| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <math.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_once.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/reconintra.h" |
| |
| enum { |
| NEED_LEFT = 1 << 1, |
| NEED_ABOVE = 1 << 2, |
| NEED_ABOVERIGHT = 1 << 3, |
| NEED_ABOVELEFT = 1 << 4, |
| NEED_BOTTOMLEFT = 1 << 5, |
| }; |
| |
| #define INTRA_EDGE_FILT 3 |
| #define INTRA_EDGE_TAPS 5 |
| #define MAX_UPSAMPLE_SZ 16 |
| #define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 64) |
| |
| static const uint8_t extend_modes[INTRA_MODES] = { |
| NEED_ABOVE | NEED_LEFT | NEED_ABOVELEFT, // DC |
| NEED_ABOVE, // V |
| NEED_LEFT, // H |
| NEED_ABOVE | NEED_ABOVERIGHT, // D45 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157 |
| NEED_LEFT | NEED_BOTTOMLEFT, // D203 |
| NEED_ABOVE | NEED_ABOVERIGHT, // D67 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT |
| #if CONFIG_BLEND_MODE |
| | NEED_ABOVERIGHT | NEED_BOTTOMLEFT |
| #endif // CONFIG_BLEND_MODE |
| , // SMOOTH |
| NEED_LEFT | NEED_ABOVE |
| #if CONFIG_BLEND_MODE |
| | NEED_BOTTOMLEFT |
| #endif // CONFIG_BLEND_MODE |
| , // SMOOTH_V |
| NEED_LEFT | NEED_ABOVE |
| #if CONFIG_BLEND_MODE |
| | NEED_ABOVERIGHT |
| #endif // CONFIG_BLEND_MODE |
| , // SMOOTH_H |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH |
| }; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int top_available, int right_available, TX_SIZE txsz, |
| int row_off, int col_off, int ss_x, int ss_y, |
| int px_to_right_edge, int *px_top_right, |
| int is_bsize_altered_for_chroma) { |
| if (!top_available || !right_available) return 0; |
| |
| const int bw_unit = mi_size_wide[bsize]; |
| const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1); |
| const int top_right_count_unit = tx_size_wide_unit[txsz]; |
| const int px_tr_common = AOMMIN(tx_size_wide[txsz], px_to_right_edge); |
| |
| if (px_tr_common <= 0) return 0; |
| |
| *px_top_right = px_tr_common; |
| |
| if (row_off > 0) { // Just need to check if enough pixels on the right. |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) { |
| #if CONFIG_BLOCK_256 |
| // Special case: For 256 and 128 blocks, if the tx unit's top right center |
| // is aligned with 64x64 boundary and we are not at the right most column, |
| // then the tx unit does in fact have pixels available at its top-right |
| // corner. |
| const int tr_col = col_off + top_right_count_unit; |
| const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y; |
| if (tr_col != plane_bw_unit && tr_col % plane_bw_unit_64 == 0 && |
| row_off % plane_bh_unit_64 == 0) { |
| return 1; |
| } |
| #else |
| // Special case: For 128x128 blocks, the transform unit whose |
| // top-right corner is at the center of the block does in fact have |
| // pixels available at its top-right corner. |
| if (row_off == mi_size_high[BLOCK_64X64] >> ss_y && |
| col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) { |
| return 1; |
| } |
| #endif // CONFIG_BLOCK_256 |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| return col_off_64 + top_right_count_unit < plane_bw_unit_64; |
| } |
| return col_off + top_right_count_unit < plane_bw_unit; |
| } else { |
| // All top-right pixels are in the block above, which is already available. |
| if (col_off + top_right_count_unit < plane_bw_unit) return 1; |
| |
| // Handle the top-right intra tx block of the coding block |
| const int sb_mi_size = mi_size_wide[cm->sb_size]; |
| const int mi_row_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base |
| : mi_row; |
| const int mi_col_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_col_chroma_base |
| : mi_col; |
| const int tr_mask_row = (mi_row_aligned & (sb_mi_size - 1)) - 1; |
| const int tr_mask_col = |
| (mi_col_aligned & (sb_mi_size - 1)) + mi_size_wide[bsize]; |
| |
| if (tr_mask_row < 0) { |
| return 1; |
| } else if (tr_mask_col >= sb_mi_size) { |
| return 0; |
| } else { // Handle the general case: the top_right mi is in the same SB |
| const int tr_offset = tr_mask_row * xd->is_mi_coded_stride + tr_mask_col; |
| // As long as the first mi is available, we determine tr is available |
| int has_tr = xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][tr_offset]; |
| |
| // Calculate px_top_right: how many top-right pixels are available. If it |
| // is less than tx_size_wide[txsz], px_top_right will be used to |
| // determine the location of the last available pixel, which will be used |
| // for padding. |
| if (has_tr) { |
| int mi_tr = 0; |
| for (int i = 0; i < top_right_count_unit << ss_x; ++i) { |
| if ((tr_mask_col + i) >= sb_mi_size || |
| !xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][tr_offset + i]) { |
| break; |
| } else { |
| mi_tr++; |
| } |
| } |
| |
| *px_top_right = AOMMIN((mi_tr << MI_SIZE_LOG2) >> ss_x, px_tr_common); |
| } |
| |
| return has_tr; |
| } |
| } |
| } |
| #else |
| // Tables to store if the top-right reference pixels are available. The flags |
| // are represented with bits, packed into 8-bit integers. E.g., for the 32x32 |
| // blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster |
| // order), so its flag is stored at the 3rd bit of the 2nd entry in the table, |
| // i.e. (table[10 / 8] >> (10 % 8)) & 1. |
| // . . . . |
| // . . . . |
| // . . o . |
| // . . . . |
| static uint8_t has_tr_4x4[128] = { |
| 255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| }; |
| static uint8_t has_tr_4x8[64] = { |
| 255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119, |
| 119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127, |
| 127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119, |
| 119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127, |
| 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, |
| }; |
| static uint8_t has_tr_8x4[64] = { |
| 255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| }; |
| static uint8_t has_tr_8x8[32] = { |
| 255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, |
| 255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, |
| }; |
| static uint8_t has_tr_8x16[16] = { |
| 255, 255, 119, 119, 127, 127, 119, 119, |
| 255, 127, 119, 119, 127, 127, 119, 119, |
| }; |
| static uint8_t has_tr_16x8[16] = { |
| 255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0, |
| }; |
| static uint8_t has_tr_16x16[8] = { |
| 255, 85, 119, 85, 127, 85, 119, 85, |
| }; |
| static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 }; |
| static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 }; |
| static uint8_t has_tr_32x32[2] = { 95, 87 }; |
| static uint8_t has_tr_32x64[1] = { 127 }; |
| static uint8_t has_tr_64x32[1] = { 19 }; |
| static uint8_t has_tr_64x64[1] = { 7 }; |
| static uint8_t has_tr_64x128[1] = { 3 }; |
| static uint8_t has_tr_128x64[1] = { 1 }; |
| static uint8_t has_tr_128x128[1] = { 1 }; |
| static uint8_t has_tr_4x16[32] = { |
| 255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255, |
| 127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127, |
| 127, 127, 255, 127, 255, 127, 127, 127, 127, 127, |
| }; |
| static uint8_t has_tr_16x4[32] = { |
| 255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, |
| 127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, |
| }; |
| static uint8_t has_tr_8x32[8] = { |
| 255, 255, 127, 127, 255, 127, 127, 127, |
| }; |
| static uint8_t has_tr_32x8[8] = { |
| 15, 0, 5, 0, 7, 0, 5, 0, |
| }; |
| static uint8_t has_tr_16x64[2] = { 255, 127 }; |
| static uint8_t has_tr_64x16[2] = { 3, 1 }; |
| |
| static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = { |
| // 4X4 |
| has_tr_4x4, |
| // 4X8, 8X4, 8X8 |
| has_tr_4x8, has_tr_8x4, has_tr_8x8, |
| // 8X16, 16X8, 16X16 |
| has_tr_8x16, has_tr_16x8, has_tr_16x16, |
| // 16X32, 32X16, 32X32 |
| has_tr_16x32, has_tr_32x16, has_tr_32x32, |
| // 32X64, 64X32, 64X64 |
| has_tr_32x64, has_tr_64x32, has_tr_64x64, |
| // 64x128, 128x64, 128x128 |
| has_tr_64x128, has_tr_128x64, has_tr_128x128, |
| #if CONFIG_BLOCK_256 |
| // 128X256, 256X128, 256X256, |
| NULL, NULL, NULL, |
| #endif // CONFIG_BLOCK_256 |
| // 4x16, 16x4, 8x32 |
| has_tr_4x16, has_tr_16x4, has_tr_8x32, |
| // 32x8, 16x64, 64x16 |
| has_tr_32x8, has_tr_16x64, has_tr_64x16 |
| }; |
| |
| static uint8_t has_tr_vert_8x8[32] = { |
| 255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, |
| 255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, |
| }; |
| static uint8_t has_tr_vert_16x16[8] = { |
| 255, 0, 119, 0, 127, 0, 119, 0, |
| }; |
| static uint8_t has_tr_vert_32x32[2] = { 15, 7 }; |
| static uint8_t has_tr_vert_64x64[1] = { 3 }; |
| |
| // The _vert_* tables are like the ordinary tables above, but describe the |
| // order we visit square blocks when doing a PARTITION_VERT_A or |
| // PARTITION_VERT_B. This is the same order as normal except for on the last |
| // split where we go vertically (TL, BL, TR, BR). We treat the rectangular block |
| // as a pair of squares, which means that these tables work correctly for both |
| // mixed vertical partition types. |
| // |
| // There are tables for each of the square sizes. Vertical rectangles (like |
| // BLOCK_16X32) use their respective "non-vert" table |
| static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = { |
| // 4X4 |
| NULL, |
| // 4X8, 8X4, 8X8 |
| has_tr_4x8, |
| NULL, |
| has_tr_vert_8x8, |
| // 8X16, 16X8, 16X16 |
| has_tr_8x16, |
| NULL, |
| has_tr_vert_16x16, |
| // 16X32, 32X16, 32X32 |
| has_tr_16x32, |
| NULL, |
| has_tr_vert_32x32, |
| // 32X64, 64X32, 64X64 |
| has_tr_32x64, |
| NULL, |
| has_tr_vert_64x64, |
| // 64x128, 128x64, 128x128 |
| has_tr_64x128, |
| NULL, |
| has_tr_128x128 |
| #if CONFIG_BLOCK_256 |
| // 128X256, 256X128, 256X256, |
| NULL, |
| NULL, |
| NULL, |
| #endif // CONFIG_BLOCK_256 |
| }; |
| |
| static const uint8_t *get_has_tr_table(PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| const uint8_t *ret = NULL; |
| // If this is a mixed vertical partition, look up bsize in orders_vert. |
| if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { |
| assert(bsize < BLOCK_SIZES); |
| ret = has_tr_vert_tables[bsize]; |
| } else { |
| ret = has_tr_tables[bsize]; |
| } |
| assert(ret); |
| return ret; |
| } |
| |
| static int has_top_right(const AV1_COMMON *cm, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int top_available, int right_available, |
| PARTITION_TYPE partition, TX_SIZE txsz, int row_off, |
| int col_off, int ss_x, int ss_y) { |
| if (!top_available || !right_available) return 0; |
| |
| const int bw_unit = mi_size_wide[bsize]; |
| const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1); |
| const int top_right_count_unit = tx_size_wide_unit[txsz]; |
| |
| if (row_off > 0) { // Just need to check if enough pixels on the right. |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) { |
| // Special case: For 128x128 blocks, the transform unit whose |
| // top-right corner is at the center of the block does in fact have |
| // pixels available at its top-right corner. |
| if (row_off == mi_size_high[BLOCK_64X64] >> ss_y && |
| col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) { |
| return 1; |
| } |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| return col_off_64 + top_right_count_unit < plane_bw_unit_64; |
| } |
| return col_off + top_right_count_unit < plane_bw_unit; |
| } else { |
| // All top-right pixels are in the block above, which is already available. |
| if (col_off + top_right_count_unit < plane_bw_unit) return 1; |
| |
| const int bw_in_mi_log2 = mi_size_wide_log2[bsize]; |
| const int bh_in_mi_log2 = mi_size_high_log2[bsize]; |
| const int sb_mi_size = mi_size_high[cm->sb_size]; |
| const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2; |
| const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2; |
| |
| // Top row of superblock: so top-right pixels are in the top and/or |
| // top-right superblocks, both of which are already available. |
| if (blk_row_in_sb == 0) return 1; |
| |
| // Rightmost column of superblock (and not the top row): so top-right pixels |
| // fall in the right superblock, which is not available yet. |
| if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) { |
| return 0; |
| } |
| |
| // General case (neither top row nor rightmost column): check if the |
| // top-right block is coded before the current block. |
| const int this_blk_index = |
| ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) + |
| blk_col_in_sb + 0; |
| const int idx1 = this_blk_index / 8; |
| const int idx2 = this_blk_index % 8; |
| const uint8_t *has_tr_table = get_has_tr_table(partition, bsize); |
| return (has_tr_table[idx1] >> idx2) & 1; |
| } |
| } |
| #endif |
| |
| static int has_bottom_left(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bottom_available, int left_available, |
| TX_SIZE txsz, int row_off, int col_off, int ss_x, |
| int ss_y, int px_to_bottom_edge, int *px_bottom_left, |
| int is_bsize_altered_for_chroma) { |
| if (!bottom_available || !left_available) return 0; |
| |
| const int px_bl_common = AOMMIN(tx_size_high[txsz], px_to_bottom_edge); |
| |
| if (px_bl_common <= 0) return 0; |
| |
| *px_bottom_left = px_bl_common; |
| |
| // Special case for 128x* blocks, when col_off is half the block width. |
| // This is needed because 128x* superblocks are divided into 64x* blocks in |
| // raster order |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) { |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| if (col_off_64 == 0) { |
| // We are at the left edge of top-right or bottom-right 64x* block. |
| const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y; |
| const int row_off_64 = row_off % plane_bh_unit_64; |
| const int plane_bh_unit = |
| AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64); |
| // Check if all bottom-left pixels are in the left 64x* block (which is |
| // already coded). |
| return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit; |
| } |
| } |
| |
| if (col_off > 0) { |
| // Bottom-left pixels are in the bottom-left block, which is not available. |
| return 0; |
| } else { |
| const int bh_unit = mi_size_high[bsize]; |
| const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1); |
| const int bottom_left_count_unit = tx_size_high_unit[txsz]; |
| |
| // All bottom-left pixels are in the left block, which is already available. |
| if (row_off + bottom_left_count_unit < plane_bh_unit) return 1; |
| |
| // The general case: neither the leftmost column nor the bottom row. The |
| // bottom-left mi is in the same SB |
| const int sb_mi_size = mi_size_high[cm->sb_size]; |
| const int mi_row_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base |
| : mi_row; |
| const int mi_col_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_col_chroma_base |
| : mi_col; |
| const int bl_mask_row = |
| (mi_row_aligned & (sb_mi_size - 1)) + mi_size_high[bsize]; |
| const int bl_mask_col = (mi_col_aligned & (sb_mi_size - 1)) - 1; |
| |
| if (bl_mask_col < 0) { |
| const int plane_sb_height = block_size_high[cm->sb_size] >> ss_y; |
| const int plane_bottom_row = |
| (((mi_row_aligned & (sb_mi_size - 1)) << MI_SIZE_LOG2) + |
| block_size_high[bsize]) >> |
| ss_y; |
| *px_bottom_left = |
| AOMMIN(plane_sb_height - plane_bottom_row, px_bl_common); |
| |
| return *px_bottom_left > 0; |
| } else if (bl_mask_row >= sb_mi_size) { |
| return 0; |
| } else { |
| const int bl_offset = bl_mask_row * xd->is_mi_coded_stride + bl_mask_col; |
| // As long as there is one bottom-left mi available, we determine bl is |
| // available |
| int has_bl = xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][bl_offset]; |
| |
| // Calculate px_bottom_left: how many bottom-left pixels are available. If |
| // it is less than tx_size_high[txsz], px_bottom_left will be used to |
| // determine the location of the last available pixel, which will be used |
| // for padding. |
| if (has_bl) { |
| int mi_bl = 0; |
| for (int i = 0; i < bottom_left_count_unit << ss_y; ++i) { |
| if ((bl_mask_row + i) >= sb_mi_size || |
| !xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)] |
| [bl_offset + i * xd->is_mi_coded_stride]) { |
| break; |
| } else { |
| mi_bl++; |
| } |
| } |
| |
| *px_bottom_left = AOMMIN((mi_bl << MI_SIZE_LOG2) >> ss_y, px_bl_common); |
| } |
| |
| return has_bl; |
| } |
| } |
| } |
| |
| typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *above, const uint16_t *left, |
| int bd); |
| static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL]; |
| static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL]; |
| #if CONFIG_IBP_DC |
| static intra_high_pred_fn ibp_dc_pred_high[2][2][TX_SIZES_ALL]; |
| #endif |
| |
| static void init_intra_predictors_internal(void) { |
| assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES); |
| |
| #if CONFIG_FLEX_PARTITION |
| #define INIT_RECTANGULAR(p, type) \ |
| p[TX_4X8] = aom_##type##_predictor_4x8; \ |
| p[TX_8X4] = aom_##type##_predictor_8x4; \ |
| p[TX_8X16] = aom_##type##_predictor_8x16; \ |
| p[TX_16X8] = aom_##type##_predictor_16x8; \ |
| p[TX_16X32] = aom_##type##_predictor_16x32; \ |
| p[TX_32X16] = aom_##type##_predictor_32x16; \ |
| p[TX_32X64] = aom_##type##_predictor_32x64; \ |
| p[TX_64X32] = aom_##type##_predictor_64x32; \ |
| p[TX_4X16] = aom_##type##_predictor_4x16; \ |
| p[TX_16X4] = aom_##type##_predictor_16x4; \ |
| p[TX_8X32] = aom_##type##_predictor_8x32; \ |
| p[TX_32X8] = aom_##type##_predictor_32x8; \ |
| p[TX_16X64] = aom_##type##_predictor_16x64; \ |
| p[TX_64X16] = aom_##type##_predictor_64x16; \ |
| p[TX_4X32] = aom_##type##_predictor_4x32; \ |
| p[TX_32X4] = aom_##type##_predictor_32x4; \ |
| p[TX_8X64] = aom_##type##_predictor_8x64; \ |
| p[TX_64X8] = aom_##type##_predictor_64x8; \ |
| p[TX_4X64] = aom_##type##_predictor_4x64; \ |
| p[TX_64X4] = aom_##type##_predictor_64x4; |
| #else |
| #define INIT_RECTANGULAR(p, type) \ |
| p[TX_4X8] = aom_##type##_predictor_4x8; \ |
| p[TX_8X4] = aom_##type##_predictor_8x4; \ |
| p[TX_8X16] = aom_##type##_predictor_8x16; \ |
| p[TX_16X8] = aom_##type##_predictor_16x8; \ |
| p[TX_16X32] = aom_##type##_predictor_16x32; \ |
| p[TX_32X16] = aom_##type##_predictor_32x16; \ |
| p[TX_32X64] = aom_##type##_predictor_32x64; \ |
| p[TX_64X32] = aom_##type##_predictor_64x32; \ |
| p[TX_4X16] = aom_##type##_predictor_4x16; \ |
| p[TX_16X4] = aom_##type##_predictor_16x4; \ |
| p[TX_8X32] = aom_##type##_predictor_8x32; \ |
| p[TX_32X8] = aom_##type##_predictor_32x8; \ |
| p[TX_16X64] = aom_##type##_predictor_16x64; \ |
| p[TX_64X16] = aom_##type##_predictor_64x16; |
| #endif // CONFIG_FLEX_PARTITION |
| |
| #define INIT_NO_4X4(p, type) \ |
| p[TX_8X8] = aom_##type##_predictor_8x8; \ |
| p[TX_16X16] = aom_##type##_predictor_16x16; \ |
| p[TX_32X32] = aom_##type##_predictor_32x32; \ |
| p[TX_64X64] = aom_##type##_predictor_64x64; \ |
| INIT_RECTANGULAR(p, type) |
| |
| #define INIT_ALL_SIZES(p, type) \ |
| p[TX_4X4] = aom_##type##_predictor_4x4; \ |
| INIT_NO_4X4(p, type) |
| |
| INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); |
| INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); |
| INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v); |
| INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h); |
| INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); |
| INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); |
| INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); |
| #if CONFIG_IBP_DC |
| INIT_ALL_SIZES(ibp_dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(ibp_dc_pred_high[0][1], highbd_ibp_dc_top); |
| INIT_ALL_SIZES(ibp_dc_pred_high[1][0], highbd_ibp_dc_left); |
| INIT_ALL_SIZES(ibp_dc_pred_high[1][1], highbd_ibp_dc); |
| #endif |
| #undef intra_pred_allsizes |
| } |
| |
| #if CONFIG_AIMC |
| // get the context for y_mode_idx |
| // the context of y_mode_idx depends on the count of directional neighboring |
| // modes |
| int get_y_mode_idx_ctx(MACROBLOCKD *const xd) { |
| const PREDICTION_MODE above_joint_mode = |
| av1_get_joint_mode(xd->above_right_mbmi); |
| const PREDICTION_MODE left_joint_mode = |
| av1_get_joint_mode(xd->bottom_left_mbmi); |
| const int is_above_angular = |
| above_joint_mode >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0; |
| const int is_left_angular = |
| left_joint_mode >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0; |
| return is_above_angular + is_left_angular; |
| } |
| /*! \brief set the luma intra mode and delta angles for a given mode index. |
| * \param[in] mode_idx mode index in intra mode decision |
| * process. |
| * \param[in] mbmi Pointer to structure holding |
| * the mode info for the current macroblock. |
| */ |
| void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi) { |
| if (mode_idx < NON_DIRECTIONAL_MODES_COUNT) { |
| mbmi->mode = mode_idx; |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| } else { |
| mbmi->mode = |
| (mode_idx - NON_DIRECTIONAL_MODES_COUNT) / TOTAL_ANGLE_DELTA_COUNT + |
| NON_DIRECTIONAL_MODES_COUNT; |
| mbmi->angle_delta[PLANE_TYPE_Y] = |
| (mode_idx - NON_DIRECTIONAL_MODES_COUNT) % TOTAL_ANGLE_DELTA_COUNT - |
| MAX_ANGLE_DELTA; |
| } |
| mbmi->mode = reordered_y_mode[mbmi->mode]; |
| } |
| |
| // re-order the intra prediction modes for y component based |
| // on the neighboring intra prediction modes. The intra prediction |
| // mode list for 4x4, 4x8, and 8x4 blocks are fixed, and not dependent |
| // on the intra prediction modes of neighboring blocks |
| void get_y_intra_mode_set(MB_MODE_INFO *mi, MACROBLOCKD *const xd) { |
| int neighbor_joint_modes[2]; |
| neighbor_joint_modes[0] = av1_get_joint_mode(xd->bottom_left_mbmi); |
| neighbor_joint_modes[1] = av1_get_joint_mode(xd->above_right_mbmi); |
| const int is_left_directional_mode = |
| neighbor_joint_modes[0] >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0; |
| const int is_above_directional_mode = |
| neighbor_joint_modes[1] >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0; |
| // To mark whether each intra prediction mode is added into intra mode list or |
| // not |
| int is_mode_selected_list[LUMA_MODE_COUNT]; |
| |
| const int is_small_block = (mi->sb_type[PLANE_TYPE_Y] < BLOCK_8X8); |
| |
| int i, j; |
| int mode_idx = 0; |
| for (i = 0; i < LUMA_MODE_COUNT; i++) { |
| is_mode_selected_list[i] = -1; |
| mi->y_intra_mode_list[i] = -1; |
| } |
| |
| // always put non-directional modes into the first positions of the mode list |
| for (i = 0; i < NON_DIRECTIONAL_MODES_COUNT; ++i) { |
| mi->y_intra_mode_list[mode_idx++] = i; |
| is_mode_selected_list[i] = 1; |
| } |
| |
| if (is_small_block == 0) { |
| int directional_mode_cnt = |
| is_above_directional_mode + is_left_directional_mode; |
| if (directional_mode_cnt == 2 && |
| neighbor_joint_modes[0] == neighbor_joint_modes[1]) |
| directional_mode_cnt = 1; |
| // copy above mode to left mode, if left mode is non-directiona mode and |
| // above mode is directional mode |
| if (directional_mode_cnt == 1 && is_left_directional_mode == 0) { |
| neighbor_joint_modes[0] = neighbor_joint_modes[1]; |
| } |
| for (i = 0; i < directional_mode_cnt; ++i) { |
| mi->y_intra_mode_list[mode_idx++] = neighbor_joint_modes[i]; |
| is_mode_selected_list[neighbor_joint_modes[i]] = 1; |
| } |
| |
| // Add offsets to derive the neighboring modes |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < directional_mode_cnt; ++j) { |
| int left_derived_ode = (neighbor_joint_modes[j] - i + |
| (56 - NON_DIRECTIONAL_MODES_COUNT - 1)) % |
| 56 + |
| NON_DIRECTIONAL_MODES_COUNT; |
| int right_derived_mode = |
| (neighbor_joint_modes[j] + i - (NON_DIRECTIONAL_MODES_COUNT - 1)) % |
| 56 + |
| NON_DIRECTIONAL_MODES_COUNT; |
| |
| if (is_mode_selected_list[left_derived_ode] == -1) { |
| mi->y_intra_mode_list[mode_idx++] = left_derived_ode; |
| is_mode_selected_list[left_derived_ode] = 1; |
| } |
| if (is_mode_selected_list[right_derived_mode] == -1) { |
| mi->y_intra_mode_list[mode_idx++] = right_derived_mode; |
| is_mode_selected_list[right_derived_mode] = 1; |
| } |
| } |
| } |
| } |
| |
| // fill the remaining list with default modes |
| for (i = 0; i < LUMA_MODE_COUNT - NON_DIRECTIONAL_MODES_COUNT && |
| mode_idx < LUMA_MODE_COUNT; |
| ++i) { |
| if (is_mode_selected_list[default_mode_list_y[i] + |
| NON_DIRECTIONAL_MODES_COUNT] == -1) { |
| mi->y_intra_mode_list[mode_idx++] = |
| default_mode_list_y[i] + NON_DIRECTIONAL_MODES_COUNT; |
| is_mode_selected_list[default_mode_list_y[i] + |
| NON_DIRECTIONAL_MODES_COUNT] = 1; |
| } |
| } |
| } |
| |
| // re-order the intra prediction mode of uv component based on the |
| // intra prediction mode of co-located y block |
| void get_uv_intra_mode_set(MB_MODE_INFO *mi) { |
| #if CONFIG_UV_CFL |
| int is_mode_selected_list[UV_INTRA_MODES - 1]; |
| #else |
| int is_mode_selected_list[UV_INTRA_MODES]; |
| #endif // CONFIG_UV_CFL |
| int i; |
| int mode_idx = 0; |
| #if CONFIG_UV_CFL |
| for (i = 0; i < UV_INTRA_MODES - 1; i++) |
| #else |
| for (i = 0; i < UV_INTRA_MODES; i++) |
| #endif // CONFIG_UV_CFL |
| { |
| is_mode_selected_list[i] = -1; |
| mi->uv_intra_mode_list[i] = -1; |
| } |
| // check whether co-located y mode is directional mode or not |
| if (av1_is_directional_mode(mi->mode)) { |
| mi->uv_intra_mode_list[mode_idx++] = mi->mode; |
| is_mode_selected_list[mi->mode] = 1; |
| } |
| |
| // put non-directional modes into the mode list |
| mi->uv_intra_mode_list[mode_idx++] = UV_DC_PRED; |
| is_mode_selected_list[UV_DC_PRED] = 1; |
| mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_PRED; |
| is_mode_selected_list[UV_SMOOTH_PRED] = 1; |
| mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_V_PRED; |
| is_mode_selected_list[UV_SMOOTH_V_PRED] = 1; |
| mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_H_PRED; |
| is_mode_selected_list[UV_SMOOTH_H_PRED] = 1; |
| mi->uv_intra_mode_list[mode_idx++] = UV_PAETH_PRED; |
| is_mode_selected_list[UV_PAETH_PRED] = 1; |
| |
| // fill the remaining list with default modes |
| const int directional_mode_count = DIR_MODE_END - DIR_MODE_START; |
| for (i = 0; i < directional_mode_count; ++i) { |
| if (is_mode_selected_list[default_mode_list_uv[i]] == -1) { |
| mi->uv_intra_mode_list[mode_idx++] = default_mode_list_uv[i]; |
| is_mode_selected_list[default_mode_list_uv[i]] = 1; |
| } |
| } |
| |
| #if !CONFIG_UV_CFL |
| // put cfl mode into the mode list |
| mi->uv_intra_mode_list[mode_idx++] = UV_CFL_PRED; |
| is_mode_selected_list[UV_CFL_PRED] = 1; |
| #endif // !CONFIG_UV_CFL |
| } |
| |
| #if CONFIG_UV_CFL |
| int get_cfl_ctx(MACROBLOCKD *xd) { |
| const int above_ctx = |
| xd->chroma_above_mbmi ? xd->chroma_above_mbmi->uv_mode == UV_CFL_PRED : 0; |
| const int left_ctx = |
| xd->chroma_left_mbmi ? xd->chroma_left_mbmi->uv_mode == UV_CFL_PRED : 0; |
| return above_ctx + left_ctx; |
| } |
| #endif // CONFIG_UV_CFL |
| #endif // CONFIG_AIMC |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int dx, int dy, int bd, int mrl_index) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| (void)bd; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = ((bw + bh) - 1 + (mrl_index << 1)) << upsample_above; |
| const int frac_bits = 6 - upsample_above; |
| const int base_inc = 1 << upsample_above; |
| x = dx * (1 + mrl_index); |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = ((x << upsample_above) & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| aom_memset16(dst, above[max_base_x], bw); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| dst[c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int dx, int dy, int bd, |
| int mrl_index) { |
| (void)bd; |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -(1 << upsample_above) - mrl_index; |
| const int min_base_y = -(1 << upsample_left) - mrl_index; |
| (void)min_base_y; |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| int val; |
| int y = r + 1; |
| int x = (c << 6) - (y + mrl_index) * dx; |
| const int base_x = x >> frac_bits_x; |
| if (base_x >= min_base_x) { |
| const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; |
| val = above[base_x] * (32 - shift) + above[base_x + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| x = c + 1; |
| y = (r << 6) - (x + mrl_index) * dy; |
| const int base_y = y >> frac_bits_y; |
| assert(base_y >= min_base_y); |
| const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; |
| val = left[base_y] * (32 - shift) + left[base_y + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } |
| dst[c] = val; |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_left, |
| int dx, int dy, int bd, int mrl_index) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| (void)bd; |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| const int max_base_y = ((bw + bh - 1) << upsample_left) + (mrl_index << 1); |
| const int frac_bits = 6 - upsample_left; |
| const int base_inc = 1 << upsample_left; |
| y = dy * (1 + mrl_index); |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = ((y << upsample_left) & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_IDIF |
| // Directional prediction, zone 1: 0 < angle < 90 using IDIF |
| void av1_highbd_dr_prediction_z1_idif_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| int r, c, x, base, shift, val; |
| |
| uint16_t ref[4] = { 0 }; |
| |
| (void)left; |
| (void)dy; |
| (void)bd; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = (bw + bh) - 1 + (mrl_index << 1); |
| const int frac_bits = 6; |
| const int base_inc = 1; |
| |
| x = dx * (1 + mrl_index); |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = (x & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| aom_memset16(dst, above[max_base_x], bw); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| // 4-tap filter |
| ref[0] = above[base - 1]; |
| ref[1] = above[base]; |
| ref[2] = above[base + 1]; |
| ref[3] = above[base + 2]; |
| |
| val = av1_dr_interp_filter[shift][0] * ref[0] + |
| av1_dr_interp_filter[shift][1] * ref[1] + |
| av1_dr_interp_filter[shift][2] * ref[2] + |
| av1_dr_interp_filter[shift][3] * ref[3]; |
| |
| dst[c] = clip_pixel_highbd( |
| ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), bd); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 using IDIF |
| void av1_highbd_dr_prediction_z2_idif_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| (void)bd; |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -1 - mrl_index; |
| const int min_base_y = -1 - mrl_index; |
| |
| (void)min_base_y; |
| const int frac_bits_x = 6; |
| const int frac_bits_y = 6; |
| |
| uint16_t ref[4] = { 0 }; |
| |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| int val; |
| int y = r + 1; |
| int x = (c << 6) - (y + mrl_index) * dx; |
| const int base_x = x >> frac_bits_x; |
| if (base_x >= min_base_x) { |
| const int shift = (x & 0x3F) >> 1; |
| // 4-tap filter |
| ref[0] = above[base_x - 1]; |
| ref[1] = above[base_x]; |
| ref[2] = above[base_x + 1]; |
| ref[3] = above[base_x + 2]; |
| |
| val = av1_dr_interp_filter[shift][0] * ref[0] + |
| av1_dr_interp_filter[shift][1] * ref[1] + |
| av1_dr_interp_filter[shift][2] * ref[2] + |
| av1_dr_interp_filter[shift][3] * ref[3]; |
| |
| val = clip_pixel_highbd(ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), |
| bd); |
| } else { |
| x = c + 1; |
| y = (r << 6) - (x + mrl_index) * dy; |
| const int base_y = y >> frac_bits_y; |
| assert(base_y >= min_base_y); |
| const int shift = (y & 0x3F) >> 1; |
| // 4-tap filter |
| ref[0] = left[base_y - 1]; |
| ref[1] = left[base_y]; |
| ref[2] = left[base_y + 1]; |
| ref[3] = left[base_y + 2]; |
| |
| val = av1_dr_interp_filter[shift][0] * ref[0] + |
| av1_dr_interp_filter[shift][1] * ref[1] + |
| av1_dr_interp_filter[shift][2] * ref[2] + |
| av1_dr_interp_filter[shift][3] * ref[3]; |
| |
| val = clip_pixel_highbd(ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), |
| bd); |
| } |
| dst[c] = val; |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 using IDIF |
| void av1_highbd_dr_prediction_z3_idif_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| (void)bd; |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| uint16_t ref[4] = { 0 }; |
| |
| const int max_base_y = (bw + bh) - 1 + (mrl_index << 1); |
| const int frac_bits = 6; |
| const int base_inc = 1; |
| |
| y = dy * (1 + mrl_index); |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = (y & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| // 4-tap filter |
| ref[0] = left[base - 1]; |
| ref[1] = left[base]; |
| ref[2] = left[base + 1]; |
| ref[3] = left[base + 2]; |
| |
| val = av1_dr_interp_filter[shift][0] * ref[0] + |
| av1_dr_interp_filter[shift][1] * ref[1] + |
| av1_dr_interp_filter[shift][2] * ref[2] + |
| av1_dr_interp_filter[shift][3] * ref[3]; |
| |
| dst[r * stride + c] = clip_pixel_highbd( |
| ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), bd); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void highbd_dr_predictor_idif(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, uint16_t *above, |
| uint16_t *left, int angle, int bd, |
| int mrl_index) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| const int min_base = -((1 + mrl_index)); |
| const int max_base = ((bw + bh) - 1 + (mrl_index << 1)); |
| |
| if (angle > 0 && angle < 90) { |
| above[max_base + 1] = above[max_base]; |
| av1_highbd_dr_prediction_z1_idif(dst, stride, bw, bh, above, left, dx, dy, |
| bd, mrl_index); |
| |
| } else if (angle > 90 && angle < 180) { |
| above[min_base - 1] = above[min_base]; |
| left[min_base - 1] = left[min_base]; |
| av1_highbd_dr_prediction_z2_idif(dst, stride, bw, bh, above, left, dx, dy, |
| bd, mrl_index); |
| |
| } else if (angle > 180 && angle < 270) { |
| left[max_base + 1] = left[max_base]; |
| av1_highbd_dr_prediction_z3_idif(dst, stride, bw, bh, above, left, dx, dy, |
| bd, mrl_index); |
| |
| } else if (angle == 90) { |
| pred_high[V_PRED][tx_size](dst, stride, above, left, bd); |
| } else if (angle == 180) { |
| pred_high[H_PRED][tx_size](dst, stride, above, left, bd); |
| } |
| } |
| #endif // CONFIG_IDIF |
| |
| static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int angle, int bd, |
| int mrl_index) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left, |
| upsample_above, dx, dy, bd, mrl_index); |
| } else if (angle > 90 && angle < 180) { |
| av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left, |
| upsample_above, upsample_left, dx, dy, bd, |
| mrl_index); |
| } else if (angle > 180 && angle < 270) { |
| av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, |
| dx, dy, bd, mrl_index); |
| } else if (angle == 90) { |
| pred_high[V_PRED][tx_size](dst, stride, above, left, bd); |
| } else if (angle == 180) { |
| pred_high[H_PRED][tx_size](dst, stride, above, left, bd); |
| } |
| } |
| |
| // Generate the second directional predictor for IBP |
| static void highbd_second_dr_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int angle, int bd) { |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| if (angle > 0 && angle < 90) { |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dy = dr_intra_derivative[90 - angle]; |
| #else |
| int dy = second_dr_intra_derivative[angle]; |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dx = 1; |
| av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, |
| dx, dy, bd, 0); |
| } else if (angle > 180 && angle < 270) { |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dx = dr_intra_derivative[angle - 180]; |
| #else |
| int dx = second_dr_intra_derivative[270 - angle]; |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dy = 1; |
| av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left, |
| upsample_above, dx, dy, bd, 0); |
| } |
| } |
| |
| #if CONFIG_IDIF |
| // Generate the second directional predictor for IBP |
| static void highbd_second_dr_predictor_idif(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, uint16_t *above, |
| uint16_t *left, int angle, int bd) { |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| const int max_base = ((bw + bh) - 1); |
| |
| if (angle > 0 && angle < 90) { |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dy = dr_intra_derivative[90 - angle]; |
| #else |
| int dy = second_dr_intra_derivative[angle]; |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dx = 1; |
| left[max_base + 1] = left[max_base]; |
| av1_highbd_dr_prediction_z3_idif(dst, stride, bw, bh, above, left, dx, dy, |
| bd, 0); |
| } else if (angle > 180 && angle < 270) { |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dx = dr_intra_derivative[angle - 180]; |
| #else |
| int dx = second_dr_intra_derivative[270 - angle]; |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| int dy = 1; |
| above[max_base + 1] = above[max_base]; |
| av1_highbd_dr_prediction_z1_idif(dst, stride, bw, bh, above, left, dx, dy, |
| bd, 0); |
| } |
| } |
| #endif // CONFIG_IDIF |
| |
| DECLARE_ALIGNED(16, const int8_t, |
| av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = { |
| { |
| { -6, 10, 0, 0, 0, 12, 0, 0 }, |
| { -5, 2, 10, 0, 0, 9, 0, 0 }, |
| { -3, 1, 1, 10, 0, 7, 0, 0 }, |
| { -3, 1, 1, 2, 10, 5, 0, 0 }, |
| { -4, 6, 0, 0, 0, 2, 12, 0 }, |
| { -3, 2, 6, 0, 0, 2, 9, 0 }, |
| { -3, 2, 2, 6, 0, 2, 7, 0 }, |
| { -3, 1, 2, 2, 6, 3, 5, 0 }, |
| }, |
| { |
| { -10, 16, 0, 0, 0, 10, 0, 0 }, |
| { -6, 0, 16, 0, 0, 6, 0, 0 }, |
| { -4, 0, 0, 16, 0, 4, 0, 0 }, |
| { -2, 0, 0, 0, 16, 2, 0, 0 }, |
| { -10, 16, 0, 0, 0, 0, 10, 0 }, |
| { -6, 0, 16, 0, 0, 0, 6, 0 }, |
| { -4, 0, 0, 16, 0, 0, 4, 0 }, |
| { -2, 0, 0, 0, 16, 0, 2, 0 }, |
| }, |
| { |
| { -8, 8, 0, 0, 0, 16, 0, 0 }, |
| { -8, 0, 8, 0, 0, 16, 0, 0 }, |
| { -8, 0, 0, 8, 0, 16, 0, 0 }, |
| { -8, 0, 0, 0, 8, 16, 0, 0 }, |
| { -4, 4, 0, 0, 0, 0, 16, 0 }, |
| { -4, 0, 4, 0, 0, 0, 16, 0 }, |
| { -4, 0, 0, 4, 0, 0, 16, 0 }, |
| { -4, 0, 0, 0, 4, 0, 16, 0 }, |
| }, |
| { |
| { -2, 8, 0, 0, 0, 10, 0, 0 }, |
| { -1, 3, 8, 0, 0, 6, 0, 0 }, |
| { -1, 2, 3, 8, 0, 4, 0, 0 }, |
| { 0, 1, 2, 3, 8, 2, 0, 0 }, |
| { -1, 4, 0, 0, 0, 3, 10, 0 }, |
| { -1, 3, 4, 0, 0, 4, 6, 0 }, |
| { -1, 2, 3, 4, 0, 4, 4, 0 }, |
| { -1, 2, 2, 3, 4, 3, 3, 0 }, |
| }, |
| { |
| { -12, 14, 0, 0, 0, 14, 0, 0 }, |
| { -10, 0, 14, 0, 0, 12, 0, 0 }, |
| { -9, 0, 0, 14, 0, 11, 0, 0 }, |
| { -8, 0, 0, 0, 14, 10, 0, 0 }, |
| { -10, 12, 0, 0, 0, 0, 14, 0 }, |
| { -9, 1, 12, 0, 0, 0, 12, 0 }, |
| { -8, 0, 0, 12, 0, 1, 11, 0 }, |
| { -7, 0, 0, 1, 12, 1, 9, 0 }, |
| }, |
| }; |
| |
| void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint8_t *above, |
| const uint8_t *left, int mode) { |
| int r, c; |
| uint8_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t)); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint8_t p0 = buffer[r - 1][c - 1]; |
| const uint8_t p1 = buffer[r - 1][c]; |
| const uint8_t p2 = buffer[r - 1][c + 1]; |
| const uint8_t p3 = buffer[r - 1][c + 2]; |
| const uint8_t p4 = buffer[r - 1][c + 3]; |
| const uint8_t p5 = buffer[r][c - 1]; |
| const uint8_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS)); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t)); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, |
| const uint16_t *above, |
| const uint16_t *left, int mode, |
| int bd) { |
| int r, c; |
| uint16_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint16_t p0 = buffer[r - 1][c - 1]; |
| const uint16_t p1 = buffer[r - 1][c]; |
| const uint16_t p2 = buffer[r - 1][c + 1]; |
| const uint16_t p3 = buffer[r - 1][c + 2]; |
| const uint16_t p4 = buffer[r - 1][c + 3]; |
| const uint16_t p5 = buffer[r][c - 1]; |
| const uint16_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS), |
| bd); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0])); |
| dst += stride; |
| } |
| } |
| |
| static int is_smooth(const MB_MODE_INFO *mbmi, int plane, TREE_TYPE tree_type) { |
| if (plane == 0) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || |
| mode == SMOOTH_H_PRED); |
| } else { |
| // uv_mode is not set for inter blocks, so need to explicitly |
| // detect that case. |
| if (is_inter_block(mbmi, tree_type)) return 0; |
| |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED || |
| uv_mode == UV_SMOOTH_H_PRED); |
| } |
| } |
| |
| static int get_filt_type(const MACROBLOCKD *xd, int plane) { |
| int ab_sm, le_sm; |
| |
| if (plane == 0) { |
| const MB_MODE_INFO *ab = xd->above_mbmi; |
| const MB_MODE_INFO *le = xd->left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane, xd->tree_type) : 0; |
| le_sm = le ? is_smooth(le, plane, xd->tree_type) : 0; |
| } else { |
| const MB_MODE_INFO *ab = xd->chroma_above_mbmi; |
| const MB_MODE_INFO *le = xd->chroma_left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane, xd->tree_type) : 0; |
| le_sm = le ? is_smooth(le, plane, xd->tree_type) : 0; |
| } |
| |
| return (ab_sm || le_sm) ? 1 : 0; |
| } |
| |
| static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) { |
| const int d = abs(delta); |
| int strength = 0; |
| |
| const int blk_wh = bs0 + bs1; |
| if (type == 0) { |
| if (blk_wh <= 8) { |
| if (d >= 56) strength = 1; |
| } else if (blk_wh <= 12) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 16) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 24) { |
| if (d >= 8) strength = 1; |
| if (d >= 16) strength = 2; |
| if (d >= 32) strength = 3; |
| } else if (blk_wh <= 32) { |
| if (d >= 1) strength = 1; |
| if (d >= 4) strength = 2; |
| if (d >= 32) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } else { |
| if (blk_wh <= 8) { |
| if (d >= 40) strength = 1; |
| if (d >= 64) strength = 2; |
| } else if (blk_wh <= 16) { |
| if (d >= 20) strength = 1; |
| if (d >= 48) strength = 2; |
| } else if (blk_wh <= 24) { |
| if (d >= 4) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } |
| return strength; |
| } |
| |
| void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) { |
| if (!strength) return; |
| |
| const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 }, |
| { 0, 5, 6, 5, 0 }, |
| { 2, 4, 4, 4, 2 } }; |
| const int filt = strength - 1; |
| uint16_t edge[129]; |
| |
| memcpy(edge, p, sz * sizeof(*p)); |
| for (int i = 1; i < sz; i++) { |
| int s = 0; |
| for (int j = 0; j < INTRA_EDGE_TAPS; j++) { |
| int k = i - 2 + j; |
| k = (k < 0) ? 0 : k; |
| k = (k > sz - 1) ? sz - 1 : k; |
| s += edge[k] * kernel[filt][j]; |
| } |
| s = (s + 8) >> 4; |
| p[i] = s; |
| } |
| } |
| |
| static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) { |
| const int kernel[3] = { 5, 6, 5 }; |
| |
| int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + |
| (p_above[0] * kernel[2]); |
| s = (s + 8) >> 4; |
| p_above[-1] = s; |
| p_left[-1] = s; |
| } |
| |
| void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) { |
| // interpolate half-sample positions |
| assert(sz <= MAX_UPSAMPLE_SZ); |
| |
| uint16_t in[MAX_UPSAMPLE_SZ + 3]; |
| // copy p[-1..(sz-1)] and extend first and last samples |
| in[0] = p[-1]; |
| in[1] = p[-1]; |
| for (int i = 0; i < sz; i++) { |
| in[i + 2] = p[i]; |
| } |
| in[sz + 2] = p[sz - 1]; |
| |
| // interpolate half-sample edge positions |
| p[-2] = in[0]; |
| for (int i = 0; i < sz; i++) { |
| int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; |
| s = (s + 8) >> 4; |
| s = clip_pixel_highbd(s, bd); |
| p[2 * i - 1] = s; |
| p[2 * i] = in[i + 2]; |
| } |
| } |
| |
| void av1_highbd_ibp_dr_prediction_z1_c(uint8_t *weights, uint16_t *dst, |
| ptrdiff_t stride, uint16_t *second_pred, |
| ptrdiff_t second_stride, int bw, |
| int bh) { |
| int r, c; |
| for (r = 0; r < bh; ++r) { |
| for (c = 0; c < bw; ++c) { |
| dst[c] = ROUND_POWER_OF_TWO( |
| dst[c] * weights[c] + second_pred[c] * (IBP_WEIGHT_MAX - weights[c]), |
| IBP_WEIGHT_SHIFT); |
| } |
| weights += bw; |
| dst += stride; |
| second_pred += second_stride; |
| } |
| } |
| |
| void av1_highbd_ibp_dr_prediction_z3_c(uint8_t *weights, uint16_t *dst, |
| ptrdiff_t stride, uint16_t *second_pred, |
| ptrdiff_t second_stride, int bw, |
| int bh) { |
| int r, c; |
| for (c = 0; c < bw; ++c) { |
| uint16_t *tmp_dst = dst + c; |
| uint16_t *tmp_second = second_pred + c; |
| for (r = 0; r < bh; ++r) { |
| tmp_dst[0] = |
| ROUND_POWER_OF_TWO(tmp_dst[0] * weights[r] + |
| tmp_second[0] * (IBP_WEIGHT_MAX - weights[r]), |
| IBP_WEIGHT_SHIFT); |
| tmp_dst += stride; |
| tmp_second += second_stride; |
| } |
| weights += bh; |
| } |
| } |
| |
| static void build_intra_predictors_high( |
| const MACROBLOCKD *xd, const uint16_t *ref, int ref_stride, uint16_t *dst, |
| int dst_stride, PREDICTION_MODE mode, int angle_delta, |
| FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, |
| int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, int plane, int is_sb_boundary, |
| const int seq_intra_pred_filter_flag, const int seq_ibp_flag, |
| uint8_t *const ibp_weights[TX_SIZES_ALL][DIR_MODES_0_90] |
| #if CONFIG_IDIF |
| , |
| const int enable_idif |
| #endif // CONFIG_IDIF |
| ) { |
| int i; |
| DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]); |
| DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]); |
| DECLARE_ALIGNED(16, uint16_t, second_pred_data[MAX_TX_SQUARE + 32]); |
| uint16_t *const above_row = above_data + 32; |
| uint16_t *const left_col = left_data + 32; |
| uint16_t *const second_pred = second_pred_data + 16; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; |
| const uint8_t mrl_index = |
| (plane == PLANE_TYPE_Y && is_inter_block(xd->mi[0], xd->tree_type) == 0) |
| ? xd->mi[0]->mrl_index |
| : 0; |
| const int above_mrl_idx = is_sb_boundary ? 0 : mrl_index; |
| const uint16_t *above_ref = ref - ref_stride * (above_mrl_idx + 1); |
| const uint16_t *left_ref = ref - 1 - mrl_index; |
| int p_angle = 0; |
| const int is_dr_mode = av1_is_directional_mode(mode); |
| const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; |
| int base = 128 << (xd->bd - 8); |
| // The left_data, above_data buffers must be zeroed to fix some intermittent |
| // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4 |
| // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are |
| // seen to be the potential reason for this issue. |
| aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS); |
| aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS); |
| |
| // The default values if ref pixels are not available: |
| // base base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 |
| // base+1 A B .. Y Z |
| // base+1 C D .. W X |
| // base+1 E F .. U V |
| // base+1 G H .. S T T T T T |
| |
| int apply_sub_block_based_refinement_filter = |
| seq_intra_pred_filter_flag && (mrl_index == 0); |
| if (is_dr_mode) { |
| p_angle = mode_to_angle_map[mode] + angle_delta; |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| const int mrl_index_to_delta[4] = { 0, 1, -1, 0 }; |
| p_angle += mrl_index_to_delta[mrl_index]; |
| assert(p_angle > 0 && p_angle < 270); |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0, need_above_left = 1; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1, need_above_left = 1; |
| else |
| need_above = 0, need_left = 1, need_above_left = 1; |
| if (seq_ibp_flag) { |
| need_above = 1, need_left = 1, need_above_left = 1; |
| } |
| |
| #if !CONFIG_ORIP_NONDC_DISABLED |
| if (apply_sub_block_based_refinement_filter && |
| (p_angle == 90 || p_angle == 180)) { |
| need_above = 1; |
| need_left = 1; |
| need_above_left = 1; |
| } |
| #endif |
| } |
| if (use_filter_intra) need_left = need_above = need_above_left = 1; |
| |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int val; |
| if (need_left) { |
| val = (n_top_px > 0) ? above_ref[0] : base + 1; |
| } else { |
| val = (n_left_px > 0) ? left_ref[0] : base - 1; |
| } |
| for (i = 0; i < txhpx; ++i) { |
| aom_memset16(dst, val, txwpx); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT; |
| if (use_filter_intra) need_bottom = 0; |
| if (is_dr_mode) |
| need_bottom = |
| seq_ibp_flag ? (p_angle < 90) || (p_angle > 180) : p_angle > 180; |
| #if CONFIG_IDIF |
| int num_left_pixels_needed = |
| txhpx + (need_bottom ? txwpx : 3) + (mrl_index << 1) + 1; |
| if (enable_idif && (p_angle > 90 && p_angle < 180)) { |
| num_left_pixels_needed += 1; |
| } |
| #else |
| const int num_left_pixels_needed = |
| txhpx + (need_bottom ? txwpx : 3) + (mrl_index << 1); |
| #endif // CONFIG_IDIF |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == txhpx); |
| for (; i < txhpx + n_bottomleft_px; i++) |
| left_col[i] = left_ref[i * ref_stride]; |
| } |
| if (i < num_left_pixels_needed) |
| aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); |
| } else if (n_top_px > 0) { |
| aom_memset16(left_col, above_ref[0], num_left_pixels_needed); |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| int need_right = extend_modes[mode] & NEED_ABOVERIGHT; |
| if (use_filter_intra) need_right = 0; |
| if (is_dr_mode) |
| need_right = |
| seq_ibp_flag ? (p_angle < 90) || (p_angle > 180) : p_angle < 90; |
| #if CONFIG_IDIF |
| int num_top_pixels_needed = |
| txwpx + (need_right ? txhpx : 0) + (mrl_index << 1); |
| if (enable_idif && (p_angle > 90 && p_angle < 180)) { |
| num_top_pixels_needed += 1; |
| } |
| #else |
| const int num_top_pixels_needed = |
| txwpx + (need_right ? txhpx : 0) + (mrl_index << 1); |
| #endif // CONFIG_IDIF |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == txwpx); |
| memcpy(above_row + txwpx, above_ref + txwpx, |
| n_topright_px * sizeof(above_ref[0])); |
| i += n_topright_px; |
| } |
| if (i < num_top_pixels_needed) |
| aom_memset16(&above_row[i], above_row[i - 1], |
| num_top_pixels_needed - i); |
| } else if (n_left_px > 0) { |
| aom_memset16(above_row, left_ref[0], num_top_pixels_needed); |
| } |
| } |
| |
| if (need_above_left) { |
| for (i = 1; i <= mrl_index + 1; i++) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| above_row[-i] = above_ref[-i]; |
| if (is_sb_boundary) |
| left_col[-i] = left_ref[-ref_stride]; |
| else |
| left_col[-i] = left_ref[-i * ref_stride]; |
| |
| } else if (n_top_px > 0) { |
| above_row[-i] = left_col[-i] = above_ref[0]; |
| } else if (n_left_px > 0) { |
| above_row[-i] = left_col[-i] = left_ref[0]; |
| } else { |
| above_row[-i] = left_col[-i] = base; |
| } |
| } |
| } |
| |
| if (use_filter_intra) { |
| highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| filter_intra_mode, xd->bd); |
| return; |
| } |
| |
| if (is_dr_mode) { |
| int upsample_above = 0; |
| int upsample_left = 0; |
| if (!disable_edge_filter && mrl_index == 0) { |
| int need_right = p_angle < 90; |
| int need_bottom = p_angle > 180; |
| int filt_type_above = get_filt_type(xd, plane); |
| int filt_type_left = filt_type_above; |
| int angle_above = p_angle - 90; |
| int angle_left = p_angle - 180; |
| if (seq_ibp_flag) { |
| need_right |= p_angle > 180; |
| need_bottom |= p_angle < 90; |
| const MB_MODE_INFO *ab = |
| (plane == 0) ? xd->above_mbmi : xd->chroma_above_mbmi; |
| const MB_MODE_INFO *le = |
| (plane == 0) ? xd->left_mbmi : xd->chroma_left_mbmi; |
| filt_type_above = ab ? is_smooth(ab, plane, xd->tree_type) : 0; |
| filt_type_left = le ? is_smooth(le, plane, xd->tree_type) : 0; |
| angle_above = p_angle > 180 ? (p_angle - 180 - 90) : angle_above; |
| angle_left = p_angle < 90 ? p_angle : angle_left; |
| } |
| |
| if (p_angle != 90 && p_angle != 180) { |
| const int ab_le = need_above_left ? 1 : 0; |
| if (need_above && need_left && (txwpx + txhpx >= 24)) { |
| filter_intra_edge_corner_high(above_row, left_col); |
| } |
| if (need_above && n_top_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txwpx, txhpx, angle_above, filt_type_above); |
| const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); |
| av1_filter_intra_edge_high(above_row - ab_le, n_px, strength); |
| } |
| if (need_left && n_left_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txhpx, txwpx, angle_left, filt_type_left); |
| const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); |
| av1_filter_intra_edge_high(left_col - ab_le, n_px, strength); |
| } |
| } |
| #if CONFIG_IDIF |
| if (!enable_idif) { |
| #endif // CONFIG_IDIF |
| upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, angle_above, |
| filt_type_above); |
| if (need_above && upsample_above) { |
| const int n_px = txwpx + (need_right ? txhpx : 0); |
| av1_upsample_intra_edge_high(above_row, n_px, xd->bd); |
| } |
| upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, angle_left, |
| filt_type_left); |
| if (need_left && upsample_left) { |
| const int n_px = txhpx + (need_bottom ? txwpx : 0); |
| av1_upsample_intra_edge_high(left_col, n_px, xd->bd); |
| } |
| #if CONFIG_IDIF |
| } |
| #endif // CONFIG_IDIF |
| } |
| #if CONFIG_IDIF |
| if (enable_idif) { |
| highbd_dr_predictor_idif(dst, dst_stride, tx_size, above_row, left_col, |
| p_angle, xd->bd, mrl_index); |
| } else { |
| highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| upsample_above, upsample_left, p_angle, xd->bd, |
| mrl_index); |
| } |
| #else |
| highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| upsample_above, upsample_left, p_angle, xd->bd, |
| mrl_index); |
| #endif // CONFIG_IDIF |
| if (seq_ibp_flag) { |
| if (mrl_index == 0 |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| && (angle_delta % 2 == 0) |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| ) { |
| if (p_angle > 0 && p_angle < 90) { |
| int mode_index = angle_to_mode_index[p_angle]; |
| uint8_t *weights = ibp_weights[tx_size][mode_index]; |
| #if CONFIG_IDIF |
| if (enable_idif) { |
| highbd_second_dr_predictor_idif(second_pred, txwpx, tx_size, |
| above_row, left_col, p_angle, |
| xd->bd); |
| } else { |
| highbd_second_dr_predictor(second_pred, txwpx, tx_size, above_row, |
| left_col, upsample_above, upsample_left, |
| p_angle, xd->bd); |
| } |
| #else |
| highbd_second_dr_predictor(second_pred, txwpx, tx_size, above_row, |
| left_col, upsample_above, upsample_left, |
| p_angle, xd->bd); |
| #endif // CONFIG_IDIF |
| av1_highbd_ibp_dr_prediction_z1_c(weights, dst, dst_stride, |
| second_pred, txwpx, txwpx, txhpx); |
| } |
| if (p_angle > 180 && p_angle < 270) { |
| int mode_index = angle_to_mode_index[270 - p_angle]; |
| int transpose_tsize = transpose_tx_size[tx_size]; |
| uint8_t *weights = ibp_weights[transpose_tsize][mode_index]; |
| #if CONFIG_IDIF |
| if (enable_idif) { |
| highbd_second_dr_predictor_idif(second_pred, txwpx, tx_size, |
| above_row, left_col, p_angle, |
| xd->bd); |
| } else { |
| highbd_second_dr_predictor(second_pred, txwpx, tx_size, above_row, |
| left_col, upsample_above, upsample_left, |
| p_angle, xd->bd); |
| } |
| #else |
| highbd_second_dr_predictor(second_pred, txwpx, tx_size, above_row, |
| left_col, upsample_above, upsample_left, |
| p_angle, xd->bd); |
| #endif // CONFIG_IDIF |
| av1_highbd_ibp_dr_prediction_z3_c(weights, dst, dst_stride, |
| second_pred, txwpx, txwpx, txhpx); |
| } |
| } |
| } |
| |
| #if !CONFIG_ORIP_NONDC_DISABLED |
| // Apply sub-block based filter for horizontal/vertical intra mode |
| if (apply_sub_block_based_refinement_filter && |
| #if DF_RESTRICT_ORIP |
| av1_allow_orip_dir(p_angle, tx_size)) { |
| #else |
| av1_allow_orip_dir(p_angle)) { |
| #endif |
| av1_apply_orip_4x4subblock_hbd(dst, dst_stride, tx_size, above_row, |
| left_col, mode, xd->bd); |
| } |
| #endif |
| return; |
| } |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, above_row, left_col, xd->bd); |
| #if CONFIG_IBP_DC |
| if (seq_ibp_flag && ((plane == 0) || (xd->mi[0]->uv_mode != UV_CFL_PRED)) && |
| ((n_left_px > 0) || (n_top_px > 0))) { |
| ibp_dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, above_row, left_col, xd->bd); |
| } |
| #endif |
| } else { |
| pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, xd->bd); |
| } |
| |
| // Apply sub-block based filter for DC/smooth intra mode |
| apply_sub_block_based_refinement_filter &= |
| #if DF_RESTRICT_ORIP |
| av1_allow_orip_smooth_dc(mode, plane, tx_size); |
| #else |
| av1_allow_orip_smooth_dc(mode, plane); |
| #endif |
| if (apply_sub_block_based_refinement_filter) { |
| av1_apply_orip_4x4subblock_hbd(dst, dst_stride, tx_size, above_row, |
| left_col, mode, xd->bd); |
| } |
| } |
| |
| #define ARITHMETIC_LEFT_SHIFT(x, shift) \ |
| (((x) >= 0) ? ((x) << (shift)) : (-((-(x)) << (shift)))) |
| |
| void av1_predict_intra_block( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, int wpx, int hpx, |
| TX_SIZE tx_size, PREDICTION_MODE mode, int angle_delta, int use_palette, |
| FILTER_INTRA_MODE filter_intra_mode, const uint16_t *ref, int ref_stride, |
| uint16_t *dst, int dst_stride, int col_off, int row_off, int plane) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| const int x = col_off << MI_SIZE_LOG2; |
| const int y = row_off << MI_SIZE_LOG2; |
| |
| if (use_palette) { |
| int r, c; |
| const uint8_t *const map = xd->plane[plane != 0].color_index_map + |
| xd->color_index_map_offset[plane != 0]; |
| const uint16_t *const palette = |
| mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; |
| for (r = 0; r < txhpx; ++r) { |
| for (c = 0; c < txwpx; ++c) { |
| dst[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]]; |
| } |
| } |
| return; |
| } |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int have_top = 0, have_left = 0; |
| set_have_top_and_left(&have_top, &have_left, xd, row_off, col_off, plane); |
| #else |
| const int have_top = |
| row_off || (ss_y ? xd->chroma_up_available : xd->up_available); |
| const int have_left = |
| col_off || (ss_x ? xd->chroma_left_available : xd->left_available); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| BLOCK_SIZE bsize = mbmi->sb_type[plane > 0]; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| // Distance between the right edge of this prediction block to |
| // the tile right edge |
| const int xr = |
| ARITHMETIC_LEFT_SHIFT(xd->tile.mi_col_end - mi_col - mi_wide, 2 - ss_x) + |
| wpx - x - txwpx; |
| // Distance between the bottom edge of this prediction block to |
| // the tile bottom edge |
| const int yd = |
| ARITHMETIC_LEFT_SHIFT(xd->tile.mi_row_end - mi_row - mi_high, 2 - ss_y) + |
| hpx - y - txhpx; |
| const int right_available = |
| mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end; |
| const int bottom_available = |
| (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end); |
| |
| const BLOCK_SIZE init_bsize = bsize; |
| // force 4x4 chroma component block size. |
| if (ss_x || ss_y) { |
| bsize = mbmi->chroma_ref_info.bsize_base; |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int px_top_right = 0; |
| const int have_top_right = has_top_right( |
| cm, xd, bsize, mi_row, mi_col, have_top, right_available, tx_size, |
| row_off, col_off, ss_x, ss_y, xr, &px_top_right, bsize != init_bsize); |
| #else |
| const PARTITION_TYPE partition = mbmi->partition; |
| const int have_top_right = |
| has_top_right(cm, bsize, mi_row, mi_col, have_top, right_available, |
| partition, tx_size, row_off, col_off, ss_x, ss_y); |
| #endif |
| |
| int px_bottom_left = 0; |
| const int have_bottom_left = has_bottom_left( |
| cm, xd, bsize, mi_row, mi_col, bottom_available, have_left, tx_size, |
| row_off, col_off, ss_x, ss_y, yd, &px_bottom_left, bsize != init_bsize); |
| |
| const int disable_edge_filter = !cm->seq_params.enable_intra_edge_filter; |
| #if CONFIG_IDIF |
| const int enable_idif = cm->seq_params.enable_idif; |
| #endif // CONFIG_IDIF |
| |
| const int is_sb_boundary = |
| (mi_row % cm->mib_size == 0 && row_off == 0) ? 1 : 0; |
| |
| build_intra_predictors_high( |
| xd, ref, ref_stride, dst, dst_stride, mode, angle_delta, |
| filter_intra_mode, tx_size, disable_edge_filter, |
| have_top ? AOMMIN(txwpx, xr + txwpx) : 0, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| have_top_right ? px_top_right : 0, |
| #else |
| have_top_right ? AOMMIN(txwpx, xr) : 0, |
| #endif |
| have_left ? AOMMIN(txhpx, yd + txhpx) : 0, |
| have_bottom_left ? px_bottom_left : 0, plane, is_sb_boundary, |
| cm->seq_params.enable_orip, cm->seq_params.enable_ibp, |
| cm->ibp_directional_weights |
| #if CONFIG_IDIF |
| , |
| enable_idif |
| #endif // CONFIG_IDIF |
| ); |
| return; |
| } |
| #if CONFIG_ENABLE_MHCCP |
| void mhccp_implicit_fetch_neighbor_luma(const AV1_COMMON *cm, |
| MACROBLOCKD *const xd, int row, int col, |
| TX_SIZE tx_size, int *above_lines, |
| int *left_lines, int *ref_width, |
| int *ref_height) { |
| CFL_CTX *const cfl = &xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| int input_stride = pd->dst.stride; |
| uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| |
| const int sub_x = cfl->subsampling_x; |
| const int sub_y = cfl->subsampling_y; |
| int width = tx_size_wide[tx_size] << sub_x; |
| int height = tx_size_high[tx_size] << sub_y; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int have_top = 0, have_left = 0; |
| set_have_top_and_left(&have_top, &have_left, xd, row, col, 0); |
| #else |
| const int have_top = |
| row || (sub_y ? xd->chroma_up_available : xd->up_available); |
| const int have_left = |
| col || (sub_x ? xd->chroma_left_available : xd->left_available); |
| #endif |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| BLOCK_SIZE bsize = mbmi->sb_type[1]; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base; |
| const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base; |
| *above_lines = |
| have_top ? (((int)((xd->mi_row - row_offset) - |
| (int)((LINE_NUM + 1) >> (MI_SIZE_LOG2 >> sub_y))) < |
| xd->tile.mi_row_start) |
| ? ((xd->mi_row - row_offset - xd->tile.mi_row_start) |
| << MI_SIZE_LOG2) |
| : ((LINE_NUM + 1) << sub_y)) |
| : 0; // This is luma line num |
| *left_lines = |
| have_left ? (((int)((xd->mi_col - col_offset) - |
| (int)((LINE_NUM + 1) >> (MI_SIZE_LOG2 >> sub_x))) < |
| xd->tile.mi_col_start) |
| ? ((xd->mi_col - col_offset - xd->tile.mi_col_start) |
| << MI_SIZE_LOG2) |
| : ((LINE_NUM + 1) << sub_x)) |
| : 0; |
| // Distance between the bottom edge of this prediction block to |
| // the frame bottom edge |
| int hpx = block_size_high[bsize]; |
| int txw = block_size_wide[bsize]; |
| |
| const int x = col << MI_SIZE_LOG2; |
| const int xr = |
| ARITHMETIC_LEFT_SHIFT(xd->tile.mi_col_end - mi_col - mi_wide, 2 - sub_x) + |
| txw - x - width; |
| const int y = row << MI_SIZE_LOG2; |
| const int txh = tx_size_high_unit[tx_size]; |
| const int yd = |
| ARITHMETIC_LEFT_SHIFT(xd->tile.mi_row_end - mi_row - mi_high, 2 - sub_y) + |
| hpx - y - height; |
| const int right_available = |
| xd->mi_col + (col + (txw >> MI_SIZE_LOG2)) < |
| AOMMIN(xd->tile.mi_col_end, cm->width >> MI_SIZE_LOG2); |
| const int bottom_available = |
| (yd > 0) && (xd->mi_row + (row + (txh >> MI_SIZE_LOG2)) < |
| AOMMIN(xd->tile.mi_row_end, cm->height >> MI_SIZE_LOG2)); |
| |
| const BLOCK_SIZE init_bsize = bsize; |
| // force 4x4 chroma component block size. |
| if (sub_x || sub_y) { |
| bsize = mbmi->chroma_ref_info.bsize_base; |
| } |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int px_top_right = 0; |
| const int have_top_right = |
| has_top_right(cm, xd, bsize, mi_row - row_offset, mi_col - col_offset, |
| have_top, right_available, tx_size, row, col, sub_x, sub_y, |
| xr, &px_top_right, bsize != init_bsize); |
| #else |
| const int have_top_right = has_top_right(cm, bsize, xd->mi_row, xd->mi_col, |
| have_top, right_available, partition, |
| tx_size, row, col, sub_x, sub_y); |
| #endif |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int px_bottom_left = 0; |
| const int have_bottom_left = |
| has_bottom_left(cm, xd, bsize, mi_row - row_offset, mi_col - col_offset, |
| bottom_available, have_left, tx_size, row, col, sub_x, |
| sub_y, yd, &px_bottom_left, bsize != init_bsize); |
| #else |
| const int have_bottom_left = |
| has_bottom_left(cm, bsize, xd->mi_row, xd->mi_col, bottom_available, |
| have_left, partition, tx_size, row, col, sub_x, sub_y); |
| #endif |
| |
| *ref_width = AOMMIN(128, *left_lines + width + |
| (have_top_right && width > 4 |
| ? AOMMIN((px_top_right << sub_x), width) |
| : 0)); |
| if ((((xd->mi_col + col) << MI_SIZE_LOG2) + width + |
| (have_top_right ? AOMMIN((px_top_right << sub_x), width) : 0)) > |
| (int)(xd->tile.mi_col_end << MI_SIZE_LOG2)) { |
| *ref_width = (xd->tile.mi_col_end << MI_SIZE_LOG2) - |
| ((xd->mi_col + col) << MI_SIZE_LOG2) + *left_lines - 1; |
| } |
| |
| *ref_height = AOMMIN(128, *above_lines + height + |
| (have_bottom_left && height > 4 |
| ? AOMMIN((px_bottom_left << sub_y), height) |
| : 0)); |
| if ((((xd->mi_row + row) << MI_SIZE_LOG2) + height + |
| (have_bottom_left ? AOMMIN((px_bottom_left << sub_y), height) : 0)) > |
| (int)(xd->tile.mi_row_end << MI_SIZE_LOG2)) { |
| *ref_height = *above_lines + (xd->tile.mi_row_end << MI_SIZE_LOG2) - |
| ((xd->mi_row + row) << MI_SIZE_LOG2) - 1; |
| } |
| |
| memset(cfl->mhccp_ref_buf_q3[0], 0, sizeof(cfl->mhccp_ref_buf_q3[0])); |
| |
| uint16_t *output_q3 = cfl->mhccp_ref_buf_q3[0]; |
| int output_stride = CFL_BUF_LINE * 2; |
| uint16_t *input = dst; |
| if (row_offset > 0) |
| input = input - (row_offset << MI_SIZE_LOG2) * input_stride; |
| if (col_offset > 0) input = input - (col_offset << MI_SIZE_LOG2); |
| input = input - (*above_lines) * input_stride - *left_lines; |
| if ((*above_lines) || (*left_lines)) { |
| if (sub_x && sub_y) { |
| for (int h = 0; h < (*ref_height); h += 2) { |
| for (int w = 0; w < (*ref_width); w += 2) { |
| const int bot = w + input_stride; |
| if ((h >= *above_lines && w >= *left_lines + width) || |
| (h >= *above_lines + height && w >= *left_lines)) |
| continue; |
| #if CONFIG_IMPROVED_CFL |
| if (cm->seq_params.enable_cfl_ds_filter == 1) { |
| output_q3[w >> 1] = input[AOMMAX(0, w - 1)] + 2 * input[w] + |
| input[w + 1] + input[bot + AOMMAX(-1, -w)] + |
| 2 * input[bot] + input[bot + 1]; |
| } else if (cm->seq_params.enable_cfl_ds_filter == 2) { |
| const int top = h != 0 ? w - input_stride : w; |
| output_q3[w >> 1] = input[AOMMAX(0, w - 1)] + 4 * input[w] + |
| input[w + 1] + input[top] + input[bot]; |
| } else { |
| output_q3[w >> 1] = |
| (input[w] + input[w + 1] + input[bot] + input[bot + 1] + 2) |
| << 1; |
| } |
| #else |
| output_q3[i >> 1] = |
| (input[i] + input[i + 1] + input[bot] + input[bot + 1] + 2) << 1; |
| #endif // CONFIG_IMPROVED_CFL |
| } |
| output_q3 += output_stride; |
| input += (input_stride << 1); |
| } |
| |
| } |
| #if CONFIG_IMPROVED_CFL |
| else if (sub_x) { |
| for (int h = 0; h < (*ref_height); h++) { |
| for (int i = 0; i < (*ref_width); i += 2) { |
| const int filter_type = cm->seq_params.enable_cfl_ds_filter; |
| if (filter_type == 1) { |
| output_q3[i >> 1] = |
| (input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1; |
| } else if (filter_type == 2) { |
| output_q3[i >> 1] = input[i] << 3; |
| } else { |
| output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; |
| } |
| } |
| output_q3 += output_stride; |
| input += input_stride; |
| } |
| #endif |
| } else if (sub_y) { |
| for (int h = 0; h < (*ref_height); h += 2) { |
| for (int i = 0; i < (*ref_width); ++i) { |
| const int bot = i + input_stride; |
| output_q3[i] = (input[i] + input[bot]) << 2; |
| } |
| output_q3 += output_stride; |
| input += input_stride * 2; |
| } |
| } else { |
| for (int h = 0; h < (*ref_height); h++) { |
| for (int i = 0; i < (*ref_width); ++i) { |
| output_q3[i] = input[i] << 3; |
| } |
| output_q3 += output_stride; |
| input += input_stride; |
| } |
| } |
| } |
| } |
| |
| void mhccp_implicit_fetch_neighbor_chroma(MACROBLOCKD *const xd, int plane, |
| int row, int col, TX_SIZE tx_size, |
| int above_lines, int left_lines, |
| int ref_width, int ref_height) { |
| CFL_CTX *const cfl = &xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int input_stride = pd->dst.stride; |
| uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| |
| memset(cfl->mhccp_ref_buf_q3[plane], 0, sizeof(cfl->mhccp_ref_buf_q3[plane])); |
| |
| uint16_t *output_q3 = cfl->mhccp_ref_buf_q3[plane]; |
| int output_stride = CFL_BUF_LINE * 2; |
| uint16_t *input = dst - above_lines * input_stride - left_lines; |
| if (above_lines || left_lines) { |
| for (int h = 0; h < ref_height; ++h) { |
| for (int w = 0; w < ref_width; ++w) { |
| if ((h >= above_lines && w >= left_lines + width) || |
| (h >= above_lines + height && w >= left_lines)) |
| continue; |
| output_q3[w] = input[w]; |
| } |
| output_q3 += output_stride; |
| input += input_stride; |
| } |
| } |
| } |
| #undef ARITHMETIC_LEFT_SHIFT |
| #endif // CONFIG_ENABLE_MHCCP |
| void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, int blk_col, int blk_row, |
| TX_SIZE tx_size) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| uint16_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; |
| const PREDICTION_MODE mode = |
| (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); |
| const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0; |
| const FILTER_INTRA_MODE filter_intra_mode = |
| (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra) |
| ? mbmi->filter_intra_mode_info.filter_intra_mode |
| : FILTER_INTRA_MODES; |
| |
| const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP; |
| |
| if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) { |
| #if CONFIG_DEBUG |
| assert(is_cfl_allowed(xd)); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const BLOCK_SIZE plane_bsize = get_mb_plane_block_size( |
| xd, mbmi, plane, pd->subsampling_x, pd->subsampling_y); |
| #else |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(mbmi->sb_type[xd->tree_type == CHROMA_PART], |
| pd->subsampling_x, pd->subsampling_y); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| (void)plane_bsize; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| if (!xd->lossless[mbmi->segment_id]) { |
| assert(blk_col == 0); |
| assert(blk_row == 0); |
| assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); |
| assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); |
| } |
| #endif |
| #if !CONFIG_IMPROVED_CFL |
| CFL_CTX *const cfl = &xd->cfl; |
| CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane); |
| if (cfl->dc_pred_is_cached[pred_plane] == 0) { |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, dst, |
| dst_stride, dst, dst_stride, blk_col, blk_row, |
| plane); |
| if (cfl->use_dc_pred_cache) { |
| cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]); |
| cfl->dc_pred_is_cached[pred_plane] = 1; |
| } |
| } else { |
| cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane); |
| } |
| #endif |
| if (xd->tree_type == CHROMA_PART) { |
| const int luma_tx_size = |
| av1_get_max_uv_txsize(mbmi->sb_type[PLANE_TYPE_UV], 0, 0); |
| #if CONFIG_IMPROVED_CFL |
| cfl_store_tx(xd, blk_row, blk_col, luma_tx_size, |
| cm->seq_params.enable_cfl_ds_filter); |
| #else |
| cfl_store_tx(xd, blk_row, blk_col, luma_tx_size); |
| #endif // CONFIG_IMPROVED_CFL |
| } |
| #if CONFIG_IMPROVED_CFL |
| CFL_CTX *const cfl = &xd->cfl; |
| const int sub_x = cfl->subsampling_x; |
| const int sub_y = cfl->subsampling_y; |
| |
| CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane); |
| if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) { |
| cfl->dc_pred_is_cached[pred_plane] = 0; |
| cfl->use_dc_pred_cache = 0; |
| } |
| if (cfl->dc_pred_is_cached[pred_plane] == 0) { |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, dst, |
| dst_stride, dst, dst_stride, blk_col, blk_row, |
| plane); |
| if (cfl->use_dc_pred_cache) { |
| cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]); |
| cfl->dc_pred_is_cached[pred_plane] = 1; |
| } |
| } else { |
| cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane); |
| } |
| |
| int above_lines = 0, left_lines = 0, ref_width = 0, ref_height = 0; |
| { |
| const int luma_tx_size = |
| av1_get_max_uv_txsize(mbmi->sb_type[PLANE_TYPE_UV], 0, 0); |
| if (mbmi->cfl_idx < CFL_MULTI_PARAM_V) { |
| cfl_implicit_fetch_neighbor_luma(cm, xd, blk_row << cfl->subsampling_y, |
| blk_col << cfl->subsampling_x, |
| luma_tx_size); |
| cfl_calc_luma_dc(xd, blk_row, blk_col, tx_size); |
| cfl_implicit_fetch_neighbor_chroma(cm, xd, plane, blk_row, blk_col, |
| tx_size); |
| } |
| #if CONFIG_ENABLE_MHCCP |
| if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) { |
| cfl_derive_implicit_scaling_factor(xd, plane, blk_row, blk_col, |
| tx_size); |
| } else if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 0) { |
| mhccp_implicit_fetch_neighbor_luma( |
| cm, xd, blk_row << cfl->subsampling_y, |
| blk_col << cfl->subsampling_x, tx_size, &above_lines, &left_lines, |
| &ref_width, &ref_height); |
| |
| above_lines >>= sub_y; |
| left_lines >>= sub_x; |
| ref_width >>= sub_x; |
| ref_height >>= sub_y; |
| mhccp_implicit_fetch_neighbor_chroma(xd, plane, blk_row, blk_col, |
| tx_size, above_lines, left_lines, |
| ref_width, ref_height); |
| mhccp_derive_multi_param_hv(xd, plane, above_lines, left_lines, |
| ref_width, ref_height, 0); |
| } else if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 1) { |
| mhccp_implicit_fetch_neighbor_luma( |
| cm, xd, blk_row << cfl->subsampling_y, |
| blk_col << cfl->subsampling_x, tx_size, &above_lines, &left_lines, |
| &ref_width, &ref_height); |
| above_lines >>= sub_y; |
| left_lines >>= sub_x; |
| ref_width >>= sub_x; |
| ref_height >>= sub_y; |
| mhccp_implicit_fetch_neighbor_chroma(xd, plane, blk_row, blk_col, |
| tx_size, above_lines, left_lines, |
| ref_width, ref_height); |
| mhccp_derive_multi_param_hv(xd, plane, above_lines, left_lines, |
| ref_width, ref_height, 1); |
| } |
| #else |
| cfl_derive_implicit_scaling_factor(xd, plane, blk_row, blk_col, tx_size); |
| #endif // CONFIG_ENABLE_MHCCP |
| } |
| #endif |
| cfl_predict_block(xd, dst, dst_stride, tx_size, plane, above_lines > 0, |
| left_lines > 0, above_lines, left_lines); |
| return; |
| } |
| |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, dst, |
| dst_stride, dst, dst_stride, blk_col, blk_row, plane); |
| } |
| |
| void av1_init_intra_predictors(void) { |
| aom_once(init_intra_predictors_internal); |
| } |
| |
| DECLARE_ALIGNED(16, const int8_t, |
| av1_sub_block_filter_intra_taps_4x4[16][9]) = { |
| { 4, 16, 4, 0, 0, 16, 4, 0, 0 }, { 2, 4, 16, 4, 0, 8, 2, 0, 0 }, |
| { 1, 0, 4, 16, 4, 4, 1, 0, 0 }, { 0, 0, 2, 4, 16, 2, 0, 0, 0 }, |
| |
| { 2, 8, 2, 0, 0, 4, 16, 4, 0 }, { 0, 2, 8, 2, 0, 2, 8, 2, 0 }, |
| { 0, 0, 2, 8, 2, 1, 4, 1, 0 }, { 0, 0, 0, 2, 8, 1, 2, 0, 0 }, |
| |
| { 0, 4, 0, 0, 0, 0, 4, 16, 4 }, { 0, 0, 4, 0, 0, 0, 2, 8, 2 }, |
| { 0, 0, 1, 4, 1, 0, 1, 4, 1 }, { 0, 0, 0, 2, 4, 0, 0, 4, 0 }, |
| |
| { 0, 0, 1, 0, 0, 0, 2, 4, 16 }, { 0, 0, 0, 1, 0, 0, 1, 2, 8 }, |
| { 0, 0, 1, 2, 1, 0, 0, 1, 4 }, { 0, 0, 0, 1, 2, 0, 0, 1, 2 }, |
| }; |
| |
| void av1_apply_orip_4x4subblock_hbd(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint16_t *above, |
| const uint16_t *left, PREDICTION_MODE mode, |
| int bd) { |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| // initialize references for the first row |
| uint16_t ref_samples_sb_row[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| uint16_t left_ref_tmp_for_next_sb[5] = { 0, 0, 0, 0, 0 }; |
| uint16_t ref_samples_sb_col[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| uint16_t top_ref_tmp_for_next_sb[5] = { 0, 0, 0, 0, 0 }; |
| |
| const int num_vertical_sb = (bh >> 2); |
| const int num_top_ref = 5; |
| const int num_left_ref = 4; |
| |
| uint8_t widthThreshold = (mode == H_PRED) ? 0 : AOMMIN((bw >> 2), 4); |
| uint8_t heightThreshold = (mode == V_PRED) ? 0 : AOMMIN((bh >> 2), 4); |
| |
| memcpy(&ref_samples_sb_row[0], &above[-1], |
| num_top_ref * sizeof(uint16_t)); // copy top reference |
| memcpy(&ref_samples_sb_row[num_top_ref], &left[0], |
| num_left_ref * sizeof(uint16_t)); // copy left reference |
| |
| // initialize references for the column |
| if (num_vertical_sb > 1) { |
| ref_samples_sb_col[0] = left[3]; |
| memcpy(&ref_samples_sb_col[1], &dst[3 * stride], |
| (num_top_ref - 1) * sizeof(uint16_t)); // copy top reference |
| memcpy(&ref_samples_sb_col[5], &left[4], |
| num_left_ref * sizeof(uint16_t)); // copy left reference |
| } |
| |
| // loop to process first row of sub-blocks |
| for (int n = 0; n < (bw >> 2); n++) { |
| int r_sb = 0; |
| int c_sb = (n << 2); |
| memcpy(&ref_samples_sb_row[0], &above[c_sb - 1], |
| num_top_ref * sizeof(uint16_t)); // copy top reference |
| |
| // copy left reference for the next sub-blocks |
| for (int q = 0; q < 4; q++) |
| left_ref_tmp_for_next_sb[q] = dst[(r_sb + q) * stride + c_sb + 3]; |
| for (int k = 0; k < 16; ++k) { |
| int r_pos = r_sb + (k >> 2); |
| int c_pos = c_sb + (k & 0x03); |
| if (!(c_pos >= widthThreshold && r_pos >= heightThreshold)) { |
| int predvalue = (int)dst[stride * r_pos + c_pos]; |
| int offset = 0; |
| for (int tap = 0; tap < 9; tap++) { |
| int diff = (int)ref_samples_sb_row[tap] - predvalue; |
| offset += av1_sub_block_filter_intra_taps_4x4[k][tap] * diff; |
| } |
| offset = (offset + 32) >> 6; |
| int filteredpixelValue = predvalue + offset; |
| dst[stride * r_pos + c_pos] = clip_pixel_highbd(filteredpixelValue, bd); |
| } |
| } // End of the subblock |
| memcpy(&ref_samples_sb_row[num_top_ref], &left_ref_tmp_for_next_sb[0], |
| num_left_ref * |
| sizeof(uint16_t)); // copy left reference for the next sub-block |
| } |
| |
| // process first column |
| // loop to process first column of sub-blocks |
| if (num_vertical_sb > 1) { |
| for (int m = 1; m < num_vertical_sb; m++) { |
| int r_sb = (m << 2); |
| int c_sb = 0; |
| |
| ref_samples_sb_col[0] = left[r_sb - 1]; |
| memcpy(&ref_samples_sb_col[5], &left[r_sb], |
| (num_top_ref - 1) * sizeof(uint16_t)); // copy left reference |
| memcpy(&top_ref_tmp_for_next_sb[0], &dst[(r_sb + 3) * stride], |
| num_left_ref * sizeof(uint16_t)); // copy top reference |
| |
| for (int k = 0; k < 16; ++k) { |
| int r_pos = r_sb + (k >> 2); |
| int c_pos = c_sb + (k & 0x03); |
| if (!(c_pos >= widthThreshold && r_pos >= heightThreshold)) { |
| int predvalue = (int)dst[stride * r_pos + c_pos]; |
| int offset = 0; |
| for (int tap = 0; tap < 9; tap++) { |
| int diff = (int)ref_samples_sb_col[tap] - predvalue; |
| offset += av1_sub_block_filter_intra_taps_4x4[k][tap] * diff; |
| } |
| offset = (offset + 32) >> 6; |
| int filteredpixelValue = predvalue + offset; |
| dst[stride * r_pos + c_pos] = |
| clip_pixel_highbd(filteredpixelValue, bd); |
| } |
| } // End of the subblock |
| memcpy( |
| &ref_samples_sb_col[1], &top_ref_tmp_for_next_sb[0], |
| (num_top_ref - 1) * |
| sizeof(uint16_t)); // copy top reference for the next sub-block |
| } |
| } |
| } |