned int sad_generic(const uint16_t *a, int a_stride, |
| const uint16_t *b, int b_stride, |
| int width, int height) { |
| int y, x; |
| unsigned int sad = 0; |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x++) { |
| sad += abs(a[x] - b[x]); |
| } |
| |
| a += a_stride; |
| b += b_stride; |
| } |
| return sad; |
| } |
| #endif // AFFINE_OPFL_BASED_ON_SAD |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| #if CONFIG_AFFINE_REFINEMENT |
| // Update predicted blocks (P0 & P1) and their gradients based on the affine |
| // model derived from the first DAMR step |
| void update_pred_grad_with_affine_model(MACROBLOCKD *xd, int plane, int bw, |
| int bh, WarpedMotionParams *wms, |
| int mi_x, int mi_y, int16_t *tmp0, |
| int16_t *tmp1, int16_t *gx0, |
| int16_t *gy0, const int d0, |
| const int d1, int *grad_prec_bits) { |
| uint16_t *dst_warped = |
| (uint16_t *)aom_memalign(16, 2 * bw * bh * sizeof(uint16_t)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| ConvolveParams conv_params = |
| get_conv_params_no_round(0, plane, NULL, 0, 0, xd->bd); |
| for (int ref = 0; ref < 2; ref++) { |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| #if AFFINE_FAST_WARP_METHOD == 3 |
| av1_warp_plane_bilinear(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, |
| pre_buf->height, pre_buf->stride, |
| &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, |
| pd->subsampling_x, pd->subsampling_y, &conv_params); |
| #elif AFFINE_FAST_WARP_METHOD == 2 |
| av1_warp_plane_bicubic(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, |
| pre_buf->height, pre_buf->stride, |
| &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, |
| pd->subsampling_x, pd->subsampling_y, &conv_params); |
| #elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER |
| av1_warp_plane_ext(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, |
| pre_buf->height, pre_buf->stride, |
| &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, |
| pd->subsampling_x, pd->subsampling_y, &conv_params); |
| #else // AFFINE_FAST_WARP_METHOD == 0 |
| av1_warp_plane(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, |
| pre_buf->height, pre_buf->stride, &dst_warped[ref * bw * bh], |
| mi_x, mi_y, bw, bh, bw, pd->subsampling_x, pd->subsampling_y, |
| &conv_params); |
| #endif // AFFINE_FAST_WARP_METHOD == 3 |
| } |
| av1_copy_pred_array_highbd(&dst_warped[0], &dst_warped[bw * bh], tmp0, tmp1, |
| bw, bh, d0, d1, 0); |
| // Buffers gx0 and gy0 are used to store the gradients of tmp0 |
| av1_compute_subpel_gradients_interp(tmp0, bw, bh, grad_prec_bits, gx0, gy0); |
| aom_free(dst_warped); |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd( |
| const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2, |
| int bw, int bh, int d0, int d1, int centered) { |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| // To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1. |
| int32_t tmp_dst = |
| d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j]; |
| if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1); |
| dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); |
| if (dst2) { |
| tmp_dst = (int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j]; |
| dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); |
| } |
| } |
| } |
| } |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| |
| void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2, |
| int16_t *dst1, int16_t *dst2, int bw, int bh, |
| int d0, int d1, int centered) { |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1, |
| centered); |
| #else |
| (void)src2; |
| (void)dst2; |
| (void)d0; |
| (void)d1; |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) dst1[i * bw + j] = (int16_t)src1[i * bw + j]; |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| #else |
| (void)src1; |
| (void)dst1; |
| (void)src2; |
| (void)dst2; |
| (void)d0; |
| (void)d1; |
| (void)bw; |
| (void)bh; |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| } |
| |
| void av1_get_optflow_based_mv_highbd( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi, |
| int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0, |
| int16_t *gx1, int16_t *gy1, |
| #if CONFIG_AFFINE_REFINEMENT |
| WarpedMotionParams *wms, int *use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| int *vx0, int *vy0, int *vx1, int *vy1, uint16_t *dst0, uint16_t *dst1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int do_pred, int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| #if CONFIG_REFINEMV |
| , |
| MV *best_mv_ref, int pu_width, int pu_height |
| #endif // CONFIG_REFINEMV |
| ) { |
| #if CONFIG_AFFINE_REFINEMENT |
| *use_affine_opfl = 0; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| const int target_prec = MV_REFINE_PREC_BITS; |
| const int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| int n_blocks = (bw / n) * (bh / n); |
| // Convert output MV to 1/16th pel |
| assert(MV_REFINE_PREC_BITS >= 3); |
| const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3); |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined[mvi * 2].as_mv.row = |
| clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, INT16_MIN, INT16_MAX); |
| mv_refined[mvi * 2].as_mv.col = |
| clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, INT16_MIN, INT16_MAX); |
| mv_refined[mvi * 2 + 1].as_mv.row = clamp( |
| mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, INT16_MIN, INT16_MAX); |
| mv_refined[mvi * 2 + 1].as_mv.col = clamp( |
| mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, INT16_MIN, INT16_MAX); |
| } |
| |
| // Obtain d0 and d1 |
| int d0, d1; |
| #if CONFIG_OPTFLOW_ON_TIP |
| if (mbmi->ref_frame[0] == TIP_FRAME) { |
| d0 = cm->tip_ref.ref_offset[0]; |
| d1 = cm->tip_ref.ref_offset[1]; |
| } else { |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| const RefCntBuffer *const r0_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const r1_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| d0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->display_order_hint, |
| r0_buf->display_order_hint); |
| d1 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->display_order_hint, |
| r1_buf->display_order_hint); |
| #else |
| d0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->order_hint, r0_buf->order_hint); |
| d1 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->order_hint, r1_buf->order_hint); |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| #if CONFIG_OPTFLOW_ON_TIP |
| } |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| if (d0 == 0 || d1 == 0) return; |
| reduce_temporal_dist(&d0, &d1); |
| |
| #if CONFIG_OPTFLOW_ON_TIP |
| if (do_pred) { |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| // Obrain P0 and P1 |
| InterPredParams params0, params1; |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms0, calc_subpel_params_func, 0, |
| dst0 |
| #if CONFIG_REFINEMV |
| , |
| &best_mv_ref[0], pu_width, pu_height |
| #endif // CONFIG_REFINEMV |
| ); |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms1, calc_subpel_params_func, 1, |
| dst1 |
| #if CONFIG_REFINEMV |
| , |
| &best_mv_ref[1], pu_width, pu_height |
| #endif // CONFIG_REFINEMV |
| ); |
| #if CONFIG_OPTFLOW_ON_TIP |
| } |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| |
| int grad_prec_bits; |
| |
| #if OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| // Compute gradients of P0 and P1 with interpolation |
| #if OPFL_COMBINE_INTERP_GRAD_LS |
| (void)gx1; |
| (void)gy1; |
| |
| // Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| const int tmp_w = (mbmi->ref_frame[0] == TIP_FRAME) ? bw : MAX_SB_SIZE; |
| const int tmp_h = (mbmi->ref_frame[0] == TIP_FRAME) ? bh : MAX_SB_SIZE; |
| int16_t *tmp0 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); |
| int16_t *tmp1 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); |
| #else |
| int16_t *tmp0 = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| int16_t *tmp1 = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1, 0); |
| // Buffers gx0 and gy0 are used to store the gradients of tmp0 |
| av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| #if AFFINE_OPFL_BASED_ON_SAD |
| const unsigned int sad_thr = 1; |
| if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms) { |
| unsigned int sad_pred = sad_generic(dst0, bw, dst1, bw, bw, bh); |
| if (sad_pred >= sad_thr * bw * bh) *use_affine_opfl = 1; |
| } |
| #endif |
| |
| if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms && |
| *use_affine_opfl) { |
| AffineModelParams affine_params = default_affine_params; |
| |
| #if AFFINE_AVERAGING_BITS > 0 |
| const int block_len_low = 1 << (7 - AFFINE_AVERAGING_BITS); |
| avg_pooling_pdiff_gradients(tmp1, bw, gx0, gy0, bw, bw, bh, block_len_low); |
| #endif // AFFINE_AVERAGING_BITS > 0 |
| |
| av1_opfl_affine_refinement_mxn_interp_grad_c( |
| tmp1, bw, gx0, gy0, bw, bw, bh, d0, d1, mi_x, mi_y, mbmi, |
| #if CONFIG_REFINEMV |
| best_mv_ref, |
| #endif // CONFIG_REFINEMV |
| &affine_params, grad_prec_bits, wms); |
| |
| update_pred_grad_with_affine_model(xd, plane, bw, bh, wms, mi_x, mi_y, tmp0, |
| tmp1, gx0, gy0, d0, d1, &grad_prec_bits); |
| |
| // Subblock wise translational refinement |
| if (damr_refine_subblock(plane, bw, bh, mbmi->comp_refine_type, n)) { |
| // Find translational parameters per subblock. |
| n_blocks = av1_opfl_mv_refinement_nxn_interp_grad( |
| tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, |
| target_prec, vx0, vy0, vx1, vy1); |
| } |
| } else { |
| n_blocks = av1_opfl_mv_refinement_nxn_interp_grad( |
| tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec, |
| vx0, vy0, vx1, vy1); |
| } |
| #else |
| n_blocks = av1_opfl_mv_refinement_nxn_interp_grad( |
| tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec, |
| vx0, vy0, vx1, vy1); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| aom_free(tmp0); |
| aom_free(tmp1); |
| #else |
| int16_t *tmp = |
| (int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t)); |
| av1_copy_pred_array_highbd(dst0, NULL, tmp, NULL, bw, bh, d0, d1, 0); |
| av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx0, gy0); |
| |
| av1_copy_pred_array_highbd(dst1, NULL, tmp, NULL, bw, bh, d0, d1, 0); |
| av1_compute_subpel_gradients_interp(tmp, bw, bh, &grad_prec_bits, gx1, gy1); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START) { |
| av1_opfl_affine_refinement_mxn_c(dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, |
| bw, bh, d0, d1, mi_x, mi_y, mbmi, |
| grad_prec_bits, wms); |
| } else { |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| } |
| #else |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| aom_free(tmp); |
| #endif // OPFL_COMBINE_INTERP_GRAD_LS |
| #else |
| // Compute gradients of P0 and P1 with MC |
| av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf, |
| ¶ms0, calc_subpel_params_func, 0, |
| &grad_prec_bits, gx0, gy0); |
| av1_compute_subpel_gradients_mc_highbd(xd, mbmi, bw, bh, mi_x, mi_y, mc_buf, |
| ¶ms1, calc_subpel_params_func, 1, |
| &grad_prec_bits, gx1, gy1); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| if (mbmi->comp_refine_type >= COMP_REFINE_AFFINE_START) { |
| av1_opfl_affine_refinement_mxn_c(dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, |
| bw, bh, d0, d1, mi_x, mi_y, mbmi, |
| grad_prec_bits, wms); |
| } else { |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| } |
| #else |
| n_blocks = av1_opfl_mv_refinement_nxn_highbd( |
| dst0, bw, dst1, bw, gx0, gy0, gx1, gy1, bw, bw, bh, n, d0, d1, |
| grad_prec_bits, target_prec, vx0, vy0, vx1, vy1); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| #endif // OPFL_BILINEAR_GRAD || OPFL_BICUBIC_GRAD |
| |
| for (int i = 0; i < n_blocks; i++) { |
| #if OPFL_CLAMP_MV_DELTA |
| vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| #endif |
| mv_refined[i * 2].as_mv.row = |
| clamp(mv_refined[i * 2].as_mv.row + vy0[i], INT16_MIN, INT16_MAX); |
| mv_refined[i * 2].as_mv.col = |
| clamp(mv_refined[i * 2].as_mv.col + vx0[i], INT16_MIN, INT16_MAX); |
| mv_refined[i * 2 + 1].as_mv.row = |
| clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], INT16_MIN, INT16_MAX); |
| mv_refined[i * 2 + 1].as_mv.col = |
| clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], INT16_MIN, INT16_MAX); |
| } |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| int is_out_of_frame_block(const InterPredParams *inter_pred_params, |
| int frame_width, int frame_height, int sub_block_id) { |
| for (int ref = 0; ref < 2; ref++) { |
| const BacpBlockData *const b_data = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref]; |
| if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 || |
| b_data->x1 > frame_width |
| |
| || b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 || |
| b_data->y1 > frame_height) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| init_wedge_master_masks(); |
| init_wedge_masks(); |
| init_smooth_interintra_masks(); |
| } |
| |
| static AOM_INLINE void build_masked_compound_no_round( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, InterPredParams *inter_pred_params) { |
| #if CONFIG_D071_IMP_MSK_BLD |
| const int ssy = (inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_AVERAGE) |
| ? 0 |
| : inter_pred_params->subsampling_y; |
| const int ssx = (inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_AVERAGE) |
| ? 0 |
| : inter_pred_params->subsampling_x; |
| #else |
| const int ssy = inter_pred_params->subsampling_y; |
| const int ssx = inter_pred_params->subsampling_x; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| const int mask_stride = block_size_wide[sb_type]; |
| aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, ssy, |
| &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| #if !CONFIG_D071_IMP_MSK_BLD |
| static |
| #endif |
| void |
| make_masked_inter_predictor(const uint16_t *pre, int pre_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params |
| #if CONFIG_D071_IMP_MSK_BLD |
| , |
| int use_bacp, int sub_block_id |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| ) { |
| const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; |
| BLOCK_SIZE sb_type = inter_pred_params->sb_type; |
| |
| // We're going to call av1_make_inter_predictor to generate a prediction into |
| // a temporary buffer, then will blend that temporary buffer with that from |
| // the other reference. |
| DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]); |
| |
| const int tmp_buf_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; |
| int org_dst_stride = inter_pred_params->conv_params.dst_stride; |
| CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; |
| inter_pred_params->conv_params.dst = tmp_buf16; |
| inter_pred_params->conv_params.dst_stride = tmp_buf_stride; |
| assert(inter_pred_params->conv_params.do_average == 0); |
| |
| // This will generate a prediction in tmp_buf for the second reference |
| av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE, |
| inter_pred_params, subpel_params); |
| |
| if (!inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_DIFFWTD) { |
| av1_build_compound_diffwtd_mask_d16( |
| comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, |
| inter_pred_params->block_width, &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| // Mask is generated from luma and reuse for chroma |
| const int generate_mask_for_this_plane = |
| (!inter_pred_params->conv_params.plane || |
| comp_data->type == COMPOUND_AVERAGE); |
| if (use_bacp && generate_mask_for_this_plane) { |
| uint8_t *mask = comp_data->seg_mask; |
| int mask_stride = block_size_wide[sb_type]; |
| BacpBlockData *b_data_0 = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0]; |
| BacpBlockData *b_data_1 = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1]; |
| |
| for (int i = 0; i < inter_pred_params->block_height; ++i) { |
| for (int j = 0; j < inter_pred_params->block_width; ++j) { |
| int x = b_data_0->x0 + j; |
| int y = b_data_0->y0 + i; |
| |
| int p0_available = |
| (x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 && |
| y < inter_pred_params->ref_frame_buf.height); |
| |
| x = b_data_1->x0 + j; |
| y = b_data_1->y0 + i; |
| int p1_available = |
| (x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 && |
| y < inter_pred_params->ref_frame_buf.height); |
| |
| if (p0_available && !p1_available) { |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT; |
| } else if (!p0_available && p1_available) { |
| mask[j] = DEFAULT_IMP_MSK_WT; |
| } else if (comp_data->type == COMPOUND_AVERAGE) { |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1; |
| } |
| } |
| mask += mask_stride; |
| } |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| build_masked_compound_no_round( |
| dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, |
| comp_data, sb_type, inter_pred_params->block_height, |
| inter_pred_params->block_width, inter_pred_params); |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| // restore to previous state |
| inter_pred_params->conv_params.dst = org_dst; |
| inter_pred_params->conv_params.dst_stride = org_dst_stride; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Makes the interpredictor for the region by dividing it up into nxn blocks |
| // and running the interpredictor code on each one. |
| void make_inter_pred_of_nxn( |
| uint16_t *dst, int dst_stride, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| #if CONFIG_AFFINE_REFINEMENT |
| int plane, CompoundRefineType comp_refine_type, WarpedMotionParams *wms, |
| int_mv *mv, const int use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, |
| int n, SubpelParams *subpel_params) { |
| int n_blocks = 0; |
| int bw = inter_pred_params->orig_block_width; |
| int bh = inter_pred_params->orig_block_height; |
| int sub_bw = n; |
| int sub_bh = n; |
| #if CONFIG_AFFINE_REFINEMENT |
| MV ref_mv, cur_mv; |
| ref_mv.row = mv_refined[ref].as_mv.row; |
| ref_mv.col = mv_refined[ref].as_mv.col; |
| if (comp_refine_type >= COMP_AFFINE_REFINE_START && |
| !damr_refine_subblock(plane, bw, bh, comp_refine_type, n)) { |
| sub_bw = bw; |
| sub_bh = bh; |
| } |
| const int unit_offset = 1 << WARPEDMODEL_PREC_BITS; |
| WarpedMotionParams ref_wm = wms ? wms[ref] : default_warp_params; |
| #if AFFINE_CHROMA_REFINE_METHOD >= 2 |
| if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START && plane) { |
| // Apply offsets based on the affine parameters. bw, bh, and wm are |
| // for luma plane, so compute the warp MV in luma and then scale it |
| // for chroma |
| const int32_t blk_offset_x_hp = |
| ref_wm.wmmat[0] - mv->as_mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) + |
| mi_x * (ref_wm.wmmat[2] - unit_offset) + mi_y * ref_wm.wmmat[3]; |
| const int32_t blk_offset_y_hp = |
| ref_wm.wmmat[1] - mv->as_mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) + |
| mi_x * ref_wm.wmmat[4] + mi_y * (ref_wm.wmmat[5] - unit_offset); |
| ref_mv.col += ROUND_POWER_OF_TWO_SIGNED( |
| blk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); |
| ref_mv.row += ROUND_POWER_OF_TWO_SIGNED( |
| blk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); |
| } |
| #else |
| (void)mv; |
| #endif |
| #endif // CONFIG_AFFINE_REFINEMENT |
| assert(bw % sub_bw == 0); |
| assert(bh % sub_bh == 0); |
| CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst; |
| inter_pred_params->block_width = sub_bw; |
| inter_pred_params->block_height = sub_bh; |
| |
| MV *subblock_mv; |
| uint16_t *pre; |
| int src_stride = 0; |
| |
| // Process whole nxn blocks. |
| for (int j = 0; j < bh; j += sub_bh) { |
| for (int i = 0; i < bw; i += sub_bw) { |
| #if CONFIG_AFFINE_REFINEMENT |
| if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START && |
| use_affine_opfl) { |
| // If warped model is not valid, wmmat[0] and wmmat[1] remain the |
| // translational offset parameters in block-relative coordinates. Here |
| // they are applied as MV offsets for simple translational prediction |
| WarpedMotionParams this_wm = wms[ref]; |
| if (this_wm.invalid |
| #if !CONFIG_EXT_WARP_FILTER |
| || sub_bh < 8 || sub_bw < 8 |
| #endif // !CONFIG_EXT_WARP_FILTER |
| #if AFFINE_CHROMA_REFINE_METHOD >= 2 |
| || plane |
| #endif // AFFINE_CHROMA_REFINE_METHOD >= 2 |
| ) { |
| // When warp prediction is not allowed, apply translational prediction |
| // based on warp parameters |
| inter_pred_params->mode = TRANSLATION_PRED; |
| cur_mv = ref_mv; |
| // Apply offsets based on current subblock center position |
| const int subblk_center_x = (i + sub_bw / 2 - 1) |
| << inter_pred_params->subsampling_x; |
| const int subblk_center_y = (j + sub_bh / 2 - 1) |
| << inter_pred_params->subsampling_y; |
| const int32_t subblk_offset_x_hp = |
| subblk_center_x * (ref_wm.wmmat[2] - unit_offset) + |
| subblk_center_y * ref_wm.wmmat[3]; |
| const int32_t subblk_offset_y_hp = |
| subblk_center_x * ref_wm.wmmat[4] + |
| subblk_center_y * (ref_wm.wmmat[5] - unit_offset); |
| cur_mv.col += ROUND_POWER_OF_TWO_SIGNED( |
| subblk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); |
| cur_mv.row += ROUND_POWER_OF_TWO_SIGNED( |
| subblk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); |
| #if AFFINE_CHROMA_REFINE_METHOD == 3 |
| if ((comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P || |
| comp_refine_type == COMP_REFINE_ROTZOOM2P_SUBBLK2P) |
| #if !CONFIG_EXT_WARP_FILTER |
| && n > 4 |
| #endif // !CONFIG_EXT_WARP_FILTER |
| ) { |
| // If this is a 4x4 colocated chroma block of a 8x8 luma block, |
| // colocated subblocks will be 2x2. In this case we take the average |
| // of 4 refined MVs and use it to refine prediction at 4x4 level. |
| if (bw == 4 && bh == 4 && n == 4) { |
| cur_mv.col += ROUND_POWER_OF_TWO_SIGNED( |
| xd->mv_delta[0].mv[ref].as_mv.col + |
| xd->mv_delta[1].mv[ref].as_mv.col + |
| xd->mv_delta[2].mv[ref].as_mv.col + |
| xd->mv_delta[3].mv[ref].as_mv.col, |
| 2); |
| cur_mv.row += ROUND_POWER_OF_TWO_SIGNED( |
| xd->mv_delta[0].mv[ref].as_mv.row + |
| xd->mv_delta[1].mv[ref].as_mv.row + |
| xd->mv_delta[2].mv[ref].as_mv.row + |
| xd->mv_delta[3].mv[ref].as_mv.row, |
| 2); |
| } else { |
| cur_mv.col += xd->mv_delta[n_blocks].mv[ref].as_mv.col; |
| cur_mv.row += xd->mv_delta[n_blocks].mv[ref].as_mv.row; |
| } |
| } |
| #endif // AFFINE_CHROMA_REFINE_METHOD == 3 |
| subblock_mv = &cur_mv; |
| subblock_mv->col = clamp(subblock_mv->col, MV_LOW + 1, MV_UPP - 1); |
| subblock_mv->row = clamp(subblock_mv->row, MV_LOW + 1, MV_UPP - 1); |
| } else { |
| // Overwrite inter_pred_params to trigger warped prediction in |
| // av1_make_inter_predictor() |
| inter_pred_params->mode = WARP_PRED; |
| inter_pred_params->warp_params = this_wm; |
| if ((comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P || |
| comp_refine_type == COMP_REFINE_ROTZOOM2P_SUBBLK2P) |
| #if !CONFIG_EXT_WARP_FILTER |
| && n > 4 |
| #endif // !CONFIG_EXT_WARP_FILTER |
| ) { |
| // If this is a 4x4 colocated chroma block of a 8x8 luma block, |
| // colocated subblocks will be 2x2. In this case we take the average |
| // of 4 refined MVs and use it to refine prediction at 4x4 level. |
| if (bw == 4 && bh == 4 && n == 4) { |
| inter_pred_params->warp_params.wmmat[0] += |
| (xd->mv_delta[0].mv[ref].as_mv.col + |
| xd->mv_delta[1].mv[ref].as_mv.col + |
| xd->mv_delta[2].mv[ref].as_mv.col + |
| xd->mv_delta[3].mv[ref].as_mv.col) * |
| (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2)); |
| inter_pred_params->warp_params.wmmat[1] += |
| (xd->mv_delta[0].mv[ref].as_mv.row + |
| xd->mv_delta[1].mv[ref].as_mv.row + |
| xd->mv_delta[2].mv[ref].as_mv.row + |
| xd->mv_delta[3].mv[ref].as_mv.row) * |
| (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2)); |
| } else { |
| inter_pred_params->warp_params.wmmat[0] += |
| xd->mv_delta[n_blocks].mv[ref].as_mv.col * |
| (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS)); |
| inter_pred_params->warp_params.wmmat[1] += |
| xd->mv_delta[n_blocks].mv[ref].as_mv.row * |
| (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS)); |
| } |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| inter_pred_params->warp_params.wmmat[0] = |
| clamp(inter_pred_params->warp_params.wmmat[0], |
| -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| inter_pred_params->warp_params.wmmat[1] = |
| clamp(inter_pred_params->warp_params.wmmat[1], |
| -WARPEDMODEL_TRANS_CLAMP, |
| WARPEDMODEL_TRANS_CLAMP - unit_offset); |
| #else |
| inter_pred_params->warp_params.wmmat[0] = |
| clamp(inter_pred_params->warp_params.wmmat[0], |
| -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1); |
| inter_pred_params->warp_params.wmmat[1] = |
| clamp(inter_pred_params->warp_params.wmmat[1], |
| -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| } |
| subblock_mv = &mv_refined[ref].as_mv; |
| } |
| } else { |
| subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv); |
| } |
| #else |
| subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i, |
| mi_y + j, ref, 1, mc_buf, &pre, subpel_params, |
| &src_stride); |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| int use_bacp = 0; |
| assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE); |
| assert(inter_pred_params->comp_mode == UNIFORM_COMP); |
| int stored_do_average = inter_pred_params->conv_params.do_average; |
| InterCompMode stored_comp_mode = inter_pred_params->comp_mode; |
| uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask; |
| |
| if (inter_pred_params->border_data.enable_bacp) { |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 = |
| subpel_params->x0; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 = |
| subpel_params->x1; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 = |
| subpel_params->y0; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 = |
| subpel_params->y1; |
| if (ref == 1) { |
| use_bacp = is_out_of_frame_block( |
| inter_pred_params, inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, n_blocks); |
| |
| if (use_bacp && |
| inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = 0; |
| inter_pred_params->comp_mode = MASK_COMP; |
| inter_pred_params->mask_comp.seg_mask = xd->seg_mask; |
| } |
| } |
| } |
| |
| assert(IMPLIES(ref == 0, !use_bacp)); |
| if (use_bacp) { |
| assert(inter_pred_params->comp_mode == MASK_COMP); |
| make_masked_inter_predictor(pre, src_stride, dst, dst_stride, |
| inter_pred_params, subpel_params, use_bacp, |
| n_blocks); |
| |
| } else { |
| #endif |
| |
| av1_make_inter_predictor(pre, src_stride, dst, dst_stride, |
| inter_pred_params, subpel_params); |
| #if CONFIG_D071_IMP_MSK_BLD |
| } |
| |
| // Restored to original inter_pred_params |
| if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = stored_do_average; |
| inter_pred_params->comp_mode = stored_comp_mode; |
| inter_pred_params->mask_comp.seg_mask = stored_seg_mask; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| n_blocks++; |
| dst += sub_bw; |
| inter_pred_params->conv_params.dst += sub_bw; |
| inter_pred_params->pix_col += sub_bw; |
| } |
| dst -= bw; |
| inter_pred_params->conv_params.dst -= bw; |
| inter_pred_params->pix_col -= bw; |
| |
| dst += sub_bh * dst_stride; |
| inter_pred_params->conv_params.dst += |
| sub_bh * inter_pred_params->conv_params.dst_stride; |
| inter_pred_params->pix_row += sub_bh; |
| } |
| |
| inter_pred_params->conv_params.dst = orig_conv_dst; |
| } |
| |
| // Use a second pass of motion compensation to rebuild inter predictor |
| void av1_opfl_rebuild_inter_predictor( |
| uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| #if CONFIG_AFFINE_REFINEMENT |
| CompoundRefineType comp_refine_type, WarpedMotionParams *wms, int_mv *mv, |
| const int use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ) { |
| SubpelParams subpel_params; |
| int w = inter_pred_params->block_width; |
| int h = inter_pred_params->block_height; |
| int n = opfl_get_subblock_size(w, h, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| make_inter_pred_of_nxn( |
| dst, dst_stride, mv_refined, inter_pred_params, xd, mi_x, mi_y, |
| #if CONFIG_AFFINE_REFINEMENT |
| plane, comp_refine_type, wms, mv, use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| ref, mc_buf, calc_subpel_params_func, n, &subpel_params); |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| void av1_build_one_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| int use_bacp = 0; |
| int sub_block_id = 0; |
| if (inter_pred_params->border_data.enable_bacp) { |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 = |
| subpel_params.x0; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 = |
| subpel_params.x1; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 = |
| subpel_params.y0; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 = |
| subpel_params.y1; |
| if (ref == 1) { |
| use_bacp = is_out_of_frame_block( |
| inter_pred_params, inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, sub_block_id); |
| if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = 0; |
| inter_pred_params->comp_mode = MASK_COMP; |
| inter_pred_params->mask_comp.seg_mask = xd->seg_mask; |
| } |
| } |
| } |
| |
| assert(IMPLIES(ref == 0, !use_bacp)); |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| #if CONFIG_D071_IMP_MSK_BLD |
| assert(IMPLIES(use_bacp, ref == 0)); |
| assert(use_bacp == 0); |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params |
| #if CONFIG_D071_IMP_MSK_BLD |
| , |
| use_bacp, 0 |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| ); |
| #if CONFIG_D071_IMP_MSK_BLD |
| assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1)); |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| } |
| |
| #if CONFIG_EXPLICIT_BAWP |
| // Derive the offset value of block adaptive weighted prediction |
| // mode. One row from the top boundary and one column from the left boundary |
| // are used in the less square error process. |
| static void derive_explicit_bawp_offsets(MACROBLOCKD *xd, uint16_t *recon_top, |
| uint16_t *recon_left, int rec_stride, |
| uint16_t *ref_top, uint16_t *ref_left, |
| int ref_stride, int ref, int plane, |
| int bw, int bh) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| #if CONFIG_BAWP_CHROMA |
| assert(mbmi->bawp_flag[0] > 1); |
| #else |
| assert(mbmi->bawp_flag > 1); |
| #endif // CONFIG_BAWP_CHROMA |
| // only integer position of reference, may need to consider |
| // fractional position of ref samples |
| int count = 0; |
| int sum_x = 0, sum_y = 0; |
| |
| if (xd->up_available) { |
| for (int i = 0; i < bw; ++i) { |
| sum_x += ref_top[i]; |
| sum_y += recon_top[i]; |
| } |
| count += bw; |
| } |
| |
| if (xd->left_available) { |
| for (int i = 0; i < bh; ++i) { |
| sum_x += ref_left[0]; |
| sum_y += recon_left[0]; |
| |
| recon_left += rec_stride; |
| ref_left += ref_stride; |
| } |
| count += bh; |
| } |
| |
| const int16_t shift = 8; // maybe a smaller value can be used |
| if (count > 0) { |
| mbmi->bawp_beta[plane][ref] = |
| ((sum_y << shift) - sum_x * mbmi->bawp_alpha[plane][ref]) / count; |
| } else { |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } |
| } |
| #endif // CONFIG_EXPLICIT_BAWP |
| |
| #if CONFIG_BAWP |
| // Derive the scaling factor and offset of block adaptive weighted prediction |
| // mode. One row from the top boundary and one column from the left boundary |
| // are used in the less square error process. |
| static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top, |
| uint16_t *recon_left, int rec_stride, |
| uint16_t *ref_top, uint16_t *ref_left, |
| int ref_stride, int ref, int plane, int bw, |
| int bh) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| #if CONFIG_BAWP_CHROMA |
| assert(mbmi->bawp_flag[0] >= 1); |
| #else |
| assert(mbmi->bawp_flag == 1); |
| #endif // CONFIG_BAWP_CHROMA |
| // only integer position of reference, may need to consider |
| // fractional position of ref samples |
| int count = 0; |
| int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; |
| |
| if (xd->up_available) { |
| for (int i = 0; i < bw; ++i) { |
| sum_x += ref_top[i]; |
| sum_y += recon_top[i]; |
| sum_xy += ref_top[i] * recon_top[i]; |
| sum_xx += ref_top[i] * ref_top[i]; |
| } |
| count += bw; |
| } |
| |
| if (xd->left_available) { |
| for (int i = 0; i < bh; ++i) { |
| sum_x += ref_left[0]; |
| sum_y += recon_left[0]; |
| sum_xy += ref_left[0] * recon_left[0]; |
| sum_xx += ref_left[0] * ref_left[0]; |
| |
| recon_left += rec_stride; |
| ref_left += ref_stride; |
| } |
| count += bh; |
| } |
| |
| const int16_t shift = 8; // maybe a smaller value can be used |
| if (count > 0) { |
| int32_t der = sum_xx - (int32_t)((int64_t)sum_x * sum_x / count); |
| int32_t nor = sum_xy - (int32_t)((int64_t)sum_x * sum_y / count); |
| // Add a small portion to both self-correlation and cross-correlation to |
| // keep mode stable and have scaling factor leaning to value 1.0 |
| // Temporal design, to be further updated |
| nor += der / 16; |
| der += der / 16; |
| |
| #if CONFIG_BAWP_CHROMA |
| if (plane == 0) { |
| if (nor && der) |
| mbmi->bawp_alpha[plane][ref] = resolve_divisor_32_CfL(nor, der, shift); |
| else |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| } else { |
| mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref]; |
| } |
| #else |
| if (nor && der) |
| mbmi->bawp_alpha[plane][ref] = resolve_divisor_32_CfL(nor, der, shift); |
| else |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| #endif // CONFIG_BAWP_CHROMA |
| mbmi->bawp_beta[plane][ref] = |
| ((sum_y << shift) - sum_x * mbmi->bawp_alpha[plane][ref]) / count; |
| } else { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } |
| } |
| |
| // generate inter prediction of a block coded in bwap mode enabled |
| void av1_build_one_bawp_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd, |
| const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref, |
| int plane, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| assert(inter_pred_params->comp_mode == UNIFORM_SINGLE); |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params |
| #if CONFIG_D071_IMP_MSK_BLD |
| , |
| 0, 0 |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| ); |
| } |
| |
| const int shift = 8; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int x_off = mbmi->mv[ref].as_mv.col >> 3; |
| const int y_off = mbmi->mv[ref].as_mv.row >> 3; |
| |
| const int x_off_p = x_off >> inter_pred_params->subsampling_x; |
| const int y_off_p = y_off >> inter_pred_params->subsampling_y; |
| |
| const int mi_x_p = mi_x >> inter_pred_params->subsampling_x; |
| const int mi_y_p = mi_y >> inter_pred_params->subsampling_y; |
| |
| const int width_p = cm->width >> inter_pred_params->subsampling_x; |
| const int height_p = cm->height >> inter_pred_params->subsampling_y; |
| |
| int ref_w = bw; |
| if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p; |
| |
| int ref_h = bh; |
| if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p; |
| |
| if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 || |
| (mi_y_p + y_off_p - BAWP_REF_LINES) < 0 || |
| (mi_x_p + ref_w + x_off_p) >= width_p || |
| (mi_y_p + ref_h + y_off_p) >= height_p) { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } else { |
| uint16_t *recon_buf = xd->plane[plane].dst.buf; |
| int recon_stride = xd->plane[plane].dst.stride; |
| if (dst_orig != NULL) { |
| recon_buf = dst_orig->plane[plane]; |
| recon_stride = dst_orig->stride[plane]; |
| } |
| uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride; |
| uint16_t *recon_left = recon_buf - BAWP_REF_LINES; |
| |
| // the picture boundary limitation to be checked. |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ref_stride = pd->pre[ref].stride; |
| uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p; |
| uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride; |
| uint16_t *ref_left = ref_buf - BAWP_REF_LINES; |
| #if CONFIG_EXPLICIT_BAWP |
| #if CONFIG_BAWP_CHROMA |
| if (mbmi->bawp_flag[0] > 1 && plane == 0) { |
| #else |
| if (mbmi->bawp_flag > 1) { |
| #endif // CONFIG_BAWP_CHROMA |
| const int first_ref_dist = |
| cm->ref_frame_relative_dist[mbmi->ref_frame[0]]; |
| const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 }, |
| { -2, 2 }, |
| { -3, 3 } }; |
| const int list_index = |
| (mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2); |
| #if CONFIG_BAWP_CHROMA |
| int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2]; |
| #else |
| int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag - 2]; |
| #endif // CONFIG_BAWP_CHROMA |
| const int delta_sign = delta_scales > 0 ? 1 : -1; |
| const int delta_magtitude = delta_sign * delta_scales; |
| if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1); |
| mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16); |
| derive_explicit_bawp_offsets(xd, recon_top, recon_left, recon_stride, |
| ref_top, ref_left, ref_stride, ref, plane, |
| ref_w, ref_h); |
| } else |
| #endif // CONFIG_EXPLICIT_BAWP |
| derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top, |
| ref_left, ref_stride, ref, plane, ref_w, ref_h); |
| } |
| |
| int16_t alpha = mbmi->bawp_alpha[plane][ref]; |
| int32_t beta = mbmi->bawp_beta[plane][ref]; |
| for (int j = 0; j < bh; ++j) { |
| for (int i = 0; i < bw; ++i) { |
| dst[j * dst_stride + i] = clip_pixel_highbd( |
| (dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd); |
| } |
| } |
| } |
| #endif // CONFIG_BAWP |
| |
| // True if the following hold: |
| // 1. Not intrabc and not build_for_obmc |
| // 2. At least one dimension is size 4 with subsampling |
| // 3. If sub-sampled, none of the previous blocks around the sub-sample |
| // are intrabc or inter-blocks |
| static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mi, int plane, int is_intrabc, |
| int build_for_obmc) { |
| if (is_intrabc || build_for_obmc) { |
| return false; |
| } |
| |
| if (!(plane && |
| (mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base))) |
| return false; |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates |
| // for the top-left corner of the prediction source. So, we need to find the |
| // correct top-left corner (row_start, col_start). |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const int row_start = |
| plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0; |
| const int col_start = |
| plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0; |
| const BLOCK_SIZE plane_bsize = |
| plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; |
| const int plane_mi_height = mi_size_high[plane_bsize]; |
| const int plane_mi_width = mi_size_wide[plane_bsize]; |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| |
| // Scan through all the blocks in the current chroma unit |
| for (int row = 0; row < plane_mi_height; ++row) { |
| const int row_coord = row_start + row; |
| if (mi_row + row_coord >= mi_rows) break; |
| for (int col = 0; col < plane_mi_width; ++col) { |
| const int col_coord = col_start + col; |
| if (mi_col + col_coord >= mi_cols) break; |
| // For the blocks at the lower right of the final chroma block, the mis |
| // are not set up correctly yet, so we do not check them. |
| if ((row_coord >= 0 && col_coord > 0) || |
| (col_coord >= 0 && row_coord > 0)) { |
| break; |
| } |
| const MB_MODE_INFO *this_mbmi = |
| xd->mi[row_coord * xd->mi_stride + col_coord]; |
| assert(this_mbmi != NULL); |
| if (!is_inter_block(this_mbmi, xd->tree_type)) return false; |
| if (is_intrabc_block(this_mbmi, xd->tree_type)) return false; |
| } |
| } |
| return true; |
| } |
| |
| static void build_inter_predictors_sub8x8( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool ss_x = pd->subsampling_x; |
| const bool ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; |
| const int plane_mi_height = mi_size_high[plane_bsize]; |
| const int plane_mi_width = mi_size_wide[plane_bsize]; |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int row_start = |
| plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0; |
| const int col_start = |
| plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| const int mi_stride = xd->mi_stride; |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| |
| const int mb_to_top_edge_start = xd->mb_to_top_edge; |
| const int mb_to_left_edge_start = xd->mb_to_left_edge; |
| const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge; |
| const int mb_to_right_edge_start = xd->mb_to_right_edge; |
| |
| // Row progress keeps track of which mi block in the row has been set. |
| SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 }; |
| assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8); |
| assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8); |
| assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE); |
| for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) { |
| if (xd->mi_row + row_start + mi_row >= mi_rows) break; |
| for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) { |
| if (xd->mi_col + col_start + mi_col >= mi_cols) break; |
| const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col); |
| if (row_progress[mi_row] & check_flag) { |
| continue; |
| } |
| |
| const MB_MODE_INFO *this_mbmi = |
| xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)]; |
| assert(this_mbmi != NULL); |
| |
| const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y]; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| int row = row_start + mi_row + xd->mi_row; |
| int col = col_start + mi_col + xd->mi_col; |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE); |
| xd->mb_to_bottom_edge = |
| GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE); |
| xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE)); |
| xd->mb_to_right_edge = |
| GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE); |
| |
| // The flag here is a block of mi_width many 1s offset by the mi_col. |
| // For example, if the current mi_col is 2, and the mi_width is 2, then |
| // the flag will be 00110000. We or this with row_progress to update the |
| // blocks that have been coded. |
| // Note that because we are always coding in a causal order, we could |
| // technically simplify the bitwise operation, and use the flag 11110000 |
| // in the above example instead. However, we are not taking this approach |
| // here to keep the logic simpler. |
| const SUB_8_BITMASK_T set_flag = |
| ((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) & |
| SUB_8_BITMASK_ON) >> |
| mi_col; |
| for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) { |
| row_progress[mi_row + mi_row_offset] |= set_flag; |
| } |
| |
| assert(is_inter_block(this_mbmi, xd->tree_type)); |
| const int chroma_width = block_size_wide[bsize] >> ss_x; |
| const int chroma_height = block_size_high[bsize] >> ss_y; |
| const int pixel_row = (MI_SIZE * mi_row >> ss_y); |
| const int pixel_col = (MI_SIZE * mi_col >> ss_x); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // TODO(yuec): enabling compound prediction in none sub8x8 mbs in the |
| // group |
| bool is_compound = 0; |
| #else |
| bool is_compound = has_second_ref(this_mbmi); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col; |
| int ref = 0; |
| const RefCntBuffer *ref_buf = |
| get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *const sf = ref_scale_factors; |
| const struct buf_2d pre_buf = { |
| NULL, |
| (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_stride, |
| }; |
| |
| const MV mv = this_mbmi->mv[ref].as_mv; |
| InterPredParams inter_pred_params; |
| av1_init_inter_params( |
| &inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row, |
| pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr); |
| inter_pred_params.conv_params = |
| get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd); |
| |
| av1_build_one_inter_predictor( |
| dst, dst_buf->stride, &mv, &inter_pred_params, xd, mi_x + pixel_col, |
| mi_y + pixel_row, ref, mc_buf, calc_subpel_params_func); |
| } |
| } |
| xd->mb_to_top_edge = mb_to_top_edge_start; |
| xd->mb_to_bottom_edge = mb_to_bottom_edge_start; |
| xd->mb_to_left_edge = mb_to_left_edge_start; |
| xd->mb_to_right_edge = mb_to_right_edge_start; |
| } |
| |
| #if CONFIG_REFINEMV |
| // Padding if the pixel position falls outside of the defined reference area |
| static void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int x0, |
| int y0, int b_w, int b_h, |
| const ReferenceArea *ref_area) { |
| // Get a pointer to the start of the real data for this row. |
| const uint16_t *ref_row = src - x0 - y0 * src_stride; |
| |
| if (y0 >= ref_area->pad_block.y1) |
| ref_row += (ref_area->pad_block.y1 - 1) * src_stride; |
| else if (y0 >= ref_area->pad_block.y0) |
| ref_row += y0 * src_stride; |
| else |
| ref_row += ref_area->pad_block.y0 * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x0 < ref_area->pad_block.x0 ? ref_area->pad_block.x0 - x0 : 0; |
| |
| if (left > b_w) left = b_w; |
| |
| if (x0 + b_w > ref_area->pad_block.x1) |
| right = x0 + b_w - ref_area->pad_block.x1; |
| |
| if (right > b_w) right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) aom_memset16(dst, ref_row[0], left); |
| |
| if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t)); |
| |
| if (right) |
| aom_memset16(dst + left + copy, ref_row[ref_area->pad_block.x1 - 1], |
| right); |
| |
| dst += dst_stride; |
| ++y0; |
| |
| if (y0 > ref_area->pad_block.y0 && y0 < ref_area->pad_block.y1) |
| ref_row += src_stride; |
| } while (--b_h); |
| } |
| // check if padding is required during motion compensation |
| // return 1 means reference pixel is outside of the reference range and padding |
| // is required return 0 means no padding. |
| int update_extend_mc_border_params(const struct scale_factors *const sf, |
| struct buf_2d *const pre_buf, MV32 scaled_mv, |
| PadBlock *block, int subpel_x_mv, |
| int subpel_y_mv, int do_warp, int is_intrabc, |
| int *x_pad, int *y_pad, |
| const ReferenceArea *ref_area) { |
| // Get reference width and height. |
| int frame_width = pre_buf->width; |
| int frame_height = pre_buf->height; |
| |
| // Do border extension if there is motion or |
| // width/height is not a multiple of 8 pixels. |
| // Extension is needed in optical flow refinement to obtain MV offsets |
| (void)scaled_mv; |
| if (!is_intrabc && !do_warp) { |
| if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { |
| block->x0 -= AOM_INTERP_EXTEND - 1; |
| block->x1 += AOM_INTERP_EXTEND; |
| *x_pad = 1; |
| } |
| |
| if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { |
| block->y0 -= AOM_INTERP_EXTEND - 1; |
| block->y1 += AOM_INTERP_EXTEND; |
| *y_pad = 1; |
| } |
| |
| // Skip border extension if block is inside the frame. |
| if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || |
| block->y1 > frame_height - 1) { |
| return 1; |
| } |
| |
| if (ref_area) { |
| // Skip border extension if block is in the reference area. |
| if (block->x0 < ref_area->pad_block.x0 || |
| block->x1 > ref_area->pad_block.x1 || |
| block->y0 < ref_area->pad_block.y0 || |
| block->y1 > ref_area->pad_block.y1) { |
| return 1; |
| } |
| } |
| } |
| return 0; |
| }; |
| |
| // perform padding of the motion compensated block if requires. |
| // Padding is performed if the motion compensated block is partially out of the |
| // reference area. |
| static void refinemv_extend_mc_border( |
| const struct scale_factors *const sf, struct buf_2d *const pre_buf, |
| MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv, |
| int do_warp, int is_intrabc, uint16_t *paded_ref_buf, |
| int paded_ref_buf_stride, uint16_t **pre, int *src_stride, |
| const ReferenceArea *ref_area) { |
| int x_pad = 0, y_pad = 0; |
| if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, |
| subpel_x_mv, subpel_y_mv, do_warp, |
| is_intrabc, &x_pad, &y_pad, ref_area)) { |
| // printf(" Out of border \n"); |
| // Get reference block pointer. |
| const uint16_t *const buf_ptr = |
| pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; |
| int buf_stride = pre_buf->stride; |
| const int b_w = block.x1 - block.x0; |
| const int b_h = block.y1 - block.y0; |
| |
| refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf, |
| paded_ref_buf_stride, block.x0, block.y0, b_w, |
| b_h, ref_area); |
| *src_stride = paded_ref_buf_stride; |
| *pre = paded_ref_buf + |
| y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride + |
| x_pad * (AOM_INTERP_EXTEND - 1); |
| } |
| } |
| |
| // Derive the sub-pixel related parameters of TIP blocks |
| // Sub-pel related parameters are stored in the structures pointed by |
| // "subpel_params" and "block" |
| void tip_dec_calc_subpel_params(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| int mi_x, int mi_y, uint16_t **pre, |
| SubpelParams *subpel_params, int *src_stride, |
| PadBlock *block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| MV32 *scaled_mv, int *subpel_x_mv, |
| int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| |
| #if CONFIG_REFINEMV |
| const int bw = inter_pred_params->original_pu_width; |
| const int bh = inter_pred_params->original_pu_height; |
| #else |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Use original block size to clamp MV and to extend block boundary |
| const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width |
| : inter_pred_params->block_width; |
| const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height |
| : inter_pred_params->block_height; |
| #else |
| const int bw = inter_pred_params->block_width; |
| const int bh = inter_pred_params->block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #endif // CONFIG_REFINEMV |
| |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| const int ssx = inter_pred_params->subsampling_x; |
| const int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (use_optflow_refinement) { |
| orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssy); |
| orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssx); |
| } else { |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| } |
| #else |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| block->x1 = |
| ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| block->y1 = |
| ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| #else |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1; |
| block->y1 = |
| ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| MV temp_mv; |
| temp_mv = tip_clamp_mv_to_umv_border_sb(inter_pred_params, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = tip_clamp_mv_to_umv_border_sb( |
| inter_pred_params, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| pos_x = (pos_x >> SUBPEL_BITS); |
| pos_y = (pos_y >> SUBPEL_BITS); |
| block->x0 = pos_x; |
| block->y0 = pos_y; |
| |
| // Get reference block bottom right coordinate. |
| #if CONFIG_D071_IMP_MSK_BLD |
| block->x1 = pos_x + inter_pred_params->block_width; |
| block->y1 = pos_y + inter_pred_params->block_height; |
| #else |
| block->x1 = pos_x + bw; |
| block->y1 = pos_y + bh; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (inter_pred_params->border_data.enable_bacp) { |
| subpel_params->x0 = block->x0; |
| subpel_params->x1 = block->x1; |
| subpel_params->y0 = block->y0; |
| subpel_params->y1 = block->y1; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| |
| void tip_common_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride) { |
| (void)ref; |
| (void)mc_buf; |
| (void)xd; |
| |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| assert(inter_pred_params->use_ref_padding); |
| |
| tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| const int paded_ref_buf_stride = |
| inter_pred_params->ref_area->paded_ref_buf_stride; |
| refinemv_extend_mc_border( |
| inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, |
| scaled_mv, block, subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, |
| &inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre, |
| src_stride, inter_pred_params->ref_area); |
| } |
| |
| void dec_calc_subpel_params(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| const MACROBLOCKD *const xd, int mi_x, int mi_y, |
| uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride, PadBlock *block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| MV32 *scaled_mv, int *subpel_x_mv, |
| int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| |
| #if CONFIG_REFINEMV |
| const int bw = inter_pred_params->original_pu_width; |
| const int bh = inter_pred_params->original_pu_height; |
| #else |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Use original block size to clamp MV and to extend block boundary |
| const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width |
| : inter_pred_params->block_width; |
| const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height |
| : inter_pred_params->block_height; |
| #else |
| const int bw = inter_pred_params->block_width; |
| const int bh = inter_pred_params->block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #endif // CONFIG_REFINEMV |
| |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| int ssx = inter_pred_params->subsampling_x; |
| int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (use_optflow_refinement) { |
| orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssy); |
| orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssx); |
| } else { |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| } |
| #else |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| block->y1 = |
| ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| |
| MV temp_mv; |
| temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| block->x0 = pos_x >> SUBPEL_BITS; |
| block->y0 = pos_y >> SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| (pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1; |
| block->y1 = |
| (pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1; |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (inter_pred_params->border_data.enable_bacp) { |
| subpel_params->x0 = block->x0; |
| subpel_params->x1 = block->x1; |
| subpel_params->y0 = block->y0; |
| subpel_params->y1 = block->y1; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| |
| void common_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride) { |
| (void)ref; |
| (void)mc_buf; |
| |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| assert(inter_pred_params->use_ref_padding); |
| dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| // printf(" Use ref padding \n"); |
| const int paded_ref_buf_stride = |
| inter_pred_params->ref_area->paded_ref_buf_stride; |
| refinemv_extend_mc_border( |
| inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, |
| scaled_mv, block, subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, |
| &inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre, |
| src_stride, inter_pred_params->ref_area); |
| } |
| |
| static void get_ref_area_info(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride, ReferenceArea *ref_area, |
| int is_tip) { |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| |
| if (is_tip) { |
| tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| } else { |
| dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| } |
| |
| struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf; |
| int frame_height = pre_buf->height; |
| int frame_width = pre_buf->width; |
| block.x0 -= REF_LEFT_BORDER; |
| block.x1 += REF_RIGHT_BORDER; |
| block.y0 -= REF_TOP_BORDER; |
| block.y1 += REF_BOTTOM_BORDER; |
| |
| ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1); |
| ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1); |
| ref_area->pad_block.x1 = CLIP(block.x1, 0, frame_width); |
| ref_area->pad_block.y1 = CLIP(block.y1, 0, frame_height); |
| } |
| |
| void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, int bw, |
| int bh, int mi_x, int mi_y, |
| ReferenceArea ref_area[2], |
| const int comp_pixel_x, |
| const int comp_pixel_y) { |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| assert(IMPLIES(!is_tip, has_second_ref(mi))); |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| int row_start = 0; |
| int col_start = 0; |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| |
| const int pre_x = is_tip |
| ? comp_pixel_x |
| : ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); |
| const int pre_y = is_tip |
| ? comp_pixel_y |
| : ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); |
| |
| for (int ref = 0; ref < 2; ++ref) { |
| const struct scale_factors *const sf = |
| is_tip ? cm->tip_ref.ref_scale_factor[ref] |
| : xd->block_ref_scale_factors[ref]; |
| const struct buf_2d *const pre_buf = |
| is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref] : &pd->pre[ref]; |
| |
| // initialize the reference buffer |
| ref_area[ref].pad_block.x0 = 0; |
| ref_area[ref].pad_block.y0 = 0; |
| ref_area[ref].pad_block.x1 = cm->width; |
| ref_area[ref].pad_block.y1 = cm->height; |
| ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, |
| is_tip ? MULTITAP_SHARP : mi->interp_fltr); |
| |
| inter_pred_params.original_pu_width = bw; |
| inter_pred_params.original_pu_height = bh; |
| |
| const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); |
| const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); |
| inter_pred_params.dist_to_top_edge = -GET_MV_SUBPEL(pre_y); |
| inter_pred_params.dist_to_bottom_edge = GET_MV_SUBPEL(height - bh - pre_y); |
| inter_pred_params.dist_to_left_edge = -GET_MV_SUBPEL(pre_x); |
| inter_pred_params.dist_to_right_edge = GET_MV_SUBPEL(width - bw - pre_x); |
| |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| |
| assert(!inter_pred_params.use_ref_padding); |
| |
| MV *src_mv = ref == 0 ? &mi->mv[0].as_mv : &mi->mv[1].as_mv; |
| get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &src, &subpel_params, &src_stride, &ref_area[ref], |
| is_tip); |
| } |
| } |
| |
| int av1_refinemv_build_predictors_and_get_sad( |
| MACROBLOCKD *xd, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst_ref0, |
| uint16_t *dst_ref1, MV mv0, MV mv1, InterPredParams *inter_pred_params) { |
| for (int ref = 0; ref < 2; ref++) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1; |
| MV *src_mv = ref == 0 ? &mv0 : &mv1; |
| calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y, |
| ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| 0, /* use_optflow_refinement */ |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, &src, &subpel_params, &src_stride); |
| assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE || |
| inter_pred_params[ref].comp_mode == UNIFORM_COMP); |
| av1_make_inter_predictor(src, src_stride, dst_ref, bw, |
| &inter_pred_params[ref], &subpel_params); |
| } |
| |
| return get_refinemv_sad(dst_ref0, dst_ref1, bw, bh, xd->bd); |
| } |
| void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, |
| MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y, |
| uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, |
| int pre_x, int pre_y, uint16_t *dst_ref0, |
| uint16_t *dst_ref1, MV *best_mv_ref, int pu_width, |
| int pu_height) { |
| // initialize basemv as best MV |
| best_mv_ref[0] = mi->mv[0].as_mv; |
| best_mv_ref[1] = mi->mv[1].as_mv; |
| |
| const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] }; |
| assert(mi->refinemv_flag < REFINEMV_NUM_MODES); |
| assert(cm->seq_params.enable_refinemv); |
| |
| // Generate MV independent inter_pred_params for both references |
| InterPredParams inter_pred_params[2]; |
| for (int ref = 0; ref < 2; ref++) { |
| const int is_compound = 0; |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| |
| assert(is_intrabc == 0); |
| assert(plane == 0); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| |
| const struct scale_factors *const sf = |
| is_tip ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity |
| : xd->block_ref_scale_factors[ref]); |
| const struct buf_2d *const pre_buf = |
| is_tip ? &cm->tip_ref.tip_plane[plane].pred[ref] |
| : (is_intrabc ? dst_buf : &pd->pre[ref]); |
| |
| av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, BILINEAR); |
| |
| #if CONFIG_REFINEMV |
| inter_pred_params[ref].original_pu_width = pu_width; |
| inter_pred_params[ref].original_pu_height = pu_height; |
| #endif // CONFIG_REFINEMV |
| |
| const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); |
| const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); |
| inter_pred_params[ref].dist_to_top_edge = -GET_MV_SUBPEL(pre_y); |
| inter_pred_params[ref].dist_to_bottom_edge = |
| GET_MV_SUBPEL(height - bh - pre_y); |
| inter_pred_params[ref].dist_to_left_edge = -GET_MV_SUBPEL(pre_x); |
| inter_pred_params[ref].dist_to_right_edge = |
| GET_MV_SUBPEL(width - bw - pre_x); |
| |
| inter_pred_params[ref].conv_params = get_conv_params_no_round( |
| 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| assert(inter_pred_params[ref].mode == TRANSLATION_PRED); |
| assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE); |
| assert(inter_pred_params[ref].conv_params.is_compound == 0); |
| assert(inter_pred_params[ref].conv_params.do_average == 0); |
| assert(mi->interinter_comp.type == COMPOUND_AVERAGE); |
| } |
| |
| #if !SINGLE_STEP_SEARCH |
| // Search integer-delta values |
| int search_range = 2; |
| #endif |
| |
| int switchable_refinemv_flags = |
| (mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi); |
| assert(mi->refinemv_flag); |
| |
| // If we signal the refinemv_flags we do not select sad0 |
| // Set sad0 a large value so that it does not be selected |
| int sad0 = switchable_refinemv_flags |
| ? (INT32_MAX >> 1) |
| : av1_refinemv_build_predictors_and_get_sad( |
| xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, |
| dst_ref0, dst_ref1, center_mvs[0], center_mvs[1], |
| inter_pred_params); |
| |
| assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8)); |
| if (mi->ref_frame[0] == TIP_FRAME) { |
| const int tip_sad_thres = bw * bh; |
| if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return; |
| } |
| |
| if (!switchable_refinemv_flags) { |
| int shift = 3; |
| int th = (bw * bh) << 1; |
| sad0 -= (sad0 >> shift); |
| assert(sad0 >= 0); |
| if (sad0 < th) return; |
| } |
| |
| int min_sad = sad0; |
| MV refined_mv0, refined_mv1; |
| refined_mv0 = center_mvs[0]; |
| refined_mv1 = center_mvs[1]; |
| int et_sad_th = (bw * bh) << 1; |
| |
| #if !SINGLE_STEP_SEARCH |
| uint8_t already_searched[5][5]; |
| for (int i = 0; i < 5; i++) { |
| for (int j = 0; j < 5; j++) { |
| already_searched[i][j] = 0; |
| } |
| } |
| #endif |
| |
| MV best_offset = { 0, 0 }; |
| |
| #if SINGLE_STEP_SEARCH |
| const int num_neighbors = 24; |
| static const MV neighbors[24] = { |
| { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, |
| { 1, -1 }, { 0, -1 }, { 0, -2 }, { -1, -2 }, { -2, -2 }, { -2, -1 }, |
| { -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, 2 }, { 0, 2 }, { 1, 2 }, |
| { 2, 2 }, { 2, 1 }, { 2, 0 }, { 2, -1 }, { 2, -2 }, { 1, -2 } |
| |
| }; |
| |
| #else |
| const int num_neighbors = 8; |
| // Apply two-step full pel refinement |
| static const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, |
| { 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } }; |
| |
| const int num_iterations = search_range; |
| already_searched[0 + search_range][0 + search_range] = |
| 1; // center point is already searched before |
| for (int ite = 0; ite < num_iterations; ++ite) { |
| #endif // SINGLE_STEP_SEARCH |
| |
| int best_idx = -1; |
| |
| for (int idx = 0; idx < num_neighbors; ++idx) { |
| MV offset = { best_offset.row + neighbors[idx].row, |
| best_offset.col + neighbors[idx].col }; |
| #if !SINGLE_STEP_SEARCH |
| if (already_searched[offset.row + search_range][offset.col + search_range]) |
| continue; |
| #endif |
| refined_mv0.row = center_mvs[0].row + 8 * offset.row; |
| refined_mv0.col = center_mvs[0].col + 8 * offset.col; |
| refined_mv1.row = center_mvs[1].row - 8 * offset.row; |
| refined_mv1.col = center_mvs[1].col - 8 * offset.col; |
| |
| int this_sad = av1_refinemv_build_predictors_and_get_sad( |
| xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0, |
| dst_ref1, refined_mv0, refined_mv1, inter_pred_params); |
| |
| #if !SINGLE_STEP_SEARCH |
| already_searched[offset.row + search_range][offset.col + search_range] = 1; |
| #endif |
| |
| if (this_sad < min_sad) { |
| min_sad = this_sad; |
| best_idx = idx; |
| // if the SAD is less than predefined threshold consider this candidate |
| // as good enough to skip rest of the search. |
| if (min_sad < et_sad_th) { |
| best_mv_ref[0] = refined_mv0; |
| best_mv_ref[1] = refined_mv1; |
| return; |
| } |
| } |
| } |
| |
| // if the center is best, skip rest of the search. |
| if (best_idx == -1) { |
| best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; |
| best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; |
| best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; |
| best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; |
| |
| return; |
| } |
| |
| if (best_idx >= 0) { |
| best_offset.row += neighbors[best_idx].row; |
| best_offset.col += neighbors[best_idx].col; |
| } |
| #if !SINGLE_STEP_SEARCH |
| } |
| #endif |
| |
| best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; |
| best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; |
| best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; |
| best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; |
| |
| assert(min_sad <= sad0); |
| |
| assert(IMPLIES(switchable_refinemv_flags, |
| !(best_mv_ref[0].row == center_mvs[0].row && |
| best_mv_ref[0].col == center_mvs[0].col && |
| best_mv_ref[1].row == center_mvs[1].row && |
| best_mv_ref[1].col == center_mvs[1].col))); |
| } |
| |
| static void build_inter_predictors_8x8_and_bigger_refinemv( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride, |
| #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| int subblk_start_x, int subblk_start_y, |
| #endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| int pu_width, int pu_height, uint16_t *dst0_16_refinemv, |
| uint16_t *dst1_16_refinemv, int16_t *opt_gx0, int16_t *opt_gx1, |
| int row_start, int col_start, MV *sb_refined_mv, MV *chroma_refined_mv, |
| int build_for_refine_mv_only, ReferenceArea ref_area[2]) { |
| const int is_compound = has_second_ref(mi); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| assert(is_compound); |
| #if CONFIG_BAWP_CHROMA |
| assert(!mi->bawp_flag[0]); |
| #else |
| assert(!mi->bawp_flag); |
| #endif // CONFIG_BAWP_CHROMA |
| assert(!build_for_obmc); |
| assert(!is_masked_compound_type(mi->interinter_comp.type)); |
| assert(!is_tip_ref_frame(mi->ref_frame[0])); |
| |
| assert(mi->cwp_idx == CWP_EQUAL); |
| |
| int is_global[2] = { 0, 0 }; |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| if (!is_tip_ref_frame(mi->ref_frame[ref])) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| } |
| |
| assert(!is_global[0] && !is_global[1]); |
| |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; |
| |
| int apply_refinemv = (plane == 0); |
| |
| MV best_mv_ref[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, |
| { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } }; |
| if (apply_refinemv) { |
| uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL; |
| dst_ref0 = &dst0_16_refinemv[0]; |
| dst_ref1 = &dst1_16_refinemv[0]; |
| |
| assert(IMPLIES(!mi->skip_mode, |
| is_refinemv_allowed(cm, mi, mi->sb_type[PLANE_TYPE_Y]))); |
| assert(IMPLIES(mi->skip_mode, is_refinemv_allowed_skip_mode(cm, mi))); |
| apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func, pre_x, pre_y, dst_ref0, |
| dst_ref1, best_mv_ref, pu_width, pu_height); |
| if (sb_refined_mv) { |
| // store the DMVR refined MV so that chroma can use it |
| sb_refined_mv[0] = best_mv_ref[0]; |
| sb_refined_mv[1] = best_mv_ref[1]; |
| } |
| assert(IMPLIES(plane, !build_for_refine_mv_only)); |
| // if build_for_refine_mv_only is non-zero, we build only to get the |
| // refinemv values The actual prediction values are not necessary |
| if (build_for_refine_mv_only) { |
| return; |
| } |
| } else { |
| best_mv_ref[0] = chroma_refined_mv[0]; |
| best_mv_ref[1] = chroma_refined_mv[1]; |
| } |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int_mv mv_refined[2 * N_OF_OFFSETS]; |
| memset(mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv)); |
| const int use_optflow_refinement = opfl_allowed_for_cur_block(cm, mi); |
| assert(IMPLIES(use_optflow_refinement, |
| cm->features.opfl_refine_type != REFINE_NONE)); |
| assert(IMPLIES(use_optflow_refinement, !build_for_obmc)); |
| |
| // Optical flow refinement with masked comp types or with non-sharp |
| // interpolation filter should only exist in REFINE_ALL. |
| assert(IMPLIES( |
| use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| |
| // Arrays to hold optical flow offsets. |
| int vx0[N_OF_OFFSETS] = { 0 }; |
| int vx1[N_OF_OFFSETS] = { 0 }; |
| int vy0[N_OF_OFFSETS] = { 0 }; |
| int vy1[N_OF_OFFSETS] = { 0 }; |
| |
| // Pointers to gradient and dst buffers |
| int16_t *gx0, *gy0, *gx1, *gy1; |
| uint16_t *dst0 = NULL, *dst1 = NULL; |
| int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| const int n_blocks = (bw / n) * (bh / n); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| int do_affine = 0; |
| WarpedMotionParams wms[2]; |
| int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START; |
| wms[0] = default_warp_params; |
| wms[1] = default_warp_params; |
| if (use_optflow_refinement && plane) { |
| wms[0] = mi->wm_params[0]; |
| wms[1] = mi->wm_params[1]; |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| if (use_optflow_refinement && plane == 0) { |
| // Allocate gradient and dst buffers |
| gx0 = &opt_gx0[0]; |
| gx1 = &opt_gx1[0]; |
| gy0 = gx0 + (REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT); |
| gy1 = gx1 + (REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT); |
| |
| // Initialize refined mv |
| const MV mv0 = best_mv_ref[0]; |
| const MV mv1 = best_mv_ref[1]; |
| |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined[mvi * 2].as_mv = mv0; |
| mv_refined[mvi * 2 + 1].as_mv = mv1; |
| } |
| // Refine MV using optical flow. The final output MV will be in 1/16 |
| // precision. |
| dst0 = &dst0_16_refinemv[0]; |
| dst1 = &dst1_16_refinemv[0]; |
| |
| av1_get_optflow_based_mv_highbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x, |
| mi_y, mc_buf, calc_subpel_params_func, gx0, |
| gy0, gx1, gy1, |
| #if CONFIG_AFFINE_REFINEMENT |
| do_affine ? wms : NULL, &use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| vx0, vy0, vx1, vy1, dst0, dst1, |
| #if CONFIG_OPTFLOW_ON_TIP |
| 1, 1, |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| best_mv_ref, pu_width, pu_height); |
| #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| const int mvi_stride = pu_width / n; |
| const int subblk_rows = bh / n; |
| const int subblk_cols = bw / n; |
| const int cur_subblk_idx = |
| (subblk_start_y / n) * mvi_stride + (subblk_start_x / n); |
| for (int i = 0; i < subblk_rows; i++) { |
| for (int j = 0; j < subblk_cols; j++) { |
| int mvi_idx = cur_subblk_idx + i * mvi_stride + j; |
| int mv_delta_idx = i * subblk_cols + j; |
| xd->mv_delta[mvi_idx].mv[0].as_mv.row = vy0[mv_delta_idx]; |
| xd->mv_delta[mvi_idx].mv[0].as_mv.col = vx0[mv_delta_idx]; |
| xd->mv_delta[mvi_idx].mv[1].as_mv.row = vy1[mv_delta_idx]; |
| xd->mv_delta[mvi_idx].mv[1].as_mv.col = vx1[mv_delta_idx]; |
| } |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| #if CONFIG_AFFINE_REFINEMENT |
| mi->wm_params[0] = wms[0]; |
| mi->wm_params[1] = wms[1]; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; |
| uint8_t use_bacp = !build_for_obmc && use_border_aware_compound(cm, mi) && |
| mi->cwp_idx == CWP_EQUAL && |
| cm->features.enable_imp_msk_bld; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = xd->block_ref_scale_factors[ref]; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| |
| const MV mv = best_mv_ref[ref]; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| is_warp_mode(mi->motion_mode) }; |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| |
| #if CONFIG_REFINEMV |
| inter_pred_params.use_ref_padding = 1; |
| inter_pred_params.ref_area = &ref_area[ref]; |
| #endif // CONFIG_REFINEMV |
| |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| #if CONFIG_D071_IMP_MSK_BLD |
| inter_pred_params.border_data.enable_bacp = use_bacp; |
| inter_pred_params.border_data.bacp_block_data = |
| &bacp_block_data[0]; // Always point to the first ref |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| if (!build_for_obmc) { |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| assert(inter_pred_params.mode != WARP_PRED); |
| } |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (is_compound) { |
| inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_AFFINE_REFINEMENT |
| if (use_optflow_refinement && (do_affine || plane == 0)) { |
| #else |
| if (use_optflow_refinement && plane == 0) { |
| #endif // CONFIG_AFFINE_REFINEMENT |
| inter_pred_params.interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| |
| inter_pred_params.interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| |
| av1_opfl_rebuild_inter_predictor(dst, dst_stride, plane, mv_refined, |
| &inter_pred_params, xd, mi_x, mi_y, |
| #if CONFIG_AFFINE_REFINEMENT |
| mi->comp_refine_type, |
| do_affine ? wms : NULL, &mi->mv[ref], |
| use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| ref, mc_buf, calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| continue; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| av1_build_one_inter_predictor(dst, dst_stride, &mv, &inter_pred_params, xd, |
| mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| const int apply_pef_opfl = |
| (mi->comp_refine_type == COMP_REFINE_SUBBLK2P && plane == 0) || |
| (damr_refine_subblock(plane, bw, bh, mi->comp_refine_type, n) && |
| do_affine); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| if (use_optflow_refinement && plane == 0) { |
| enhance_prediction(cm, xd, plane, dst, dst_stride, bw, bh |
| #if CONFIG_OPTFLOW_REFINEMENT |
| , |
| mv_refined, |
| use_optflow_refinement |
| #if CONFIG_AFFINE_REFINEMENT |
| && apply_pef_opfl |
| #endif // CONFIG_AFFINE_REFINEMENT |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_REFINEMV |
| , |
| 0, NULL |
| #endif // CONFIG_REFINEMV |
| #if CONFIG_EXT_WARP_FILTER |
| , |
| false |
| #endif // CONFIG_EXT_WARP_FILTER |
| ); |
| } |
| } |
| #endif // CONFIG_REFINEMV |
| |
| static void build_inter_predictors_8x8_and_bigger( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| #if CONFIG_BAWP |
| const BUFFER_SET *dst_orig, |
| #endif // CONFIG_BAWP |
| int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func |
| #if CONFIG_REFINEMV |
| , |
| int build_for_refine_mv_only |
| #endif // CONFIG_REFINEMV |
| ) { |
| const int is_compound = has_second_ref(mi); |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| assert(IMPLIES(is_intrabc, !is_compound)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint16_t *const dst = dst_buf->buf; |
| |
| #if CONFIG_REFINEMV |
| assert(IMPLIES(mi->refinemv_flag, !is_intrabc)); |
| assert(IMPLIES(mi->refinemv_flag && !build_for_obmc, is_compound)); |
| assert(IMPLIES( |
| !build_for_obmc && mi->refinemv_flag && switchable_refinemv_flag(cm, mi), |
| mi->interinter_comp.type == COMPOUND_AVERAGE)); |
| #if CONFIG_BAWP_CHROMA |
| assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0)); |
| #else |
| assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag == 0)); |
| #endif // CONFIG_BAWP_CHROMA |
| assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP)); |
| |
| int apply_sub_block_refinemv = |
| mi->refinemv_flag && (!build_for_obmc) && |
| #if CONFIG_AFFINE_REFINEMENT |
| mi->comp_refine_type < COMP_AFFINE_REFINE_START && |
| #endif // CONFIG_AFFINE_REFINEMENT |
| !is_tip_ref_frame(mi->ref_frame[0]); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| if (apply_sub_block_refinemv && default_refinemv_modes(cm, mi)) |
| #else |
| if (apply_sub_block_refinemv && default_refinemv_modes(mi)) |
| #endif // CONFIG_AFFINE_REFINEMENT |
| apply_sub_block_refinemv &= (mi->comp_group_idx == 0 && |
| mi->interinter_comp.type == COMPOUND_AVERAGE); |
| |
| if (apply_sub_block_refinemv) { |
| assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL)); |
| int refinemv_sb_size_width = |
| AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw); |
| int refinemv_sb_size_height = |
| AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh); |
| uint16_t |
| dst0_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]; |
| uint16_t |
| dst1_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]; |
| DECLARE_ALIGNED( |
| 32, int16_t, |
| opt_gx0[2 * REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]); |
| DECLARE_ALIGNED( |
| 32, int16_t, |
| opt_gx1[2 * REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT]); |
| |
| ReferenceArea ref_area[2]; |
| av1_get_reference_area_with_padding(cm, xd, plane, mi, bw, bh, mi_x, mi_y, |
| ref_area, 0, 0); |
| |
| int dst_stride = dst_buf->stride; |
| CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst; |
| assert(bw % refinemv_sb_size_width == 0); |
| assert(bh % refinemv_sb_size_height == 0); |
| for (int h = 0; h < bh; h += refinemv_sb_size_height) { |
| for (int w = 0; w < bw; w += refinemv_sb_size_width) { |
| dst_buf->buf = dst + h * dst_stride + w; |
| xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w; |
| |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| int row_start = |
| plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| int col_start = |
| plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| MV luma_refined_mv[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, |
| { mi->mv[1].as_mv.row, |
| mi->mv[1].as_mv.col } }; |
| |
| MV chroma_refined_mv[2] = { |
| { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, |
| { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } |
| }; |
| |
| if (plane != 0) { |
| int luma_h = (h << pd->subsampling_y); |
| int luma_w = (w << pd->subsampling_x); |
| REFINEMV_SUBMB_INFO *refinemv_subinfo = |
| &xd->refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + |
| (luma_w >> MI_SIZE_LOG2)]; |
| chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv; |
| chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv; |
| } |
| // mi_x, and mi_y are the top-left position of the luma samples of the |
| // sub-block |
| build_inter_predictors_8x8_and_bigger_refinemv( |
| cm, xd, plane, mi, build_for_obmc, refinemv_sb_size_width, |
| refinemv_sb_size_height, mi_x + w * (1 << pd->subsampling_x), |
| mi_y + h * (1 << pd->subsampling_y), mc_buf, |
| calc_subpel_params_func, dst_buf->buf, dst_stride, |
| #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| w, h, |
| #endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| bw, bh, dst0_16_refinemv, dst1_16_refinemv, opt_gx0, opt_gx1, |
| row_start, col_start, plane == 0 ? luma_refined_mv : NULL, |
| chroma_refined_mv, build_for_refine_mv_only, ref_area); |
| |
| if (plane == 0) { |
| REFINEMV_SUBMB_INFO *refinemv_subinfo = |
| &xd->refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + |
| (w >> MI_SIZE_LOG2)]; |
| fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width, |
| refinemv_sb_size_height, luma_refined_mv[0], |
| luma_refined_mv[1]); |
| } |
| } |
| } |
| |
| enhance_prediction(cm, xd, plane, dst, dst_stride, bw, bh |
| #if CONFIG_OPTFLOW_REFINEMENT |
| , |
| NULL, 0 |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| , |
| apply_sub_block_refinemv, &xd->refinemv_subinfo[0] |
| #if CONFIG_EXT_WARP_FILTER |
| , |
| false |
| #endif // CONFIG_EXT_WARP_FILTER |
| ); |
| dst_buf->buf = dst; |
| xd->tmp_conv_dst = tmp_conv_dst; |
| return; |
| } |
| #endif // CONFIG_REFINEMV |
| |
| int is_global[2] = { 0, 0 }; |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| if (!is_tip_ref_frame(mi->ref_frame[ref])) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| } |
| |
| int row_start = 0; |
| int col_start = 0; |
| if (!build_for_obmc) { |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| } |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; |
| #if CONFIG_REFINEMV |
| MV best_mv_ref[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, |
| { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } }; |
| #endif // CONFIG_REFINEMV |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int_mv mv_refined[2 * N_OF_OFFSETS]; |
| memset(mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv)); |
| const int use_optflow_refinement = opfl_allowed_for_cur_block(cm, mi); |
| assert(IMPLIES(use_optflow_refinement, |
| cm->features.opfl_refine_type != REFINE_NONE)); |
| assert(IMPLIES(use_optflow_refinement, !build_for_obmc)); |
| |
| // Optical flow refinement with masked comp types or with non-sharp |
| // interpolation filter should only exist in REFINE_ALL. |
| assert(IMPLIES( |
| use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| assert(IMPLIES(use_optflow_refinement && mi->interp_fltr != MULTITAP_SHARP, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| |
| #if CONFIG_AFFINE_REFINEMENT |
| int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START; |
| WarpedMotionParams wms[2]; |
| wms[0] = default_warp_params; |
| wms[1] = default_warp_params; |
| #if AFFINE_CHROMA_REFINE_METHOD > 0 |
| if (use_optflow_refinement && plane) { |
| wms[0] = mi->wm_params[0]; |
| wms[1] = mi->wm_params[1]; |
| } |
| #endif |
| #endif // CONFIG_AFFINE_REFINEMENT |
| |
| // Arrays to hold optical flow offsets. |
| int vx0[N_OF_OFFSETS] = { 0 }; |
| int vx1[N_OF_OFFSETS] = { 0 }; |
| int vy0[N_OF_OFFSETS] = { 0 }; |
| int vy1[N_OF_OFFSETS] = { 0 }; |
| |
| // Pointers to gradient and dst buffers |
| |
| if (use_optflow_refinement && plane == 0) { |
| #if CONFIG_AFFINE_REFINEMENT |
| assert(mi->comp_refine_type > COMP_REFINE_NONE); |
| assert(IMPLIES(mi->comp_refine_type >= COMP_AFFINE_REFINE_START, |
| is_affine_refinement_allowed(cm, xd, mi->mode))); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| // Allocate gradient and dst buffers |
| const int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| const int n_blocks = (bw / n) * (bh / n); |
| int16_t *gx0, *gy0, *gx1, *gy1; |
| DECLARE_ALIGNED(32, int16_t, g0_buf[2 * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, g1_buf[2 * MAX_SB_SQUARE]); |
| gx0 = g0_buf; |
| gx1 = g1_buf; |
| gy0 = g0_buf + MAX_SB_SQUARE; |
| gy1 = g1_buf + MAX_SB_SQUARE; |
| |
| // Initialize refined mv |
| #if CONFIG_REFINEMV |
| const MV mv0 = best_mv_ref[0]; |
| const MV mv1 = best_mv_ref[1]; |
| #else |
| const MV mv0 = mi->mv[0].as_mv; |
| const MV mv1 = mi->mv[1].as_mv; |
| #endif // CONFIG_REFINEMV |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined[mvi * 2].as_mv = mv0; |
| mv_refined[mvi * 2 + 1].as_mv = mv1; |
| } |
| // Refine MV using optical flow. The final output MV will be in 1/16 |
| // precision. |
| uint16_t dst0[MAX_SB_SQUARE], dst1[MAX_SB_SQUARE]; |
| av1_get_optflow_based_mv_highbd(cm, xd, plane, mi, mv_refined, bw, bh, mi_x, |
| mi_y, mc_buf, calc_subpel_params_func, gx0, |
| gy0, gx1, gy1, |
| #if CONFIG_AFFINE_REFINEMENT |
| wms, &use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| vx0, vy0, vx1, vy1, dst0, dst1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1, 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| #if CONFIG_REFINEMV |
| , |
| best_mv_ref, bw, bh |
| #endif // CONFIG_REFINEMV |
| ); |
| #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| for (int mvi = 0; mvi < N_OF_OFFSETS; mvi++) { |
| xd->mv_delta[mvi].mv[0].as_mv.row = vy0[mvi]; |
| xd->mv_delta[mvi].mv[0].as_mv.col = vx0[mvi]; |
| xd->mv_delta[mvi].mv[1].as_mv.row = vy1[mvi]; |
| xd->mv_delta[mvi].mv[1].as_mv.col = vx1[mvi]; |
| } |
| #endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP |
| #if CONFIG_AFFINE_REFINEMENT |
| // parameters derived are saved here and may be reused by chroma |
| mi->wm_params[0] = wms[0]; |
| mi->wm_params[1] = wms[1]; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| } |
| |
| int n = opfl_get_subblock_size(bw, bh, plane |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; |
| uint8_t use_bacp = !build_for_obmc && use_border_aware_compound(cm, mi) && |
| mi->cwp_idx == CWP_EQUAL && |
| cm->features.enable_imp_msk_bld; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| #if CONFIG_EXT_WARP_FILTER |
| // Track whether we used the extended warp filter for either ref frame, |
| // so that we can apply PEF |
| bool ext_warp_used = false; |
| #endif // CONFIG_EXT_WARP_FILTER |
| |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| const MV mv = mi->mv[ref].as_mv; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| is_warp_mode(mi->motion_mode) }; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| #if CONFIG_D071_IMP_MSK_BLD |
| inter_pred_params.border_data.enable_bacp = use_bacp; |
| inter_pred_params.border_data.bacp_block_data = |
| &bacp_block_data[0]; // Always point to the first ref |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| if (!build_for_obmc) { |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| #if CONFIG_EXT_WARP_FILTER |
| if (inter_pred_params.mode == WARP_PRED && |
| !inter_pred_params.warp_params.use_affine_filter) { |
| ext_warp_used = true; |
| } |
| #if CONFIG_AFFINE_REFINEMENT |
| if (use_optflow_refinement && |
| mi->comp_refine_type >= COMP_AFFINE_REFINE_START && n == 4) |
| ext_warp_used = true; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| #endif // CONFIG_EXT_WARP_FILTER |
| } |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (is_compound) { |
| inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| if (is_masked_compound_type(mi->interinter_comp.type)) { |
| #if !CONFIG_D071_IMP_MSK_BLD |
| inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| #endif // !CONFIG_D071_IMP_MSK_BLD |
| |
| if (ref == 1) { |
| inter_pred_params.conv_params.do_average = 0; |
| inter_pred_params.comp_mode = MASK_COMP; |
| } |
| // Assign physical buffer. |
| inter_pred_params.mask_comp.seg_mask = xd->seg_mask; |
| } |
| |
| if (ref == 1 && inter_pred_params.conv_params.do_average == 1) { |
| if (get_cwp_idx(mi) != CWP_EQUAL) { |
| int8_t weight = get_cwp_idx(mi); |
| assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX); |
| inter_pred_params.conv_params.fwd_offset = weight; |
| inter_pred_params.conv_params.bck_offset = |
| (1 << CWP_WEIGHT_BITS) - weight; |
| } |
| } |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_AFFINE_REFINEMENT |
| if (use_optflow_refinement && |
| #if AFFINE_CHROMA_REFINE_METHOD > 0 |
| (mi->comp_refine_type >= COMP_AFFINE_REFINE_START || plane == 0) |
| #else |
| mi->comp_refine_type >= COMP_AFFINE_REFINE_START && plane == 0 |
| #endif |
| ) { |
| #else |
| if (use_optflow_refinement && plane == 0) { |
| #endif // CONFIG_AFFINE_REFINEMENT |
| inter_pred_params.interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| inter_pred_params.interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, n); |
| av1_opfl_rebuild_inter_predictor(dst, dst_buf->stride, plane, mv_refined, |
| &inter_pred_params, xd, mi_x, mi_y, |
| #if CONFIG_AFFINE_REFINEMENT |
| mi->comp_refine_type, wms, &mi->mv[ref], |
| use_affine_opfl, |
| #endif // CONFIG_AFFINE_REFINEMENT |
| ref, mc_buf, calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| 1 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| continue; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_BAWP |
| #if CONFIG_BAWP_CHROMA |
| if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1]) && |
| !build_for_obmc) { |
| #else |
| if (mi->bawp_flag > 0 && plane == 0 && !build_for_obmc) { |
| #endif // CONFIG_BAWP_CHROMA |
| av1_build_one_bawp_inter_predictor( |
| dst, dst_buf->stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, |
| bh, mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func); |
| continue; |
| } |
| #endif // CONFIG_BAWP |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| #if CONFIG_AFFINE_REFINEMENT |
| const int apply_pef_opfl = |
| (mi->comp_refine_type == COMP_REFINE_SUBBLK2P && plane == 0) || |
| damr_refine_subblock(plane, bw, bh, mi->comp_refine_type, n); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| enhance_prediction(cm, xd, plane, dst, dst_buf->stride, bw, bh |
| #if CONFIG_OPTFLOW_REFINEMENT |
| , |
| mv_refined, |
| use_optflow_refinement |
| #if CONFIG_AFFINE_REFINEMENT |
| && apply_pef_opfl |
| #endif // CONFIG_AFFINE_REFINEMENT |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_REFINEMV |
| , |
| 0, NULL |
| #endif // CONFIG_REFINEMV |
| #if CONFIG_EXT_WARP_FILTER |
| , |
| ext_warp_used |
| #endif // CONFIG_EXT_WARP_FILTER |
| ); |
| } |
| |
| void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, |
| #if CONFIG_BAWP |
| const BUFFER_SET *dst_orig, |
| #endif |
| #if CONFIG_REFINEMV |
| int build_for_refine_mv_only, |
| #endif // CONFIG_REFINEMV |
| int build_for_obmc, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // just for debugging purpose |
| // Can be removed later on |
| if (mi->mode == WARPMV) { |
| #if CONFIG_SEP_COMP_DRL |
| assert(mi->ref_mv_idx[0] == 0); |
| assert(mi->ref_mv_idx[1] == 0); |
| #else |
| assert(mi->ref_mv_idx == 0); |
| #endif // CONFIG_SEP_COMP_DRL |
| assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARPED_CAUSAL); |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type), |
| build_for_obmc)) { |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(bw < 8 || bh < 8); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func); |
| } else { |
| build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, |
| #if CONFIG_BAWP |
| dst_orig, |
| #endif |
| build_for_obmc, bw, bh, mi_x, mi_y, |
| mc_buf, calc_subpel_params_func |
| #if CONFIG_REFINEMV |
| , |
| build_for_refine_mv_only |
| #endif // CONFIG_REFINEMV |
| ); |
| } |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| if (src != NULL) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, sf, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| } |
| } |
| } |
| |
| // obmc_mask_N[overlap_position] |
| static const uint8_t obmc_mask_1[1] = { 64 }; |
| DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 }; |
| |
| DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 }; |
| |
| static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; |
| |
| static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, |
| 56, 58, 60, 61, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, |
| 45, 47, 48, 50, 51, 52, 53, 55, |
| 56, 57, 58, 59, 60, 60, 61, 62, |
| 64, 64, 64, 64, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_64[64] = { |
| 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, |
| 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, |
| 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, |
| 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| const uint8_t *av1_get_obmc_mask(int length) { |
| switch (length) { |
| case 1: return obmc_mask_1; |
| case 2: return obmc_mask_2; |
| case 4: return obmc_mask_4; |
| case 8: return obmc_mask_8; |
| case 16: return obmc_mask_16; |
| case 32: return obmc_mask_32; |
| case 64: return obmc_mask_64; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static INLINE void increment_uint8_t_ptr(MACROBLOCKD *xd, int rel_mi_row, |
| int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)xd; |
| (void)rel_mi_row; |
| (void)rel_mi_col; |
| (void)op_mi_size; |
| (void)dir; |
| (void)mi; |
| ++*(uint8_t *)fun_ctxt; |
| (void)num_planes; |
| } |
| |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| mbmi->overlappable_neighbors[0] = 0; |
| mbmi->overlappable_neighbors[1] = 0; |
| if (!is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y], |
| xd->mi_row, xd->mi_col)) |
| return; |
| |
| foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_uint8_t_ptr, |
| &mbmi->overlappable_neighbors[0], true); |
| if (mbmi->overlappable_neighbors[0]) return; |
| foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_uint8_t_ptr, |
| &mbmi->overlappable_neighbors[1]); |
| } |
| |
| // HW does not support < 4x4 prediction. To limit the bandwidth requirement, if |
| // block-size of current plane is smaller than 8x8, always only blend with the |
| // left neighbor(s) (skip blending with the above side). |
| #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable |
| |
| int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, |
| const struct macroblockd_plane *pd, int dir) { |
| const BLOCK_SIZE bsize_plane = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| switch (bsize_plane) { |
| #if DISABLE_CHROMA_U8X8_OBMC |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return 1; break; |
| #else |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return dir == 0; break; |
| #endif |
| default: return 0; |
| } |
| } |
| |
| void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| |
| return; |
| } |
| |
| struct obmc_inter_pred_ctxt { |
| uint16_t **adjacent; |
| int *adjacent_stride; |
| }; |
| |
| static INLINE void build_obmc_inter_pred_above( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) { |
| (void)above_mi; |
| (void)rel_mi_row; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint16_t *const dst = &pd->dst.buf[plane_col]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint16_t *const tmp = &ctxt->adjacent[plane][plane_col]; |
| const uint8_t *const mask = av1_get_obmc_mask(bh); |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| } |
| } |
| |
| static INLINE void build_obmc_inter_pred_left( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) { |
| (void)left_mi; |
| (void)rel_mi_col; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y; |
| const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint16_t *const dst = &pd->dst.buf[plane_row * dst_stride]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint16_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; |
| const uint8_t *const mask = av1_get_obmc_mask(bw); |
| |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| } |
| } |
| |
| // This function combines motion compensated predictions that are generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint16_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| |
| // handle above row |
| struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; |
| foreach_overlappable_nb_above( |
| cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| build_obmc_inter_pred_above, &ctxt_above, false); |
| |
| // handle left column |
| struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; |
| foreach_overlappable_nb_left(cm, xd, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| build_obmc_inter_pred_left, &ctxt_left); |
| } |
| |
| void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint16_t **dst_buf1, |
| uint16_t **dst_buf2) { |
| dst_buf1[0] = xd->tmp_obmc_bufs[0]; |
| dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; |
| dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = xd->tmp_obmc_bufs[1]; |
| dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; |
| dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; |
| } |
| |
| void av1_setup_build_prediction_by_above_pred( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, |
| MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const int above_mi_col = xd->mi_col + rel_mi_col; |
| |
| av1_modify_neighbor_predictor_for_obmc(above_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, |
| NULL, pd->subsampling_x, pd->subsampling_y, NULL); |
| } |
| |
| const int num_refs = 1 + has_second_ref(above_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| xd->block_ref_scale_factors[ref] = sf; |
| if ((!av1_is_valid_scale(sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf, |
| num_planes, NULL); |
| } |
| |
| xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); |
| xd->mb_to_right_edge = |
| ctxt->mb_to_far_edge + |
| (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8; |
| } |
| |
| void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, |
| uint8_t left_mi_height, |
| MB_MODE_INFO *left_mbmi, |
| struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const int left_mi_row = xd->mi_row + rel_mi_row; |
| |
| av1_modify_neighbor_predictor_for_obmc(left_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, |
| NULL, pd->subsampling_x, pd->subsampling_y, NULL); |
| } |
| |
| const int num_refs = 1 + has_second_ref(left_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| |
| xd->block_ref_scale_factors[ref] = ref_scale_factors; |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col, |
| ref_scale_factors, num_planes, NULL); |
| } |
| |
| xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row)); |
| xd->mb_to_bottom_edge = |
| ctxt->mb_to_far_edge + |
| GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE); |
| } |
| |
| static AOM_INLINE void combine_interintra_highbd( |
| INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, |
| int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint16_t *comppred8, int compstride, const uint16_t *interpred8, |
| int interstride, const uint16_t *intrapred8, int intrastride, int bd) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (av1_is_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, |
| block_size_wide[bsize], bw, bh, subw, subh, bd); |
| } |
| return; |
| } |
| |
| uint8_t mask[MAX_SB_SQUARE]; |
| build_smooth_interintra_mask(mask, bw, plane_bsize, mode); |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, bw, bw, bh, 0, 0, |
| bd); |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane, |
| const BUFFER_SET *ctx, |
| uint16_t *dst, int dst_stride) { |
| #else |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| const BUFFER_SET *ctx, |
| uint16_t *dst, int dst_stride) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); |
| #else |
| BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); |
| assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); |
| assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0); |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, |
| max_txsize_rect_lookup[plane_bsize], mode, 0, 0, |
| FILTER_INTRA_MODES, ctx->plane[plane], |
| ctx->stride[plane], dst, dst_stride, 0, 0, plane); |
| } |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint16_t *inter_pred, int inter_stride, |
| const uint16_t *intra_pred, int intra_stride) { |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(plane_bsize == get_plane_block_size(bsize, ssx, ssy)); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| combine_interintra_highbd( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, |
| plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, |
| inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); |
| } |
| |
| // build interintra_predictors for one plane |
| void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *pred, int stride, |
| const BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor, |
| MAX_SB_SIZE); |
| #else |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, |
| intrapredictor, MAX_SB_SIZE); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, |
| MAX_SB_SIZE); |
| } |
| |
| int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) { |
| (void)cm; |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| const int above_mpp_flag = |
| (above_mi && is_inter_block(above_mi, SHARED_PART) && |
| !is_intrabc_block(above_mi, SHARED_PART)) |
| ? (above_mi->most_probable_pb_mv_precision == |
| above_mi->pb_mv_precision) |
| : 0; |
| const int left_mpp_flag = |
| (left_mi && is_inter_block(left_mi, SHARED_PART) && |
| !is_intrabc_block(left_mi, SHARED_PART)) |
| ? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision) |
| : 0; |
| |
| return (above_mpp_flag + left_mpp_flag); |
| } |
| |
| #if CONFIG_REFINEMV |
| // Derive the context index for refinemv flag |
| int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize) { |
| (void)cm; |
| (void)bsize; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (mbmi->skip_mode) return 0; |
| return (1 + (mbmi->mode - NEAR_NEARMV)); |
| } |
| #endif // CONFIG_REFINEMV |
| |
| int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| const int above_down = |
| (above_mi && is_inter_block(above_mi, SHARED_PART) && |
| !is_intrabc_block(above_mi, SHARED_PART)) |
| ? above_mi->max_mv_precision - above_mi->pb_mv_precision |
| : 0; |
| const int left_down = |
| (left_mi && is_inter_block(left_mi, SHARED_PART) && |
| !is_intrabc_block(left_mi, SHARED_PART)) // && !left_mi->skip_mode) |
| ? left_mi->max_mv_precision - left_mi->pb_mv_precision |
| : 0; |
| assert(above_down >= 0); |
| assert(left_down >= 0); |
| return (above_down + left_down > 0); |
| } |
| |
| int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) { |
| return pb_mv_precision; |
| } |
| |
| void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { |
| mbmi->pb_mv_precision = precision; |
| } |
| #if BUGFIX_AMVD_AMVR |
| // set the mv precision for amvd applied mode |
| void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { |
| mbmi->pb_mv_precision = |
| precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL; |
| } |
| #endif // BUGFIX_AMVD_AMVR |
| int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| int coded_precision_idx = -1; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { |
| coded_precision_idx++; |
| if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx; |
| } |
| } |
| assert(0); |
| return coded_precision_idx; |
| } |
| |
| MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi, |
| int precision_idx_coded_value) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| int coded_precision_idx = -1; |
| MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { |
| coded_precision_idx++; |
| if (coded_precision_idx == precision_idx_coded_value) |
| return pb_mv_precision; |
| } |
| } |
| assert(0); |
| return pb_mv_precision; |
| } |
| void set_most_probable_mv_precision(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| (void)cm; |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| mbmi->most_probable_pb_mv_precision = |
| precision_def->precision[precision_def->num_precisions - 1]; |
| |
| #if CONFIG_DEBUG |
| int mpp_found = 0; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) { |
| mpp_found = 1; |
| break; |
| } |
| } |
| (void)mpp_found; |
| assert(mpp_found); |
| #endif |
| } |
| void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize, |
| #if CONFIG_SEP_COMP_DRL |
| int *ref_mv_idx) { |
| #else |
| uint8_t ref_mv_idx) { |
| #endif // CONFIG_SEP_COMP_DRL |
| (void)bsize; |
| (void)cm; |
| (void)xd; |
| (void)ref_mv_idx; |
| |
| int set_idx = 0; |
| |
| int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) |
| ? NUMBER_OF_PRECISION_SETS |
| : 0; |
| mbmi->mb_precision_set = set_idx + offset_idx; |
| } |
| void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| (void)cm; |
| int set_idx = 0; |
| int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) |
| ? NUMBER_OF_PRECISION_SETS |
| : 0; |
| mbmi->mb_precision_set = set_idx + offset_idx; |
| } |
| void set_default_max_mv_precision(MB_MODE_INFO *mbmi, |
| MvSubpelPrecision precision) { |
| mbmi->max_mv_precision = precision; |
| } |
| MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm, |
| const SB_INFO *sbi, |
| const MB_MODE_INFO *mbmi) { |
| (void)mbmi; |
| (void)sbi; |
| return cm->features.fr_mv_precision; |
| } |
| |
| int is_pb_mv_precision_active(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0; |
| return cm->seq_params.enable_flex_mvres && |
| (mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) && |
| cm->features.use_pb_mv_precision && |
| have_newmv_in_inter_mode(mbmi->mode); |
| } |
| #if CONFIG_REFINEMV |
| // Copy mv0 and mv1 to the sub-blocks |
| // submi is the top-left corner of the sub-block need to fill |
| // bw is the block width in the unit of pixel |
| // bh is the block height in unit of pixel |
| void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw, |
| int bh, MV mv0, MV mv1) { |
| const int stride = MAX_MIB_SIZE; |
| for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) { |
| for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) { |
| refinemv_subinfo[x].refinemv[0].as_mv = mv0; |
| refinemv_subinfo[x].refinemv[1].as_mv = mv1; |
| } |
| refinemv_subinfo += stride; |
| } |
| } |
| #endif // CONFIG_REFINEMV |