| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_scale_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "av1/common/av1_loopfilter.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/thread_common.h" | 
 | #include "av1/common/reconinter.h" | 
 |  | 
 | // Set up nsync by width. | 
 | static INLINE int get_sync_range(int width) { | 
 |   // nsync numbers are picked by testing. For example, for 4k | 
 |   // video, using 4 gives best performance. | 
 |   if (width < 640) | 
 |     return 1; | 
 |   else if (width <= 1280) | 
 |     return 2; | 
 |   else if (width <= 4096) | 
 |     return 4; | 
 |   else | 
 |     return 8; | 
 | } | 
 |  | 
 | static INLINE int get_lr_sync_range(int width) { | 
 | #if 0 | 
 |   // nsync numbers are picked by testing. For example, for 4k | 
 |   // video, using 4 gives best performance. | 
 |   if (width < 640) | 
 |     return 1; | 
 |   else if (width <= 1280) | 
 |     return 2; | 
 |   else if (width <= 4096) | 
 |     return 4; | 
 |   else | 
 |     return 8; | 
 | #else | 
 |   (void)width; | 
 |   return 1; | 
 | #endif | 
 | } | 
 |  | 
 | // Allocate memory for lf row synchronization | 
 | static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, | 
 |                               int width, int num_workers) { | 
 |   lf_sync->rows = rows; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     int i, j; | 
 |  | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], | 
 |                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); | 
 |       if (lf_sync->mutex_[j]) { | 
 |         for (i = 0; i < rows; ++i) { | 
 |           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); | 
 |         } | 
 |       } | 
 |  | 
 |       CHECK_MEM_ERROR(cm, lf_sync->cond_[j], | 
 |                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); | 
 |       if (lf_sync->cond_[j]) { | 
 |         for (i = 0; i < rows; ++i) { | 
 |           pthread_cond_init(&lf_sync->cond_[j][i], NULL); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     CHECK_MEM_ERROR(cm, lf_sync->job_mutex, | 
 |                     aom_malloc(sizeof(*(lf_sync->job_mutex)))); | 
 |     if (lf_sync->job_mutex) { | 
 |       pthread_mutex_init(lf_sync->job_mutex, NULL); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |   CHECK_MEM_ERROR(cm, lf_sync->lfdata, | 
 |                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); | 
 |   lf_sync->num_workers = num_workers; | 
 |  | 
 |   for (int j = 0; j < MAX_MB_PLANE; j++) { | 
 |     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], | 
 |                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); | 
 |   } | 
 |   CHECK_MEM_ERROR( | 
 |       cm, lf_sync->job_queue, | 
 |       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); | 
 |   // Set up nsync. | 
 |   lf_sync->sync_range = get_sync_range(width); | 
 | } | 
 |  | 
 | // Deallocate lf synchronization related mutex and data | 
 | void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { | 
 |   if (lf_sync != NULL) { | 
 |     int j; | 
 | #if CONFIG_MULTITHREAD | 
 |     int i; | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       if (lf_sync->mutex_[j] != NULL) { | 
 |         for (i = 0; i < lf_sync->rows; ++i) { | 
 |           pthread_mutex_destroy(&lf_sync->mutex_[j][i]); | 
 |         } | 
 |         aom_free(lf_sync->mutex_[j]); | 
 |       } | 
 |       if (lf_sync->cond_[j] != NULL) { | 
 |         for (i = 0; i < lf_sync->rows; ++i) { | 
 |           pthread_cond_destroy(&lf_sync->cond_[j][i]); | 
 |         } | 
 |         aom_free(lf_sync->cond_[j]); | 
 |       } | 
 |     } | 
 |     if (lf_sync->job_mutex != NULL) { | 
 |       pthread_mutex_destroy(lf_sync->job_mutex); | 
 |       aom_free(lf_sync->job_mutex); | 
 |     } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |     aom_free(lf_sync->lfdata); | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       aom_free(lf_sync->cur_sb_col[j]); | 
 |     } | 
 |  | 
 |     aom_free(lf_sync->job_queue); | 
 |     // clear the structure as the source of this call may be a resize in which | 
 |     // case this call will be followed by an _alloc() which may fail. | 
 |     av1_zero(*lf_sync); | 
 |   } | 
 | } | 
 |  | 
 | static void loop_filter_data_reset(LFWorkerData *lf_data, | 
 |                                    YV12_BUFFER_CONFIG *frame_buffer, | 
 |                                    struct AV1Common *cm, MACROBLOCKD *xd) { | 
 |   struct macroblockd_plane *pd = xd->plane; | 
 |   lf_data->frame_buffer = frame_buffer; | 
 |   lf_data->cm = cm; | 
 |   lf_data->xd = xd; | 
 |   for (int i = 0; i < MAX_MB_PLANE; i++) { | 
 |     memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); | 
 |     lf_data->planes[i].subsampling_x = pd[i].subsampling_x; | 
 |     lf_data->planes[i].subsampling_y = pd[i].subsampling_y; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, | 
 |                              int plane) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = lf_sync->sync_range; | 
 |  | 
 |   if (r && !(c & (nsync - 1))) { | 
 |     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; | 
 |     pthread_mutex_lock(mutex); | 
 |  | 
 |     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { | 
 |       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); | 
 |     } | 
 |     pthread_mutex_unlock(mutex); | 
 |   } | 
 | #else | 
 |   (void)lf_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)plane; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, | 
 |                               const int sb_cols, int plane) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = lf_sync->sync_range; | 
 |   int cur; | 
 |   // Only signal when there are enough filtered SB for next row to run. | 
 |   int sig = 1; | 
 |  | 
 |   if (c < sb_cols - 1) { | 
 |     cur = c; | 
 |     if (c % nsync) sig = 0; | 
 |   } else { | 
 |     cur = sb_cols + nsync; | 
 |   } | 
 |  | 
 |   if (sig) { | 
 |     pthread_mutex_lock(&lf_sync->mutex_[plane][r]); | 
 |  | 
 |     lf_sync->cur_sb_col[plane][r] = cur; | 
 |  | 
 |     pthread_cond_broadcast(&lf_sync->cond_[plane][r]); | 
 |     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); | 
 |   } | 
 | #else | 
 |   (void)lf_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)sb_cols; | 
 |   (void)plane; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, | 
 |                             int stop, | 
 | #if CONFIG_LPF_MASK | 
 |                             int is_decoding, | 
 | #endif | 
 |                             int plane_start, int plane_end, int mib_size) { | 
 |   int mi_row, plane, dir; | 
 |   AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; | 
 |   lf_sync->jobs_enqueued = 0; | 
 |   lf_sync->jobs_dequeued = 0; | 
 |  | 
 |   for (dir = 0; dir < 2; dir++) { | 
 |     for (plane = plane_start; plane < plane_end; plane++) { | 
 |       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) | 
 |         break; | 
 |       else if (plane == 1 && !(cm->lf.filter_level_u)) | 
 |         continue; | 
 |       else if (plane == 2 && !(cm->lf.filter_level_v)) | 
 |         continue; | 
 | #if CONFIG_LPF_MASK | 
 |       int step = MAX_MIB_SIZE; | 
 |       if (is_decoding) { | 
 |         step = MI_SIZE_64X64; | 
 |       } | 
 |       (void)mib_size; | 
 |       for (mi_row = start; mi_row < stop; mi_row += step) | 
 | #else | 
 |       for (mi_row = start; mi_row < stop; mi_row += mib_size) | 
 | #endif | 
 |       { | 
 |         lf_job_queue->mi_row = mi_row; | 
 |         lf_job_queue->plane = plane; | 
 |         lf_job_queue->dir = dir; | 
 |         lf_job_queue++; | 
 |         lf_sync->jobs_enqueued++; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { | 
 |   AV1LfMTInfo *cur_job_info = NULL; | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(lf_sync->job_mutex); | 
 |  | 
 |   if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { | 
 |     cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; | 
 |     lf_sync->jobs_dequeued++; | 
 |   } | 
 |  | 
 |   pthread_mutex_unlock(lf_sync->job_mutex); | 
 | #else | 
 |   (void)lf_sync; | 
 | #endif | 
 |  | 
 |   return cur_job_info; | 
 | } | 
 |  | 
 | // Implement row loopfiltering for each thread. | 
 | static INLINE void thread_loop_filter_rows( | 
 |     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, | 
 |     struct macroblockd_plane *planes, MACROBLOCKD *xd, | 
 |     AV1LfSync *const lf_sync) { | 
 |   const int mib_size = cm->mib_size; | 
 |   const int mib_size_log2 = cm->mib_size_log2; | 
 |   const int sb_cols = | 
 |       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, mib_size_log2) >> mib_size_log2; | 
 |   int mi_row, mi_col, plane, dir; | 
 |   int r, c; | 
 |  | 
 |   while (1) { | 
 |     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); | 
 |  | 
 |     if (cur_job_info != NULL) { | 
 |       mi_row = cur_job_info->mi_row; | 
 |       plane = cur_job_info->plane; | 
 |       dir = cur_job_info->dir; | 
 |       r = mi_row >> mib_size_log2; | 
 |  | 
 |       if (dir == 0) { | 
 |         for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += mib_size) { | 
 |           c = mi_col >> mib_size_log2; | 
 |  | 
 |           av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
 |                                plane + 1, NULL); | 
 |  | 
 |           av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, | 
 |                                       mi_col); | 
 |           sync_write(lf_sync, r, c, sb_cols, plane); | 
 |         } | 
 |       } else if (dir == 1) { | 
 |         for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += mib_size) { | 
 |           c = mi_col >> mib_size_log2; | 
 |  | 
 |           // Wait for vertical edge filtering of the top-right block to be | 
 |           // completed | 
 |           sync_read(lf_sync, r, c, plane); | 
 |  | 
 |           // Wait for vertical edge filtering of the right block to be | 
 |           // completed | 
 |           sync_read(lf_sync, r + 1, c, plane); | 
 |  | 
 |           av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
 |                                plane + 1, NULL); | 
 |           av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, | 
 |                                       mi_col); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Row-based multi-threaded loopfilter hook | 
 | static int loop_filter_row_worker(void *arg1, void *arg2) { | 
 |   AV1LfSync *const lf_sync = (AV1LfSync *)arg1; | 
 |   LFWorkerData *const lf_data = (LFWorkerData *)arg2; | 
 |   thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, | 
 |                           lf_data->xd, lf_sync); | 
 |   return 1; | 
 | } | 
 |  | 
 | #if CONFIG_LPF_MASK | 
 | static INLINE void thread_loop_filter_bitmask_rows( | 
 |     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, | 
 |     struct macroblockd_plane *planes, MACROBLOCKD *xd, | 
 |     AV1LfSync *const lf_sync) { | 
 |   const int sb_cols = | 
 |       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MIN_MIB_SIZE_LOG2) >> | 
 |       MIN_MIB_SIZE_LOG2; | 
 |   int mi_row, mi_col, plane, dir; | 
 |   int r, c; | 
 |   (void)xd; | 
 |  | 
 |   while (1) { | 
 |     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); | 
 |  | 
 |     if (cur_job_info != NULL) { | 
 |       mi_row = cur_job_info->mi_row; | 
 |       plane = cur_job_info->plane; | 
 |       dir = cur_job_info->dir; | 
 |       r = mi_row >> MIN_MIB_SIZE_LOG2; | 
 |  | 
 |       if (dir == 0) { | 
 |         for (mi_col = 0; mi_col < cm->mi_params.mi_cols; | 
 |              mi_col += MI_SIZE_64X64) { | 
 |           c = mi_col >> MIN_MIB_SIZE_LOG2; | 
 |  | 
 |           av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
 |                                plane + 1, NULL); | 
 |  | 
 |           av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row, | 
 |                                               mi_col); | 
 |           sync_write(lf_sync, r, c, sb_cols, plane); | 
 |         } | 
 |       } else if (dir == 1) { | 
 |         for (mi_col = 0; mi_col < cm->mi_params.mi_cols; | 
 |              mi_col += MI_SIZE_64X64) { | 
 |           c = mi_col >> MIN_MIB_SIZE_LOG2; | 
 |  | 
 |           // Wait for vertical edge filtering of the top-right block to be | 
 |           // completed | 
 |           sync_read(lf_sync, r, c, plane); | 
 |  | 
 |           // Wait for vertical edge filtering of the right block to be | 
 |           // completed | 
 |           sync_read(lf_sync, r + 1, c, plane); | 
 |  | 
 |           av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
 |                                plane + 1, NULL); | 
 |           av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row, | 
 |                                               mi_col); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Row-based multi-threaded loopfilter hook | 
 | static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) { | 
 |   AV1LfSync *const lf_sync = (AV1LfSync *)arg1; | 
 |   LFWorkerData *const lf_data = (LFWorkerData *)arg2; | 
 |   thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm, | 
 |                                   lf_data->planes, lf_data->xd, lf_sync); | 
 |   return 1; | 
 | } | 
 | #endif  // CONFIG_LPF_MASK | 
 |  | 
 | static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
 |                                 MACROBLOCKD *xd, int start, int stop, | 
 |                                 int plane_start, int plane_end, | 
 | #if CONFIG_LPF_MASK | 
 |                                 int is_decoding, | 
 | #endif | 
 |                                 AVxWorker *workers, int nworkers, | 
 |                                 AV1LfSync *lf_sync) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   const int mib_size = cm->mib_size; | 
 |   const int mib_size_log2 = cm->mib_size_log2; | 
 | #if CONFIG_LPF_MASK | 
 |   int sb_rows; | 
 |   if (is_decoding) { | 
 |     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MIN_MIB_SIZE_LOG2) >> | 
 |               MIN_MIB_SIZE_LOG2; | 
 |   } else { | 
 |     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >> | 
 |               MAX_MIB_SIZE_LOG2; | 
 |   } | 
 | #else | 
 |   // Number of superblock rows and cols | 
 |   const int sb_rows = | 
 |       ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, mib_size_log2) >> mib_size_log2; | 
 | #endif | 
 |   const int num_workers = nworkers; | 
 |   int i; | 
 |  | 
 |   if (!lf_sync->sync_range || sb_rows != lf_sync->rows || | 
 |       num_workers > lf_sync->num_workers) { | 
 |     av1_loop_filter_dealloc(lf_sync); | 
 |     loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); | 
 |   } | 
 |  | 
 |   // Initialize cur_sb_col to -1 for all SB rows. | 
 |   for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |     memset(lf_sync->cur_sb_col[i], -1, | 
 |            sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); | 
 |   } | 
 |  | 
 |   enqueue_lf_jobs(lf_sync, cm, start, stop, | 
 | #if CONFIG_LPF_MASK | 
 |                   is_decoding, | 
 | #endif | 
 |                   plane_start, plane_end, mib_size); | 
 |  | 
 |   // Set up loopfilter thread data. | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     AVxWorker *const worker = &workers[i]; | 
 |     LFWorkerData *const lf_data = &lf_sync->lfdata[i]; | 
 |  | 
 | #if CONFIG_LPF_MASK | 
 |     if (is_decoding) { | 
 |       worker->hook = loop_filter_bitmask_row_worker; | 
 |     } else { | 
 |       worker->hook = loop_filter_row_worker; | 
 |     } | 
 | #else | 
 |     worker->hook = loop_filter_row_worker; | 
 | #endif | 
 |     worker->data1 = lf_sync; | 
 |     worker->data2 = lf_data; | 
 |  | 
 |     // Loopfilter data | 
 |     loop_filter_data_reset(lf_data, frame, cm, xd); | 
 |  | 
 |     // Start loopfiltering | 
 |     if (i == num_workers - 1) { | 
 |       winterface->execute(worker); | 
 |     } else { | 
 |       winterface->launch(worker); | 
 |     } | 
 |   } | 
 |  | 
 |   // Wait till all rows are finished | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     winterface->sync(&workers[i]); | 
 |   } | 
 | } | 
 |  | 
 | void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
 |                               MACROBLOCKD *xd, int plane_start, int plane_end, | 
 |                               int partial_frame, | 
 | #if CONFIG_LPF_MASK | 
 |                               int is_decoding, | 
 | #endif | 
 |                               AVxWorker *workers, int num_workers, | 
 |                               AV1LfSync *lf_sync) { | 
 |   int start_mi_row, end_mi_row, mi_rows_to_filter; | 
 |  | 
 |   start_mi_row = 0; | 
 |   mi_rows_to_filter = cm->mi_params.mi_rows; | 
 |   if (partial_frame && cm->mi_params.mi_rows > 8) { | 
 |     start_mi_row = cm->mi_params.mi_rows >> 1; | 
 |     start_mi_row &= 0xfffffff8; | 
 |     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8); | 
 |   } | 
 |   end_mi_row = start_mi_row + mi_rows_to_filter; | 
 |   av1_loop_filter_frame_init(cm, plane_start, plane_end); | 
 |  | 
 | #if CONFIG_LPF_MASK | 
 |   if (is_decoding) { | 
 |     cm->is_decoding = is_decoding; | 
 |     // TODO(chengchen): currently use one thread to build bitmasks for the | 
 |     // frame. Make it support multi-thread later. | 
 |     for (int plane = plane_start; plane < plane_end; plane++) { | 
 |       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) | 
 |         break; | 
 |       else if (plane == 1 && !(cm->lf.filter_level_u)) | 
 |         continue; | 
 |       else if (plane == 2 && !(cm->lf.filter_level_v)) | 
 |         continue; | 
 |  | 
 |       // TODO(chengchen): can we remove this? | 
 |       struct macroblockd_plane *pd = xd->plane; | 
 |       av1_setup_dst_planes(pd, frame, 0, 0, plane, plane + 1, NULL); | 
 |  | 
 |       av1_build_bitmask_vert_info(cm, &pd[plane], plane); | 
 |       av1_build_bitmask_horz_info(cm, &pd[plane], plane); | 
 |     } | 
 |     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, | 
 |                         plane_end, 1, workers, num_workers, lf_sync); | 
 |   } else { | 
 |     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, | 
 |                         plane_end, 0, workers, num_workers, lf_sync); | 
 |   } | 
 | #else | 
 |   loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, | 
 |                       plane_end, workers, num_workers, lf_sync); | 
 | #endif | 
 | } | 
 |  | 
 | static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { | 
 | #if CONFIG_MULTITHREAD | 
 |   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
 |   const int nsync = loop_res_sync->sync_range; | 
 |  | 
 |   if (r && !(c & (nsync - 1))) { | 
 |     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; | 
 |     pthread_mutex_lock(mutex); | 
 |  | 
 |     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { | 
 |       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); | 
 |     } | 
 |     pthread_mutex_unlock(mutex); | 
 |   } | 
 | #else | 
 |   (void)lr_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)plane; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static INLINE void lr_sync_write(void *const lr_sync, int r, int c, | 
 |                                  const int sb_cols, int plane) { | 
 | #if CONFIG_MULTITHREAD | 
 |   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
 |   const int nsync = loop_res_sync->sync_range; | 
 |   int cur; | 
 |   // Only signal when there are enough filtered SB for next row to run. | 
 |   int sig = 1; | 
 |  | 
 |   if (c < sb_cols - 1) { | 
 |     cur = c; | 
 |     if (c % nsync) sig = 0; | 
 |   } else { | 
 |     cur = sb_cols + nsync; | 
 |   } | 
 |  | 
 |   if (sig) { | 
 |     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); | 
 |  | 
 |     loop_res_sync->cur_sb_col[plane][r] = cur; | 
 |  | 
 |     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); | 
 |     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); | 
 |   } | 
 | #else | 
 |   (void)lr_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)sb_cols; | 
 |   (void)plane; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | // Allocate memory for loop restoration row synchronization | 
 | static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, | 
 |                                    int num_workers, int num_rows_lr, | 
 |                                    int num_planes, int width) { | 
 |   lr_sync->rows = num_rows_lr; | 
 |   lr_sync->num_planes = num_planes; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     int i, j; | 
 |  | 
 |     for (j = 0; j < num_planes; j++) { | 
 |       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], | 
 |                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); | 
 |       if (lr_sync->mutex_[j]) { | 
 |         for (i = 0; i < num_rows_lr; ++i) { | 
 |           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); | 
 |         } | 
 |       } | 
 |  | 
 |       CHECK_MEM_ERROR(cm, lr_sync->cond_[j], | 
 |                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); | 
 |       if (lr_sync->cond_[j]) { | 
 |         for (i = 0; i < num_rows_lr; ++i) { | 
 |           pthread_cond_init(&lr_sync->cond_[j][i], NULL); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     CHECK_MEM_ERROR(cm, lr_sync->job_mutex, | 
 |                     aom_malloc(sizeof(*(lr_sync->job_mutex)))); | 
 |     if (lr_sync->job_mutex) { | 
 |       pthread_mutex_init(lr_sync->job_mutex, NULL); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, | 
 |                   aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata)))); | 
 |  | 
 |   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
 |     if (worker_idx < num_workers - 1) { | 
 |       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, | 
 |                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); | 
 |       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, | 
 |                       aom_malloc(sizeof(RestorationLineBuffers))); | 
 |  | 
 |     } else { | 
 |       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; | 
 |       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; | 
 |     } | 
 |   } | 
 |  | 
 |   lr_sync->num_workers = num_workers; | 
 |  | 
 |   for (int j = 0; j < num_planes; j++) { | 
 |     CHECK_MEM_ERROR( | 
 |         cm, lr_sync->cur_sb_col[j], | 
 |         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); | 
 |   } | 
 |   CHECK_MEM_ERROR( | 
 |       cm, lr_sync->job_queue, | 
 |       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); | 
 |   // Set up nsync. | 
 |   lr_sync->sync_range = get_lr_sync_range(width); | 
 | } | 
 |  | 
 | // Deallocate loop restoration synchronization related mutex and data | 
 | void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) { | 
 |   if (lr_sync != NULL) { | 
 |     int j; | 
 | #if CONFIG_MULTITHREAD | 
 |     int i; | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       if (lr_sync->mutex_[j] != NULL) { | 
 |         for (i = 0; i < lr_sync->rows; ++i) { | 
 |           pthread_mutex_destroy(&lr_sync->mutex_[j][i]); | 
 |         } | 
 |         aom_free(lr_sync->mutex_[j]); | 
 |       } | 
 |       if (lr_sync->cond_[j] != NULL) { | 
 |         for (i = 0; i < lr_sync->rows; ++i) { | 
 |           pthread_cond_destroy(&lr_sync->cond_[j][i]); | 
 |         } | 
 |         aom_free(lr_sync->cond_[j]); | 
 |       } | 
 |     } | 
 |     if (lr_sync->job_mutex != NULL) { | 
 |       pthread_mutex_destroy(lr_sync->job_mutex); | 
 |       aom_free(lr_sync->job_mutex); | 
 |     } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       aom_free(lr_sync->cur_sb_col[j]); | 
 |     } | 
 |  | 
 |     aom_free(lr_sync->job_queue); | 
 |  | 
 |     if (lr_sync->lrworkerdata) { | 
 |       for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) { | 
 |         LRWorkerData *const workerdata_data = | 
 |             lr_sync->lrworkerdata + worker_idx; | 
 |  | 
 |         aom_free(workerdata_data->rst_tmpbuf); | 
 |         aom_free(workerdata_data->rlbs); | 
 |       } | 
 |       aom_free(lr_sync->lrworkerdata); | 
 |     } | 
 |  | 
 |     // clear the structure as the source of this call may be a resize in which | 
 |     // case this call will be followed by an _alloc() which may fail. | 
 |     av1_zero(*lr_sync); | 
 |   } | 
 | } | 
 |  | 
 | static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, | 
 |                             AV1_COMMON *cm) { | 
 |   FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
 |  | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; | 
 |   int32_t lr_job_counter[2], num_even_lr_jobs = 0; | 
 |   lr_sync->jobs_enqueued = 0; | 
 |   lr_sync->jobs_dequeued = 0; | 
 |  | 
 |   for (int plane = 0; plane < num_planes; plane++) { | 
 | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE && | 
 |         cm->rst_info[plane].frame_cross_restoration_type == RESTORE_NONE) | 
 |       continue; | 
 | #else | 
 |     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
 | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |     num_even_lr_jobs = | 
 |         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1); | 
 |   } | 
 |   lr_job_counter[0] = 0; | 
 |   lr_job_counter[1] = num_even_lr_jobs; | 
 |  | 
 |   for (int plane = 0; plane < num_planes; plane++) { | 
 |     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE | 
 | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |         && cm->rst_info[plane].frame_cross_restoration_type == RESTORE_NONE | 
 | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |     ) | 
 |       continue; | 
 |     const int is_uv = plane > 0; | 
 |     const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
 |  | 
 |     AV1PixelRect tile_rect = ctxt[plane].tile_rect; | 
 |     const int unit_size = ctxt[plane].rsi->restoration_unit_size; | 
 |  | 
 |     const int tile_h = tile_rect.bottom - tile_rect.top; | 
 |     const int ext_size = unit_size * 3 / 2; | 
 |  | 
 |     int y0 = 0, i = 0; | 
 |     while (y0 < tile_h) { | 
 |       int remaining_h = tile_h - y0; | 
 |       int h = (remaining_h < ext_size) ? remaining_h : unit_size; | 
 |  | 
 |       RestorationTileLimits limits; | 
 |       limits.v_start = tile_rect.top + y0; | 
 |       limits.v_end = tile_rect.top + y0 + h; | 
 |       assert(limits.v_end <= tile_rect.bottom); | 
 |       // Offset the tile upwards to align with the restoration processing stripe | 
 |       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; | 
 |       limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset); | 
 |       if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset; | 
 |  | 
 |       assert(lr_job_counter[0] <= num_even_lr_jobs); | 
 |  | 
 |       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; | 
 |       lr_job_queue[lr_job_counter[i & 1]].plane = plane; | 
 |       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; | 
 |       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; | 
 |       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; | 
 |       if ((i & 1) == 0) { | 
 |         lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
 |             limits.v_start + RESTORATION_BORDER; | 
 |         lr_job_queue[lr_job_counter[i & 1]].v_copy_end = | 
 |             limits.v_end - RESTORATION_BORDER; | 
 |         if (i == 0) { | 
 |           assert(limits.v_start == tile_rect.top); | 
 |           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top; | 
 |         } | 
 |         if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) { | 
 |           assert(limits.v_end == tile_rect.bottom); | 
 |           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom; | 
 |         } | 
 |       } else { | 
 |         lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
 |             AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top); | 
 |         lr_job_queue[lr_job_counter[i & 1]].v_copy_end = | 
 |             AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom); | 
 |       } | 
 |       lr_job_counter[i & 1]++; | 
 |       lr_sync->jobs_enqueued++; | 
 |  | 
 |       y0 += h; | 
 |       ++i; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { | 
 |   AV1LrMTInfo *cur_job_info = NULL; | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(lr_sync->job_mutex); | 
 |  | 
 |   if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { | 
 |     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; | 
 |     lr_sync->jobs_dequeued++; | 
 |   } | 
 |  | 
 |   pthread_mutex_unlock(lr_sync->job_mutex); | 
 | #else | 
 |   (void)lr_sync; | 
 | #endif | 
 |  | 
 |   return cur_job_info; | 
 | } | 
 |  | 
 | // Implement row loop restoration for each thread. | 
 | static int loop_restoration_row_worker(void *arg1, void *arg2) { | 
 |   AV1LrSync *const lr_sync = (AV1LrSync *)arg1; | 
 |   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; | 
 |   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; | 
 |   FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
 |   int lr_unit_row; | 
 |   int plane; | 
 |   const int tile_row = LR_TILE_ROW; | 
 |   const int tile_col = LR_TILE_COL; | 
 |   const int tile_cols = LR_TILE_COLS; | 
 |   const int tile_idx = tile_col + tile_row * tile_cols; | 
 |   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, | 
 |                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, | 
 |                            int vstart, int vend); | 
 |   static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y, | 
 |                                          aom_yv12_partial_coloc_copy_u, | 
 |                                          aom_yv12_partial_coloc_copy_v }; | 
 |  | 
 |   while (1) { | 
 |     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); | 
 |     if (cur_job_info != NULL) { | 
 |       RestorationTileLimits limits; | 
 |       sync_read_fn_t on_sync_read; | 
 |       sync_write_fn_t on_sync_write; | 
 |       limits.v_start = cur_job_info->v_start; | 
 |       limits.v_end = cur_job_info->v_end; | 
 |       lr_unit_row = cur_job_info->lr_unit_row; | 
 |       plane = cur_job_info->plane; | 
 |       const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile; | 
 |  | 
 |       // sync_mode == 1 implies only sync read is required in LR Multi-threading | 
 |       // sync_mode == 0 implies only sync write is required. | 
 |       on_sync_read = | 
 |           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; | 
 |       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write | 
 |                                                    : av1_lr_sync_write_dummy; | 
 |  | 
 |       av1_foreach_rest_unit_in_row( | 
 |           &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row, | 
 |           ctxt[plane].rsi->restoration_unit_size, unit_idx0, | 
 |           ctxt[plane].rsi->horz_units_per_tile, | 
 |           ctxt[plane].rsi->vert_units_per_tile, | 
 |           ctxt[plane].rsi->horz_units_per_tile, plane, &ctxt[plane], | 
 |           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, | 
 |           on_sync_write, lr_sync, NULL); | 
 |  | 
 |       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left, | 
 |                        ctxt[plane].tile_rect.right, cur_job_info->v_copy_start, | 
 |                        cur_job_info->v_copy_end); | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, | 
 |                                            AVxWorker *workers, int nworkers, | 
 |                                            AV1LrSync *lr_sync, AV1_COMMON *cm) { | 
 |   FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
 |  | 
 | #if CONFIG_LR_IMPROVEMENTS | 
 |   uint16_t *luma = NULL; | 
 |   uint16_t *luma_buf; | 
 |   const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; | 
 |   int luma_stride = dgd->crop_widths[1] + 2 * WIENERNS_UV_BRD; | 
 |   luma_buf = wienerns_copy_luma_highbd( | 
 |       dgd->buffers[AOM_PLANE_Y], dgd->crop_heights[AOM_PLANE_Y], | 
 |       dgd->crop_widths[AOM_PLANE_Y], dgd->strides[AOM_PLANE_Y], &luma, | 
 |       dgd->crop_heights[1], dgd->crop_widths[1], WIENERNS_UV_BRD, luma_stride, | 
 |       cm->seq_params.bit_depth | 
 | #if WIENERNS_CROSS_FILT_LUMA_TYPE == 2 | 
 |       , | 
 | #if CONFIG_IMPROVED_DS_CC_WIENER | 
 |       cm->seq_params.enable_cfl_ds_filter | 
 | #else | 
 |       cm->seq_params.enable_cfl_ds_filter == 1 | 
 | #endif  // CONFIG_IMPROVED_DS_CC_WIENER | 
 | #endif | 
 |   ); | 
 |   assert(luma_buf != NULL); | 
 | #endif  // CONFIG_LR_IMPROVEMENTS | 
 |  | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   int num_rows_lr = 0; | 
 |  | 
 |   for (int plane = 0; plane < num_planes; plane++) { | 
 |     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE | 
 | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |         && cm->rst_info[plane].frame_cross_restoration_type == RESTORE_NONE | 
 | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
 |     ) | 
 |       continue; | 
 |  | 
 | #if CONFIG_LR_IMPROVEMENTS | 
 |     ctxt[plane].plane = plane; | 
 |     ctxt[plane].base_qindex = cm->quant_params.base_qindex; | 
 |     const int is_uv = (plane != AOM_PLANE_Y); | 
 |     ctxt[plane].luma = is_uv ? luma : NULL; | 
 |     ctxt[plane].luma_stride = is_uv ? luma_stride : -1; | 
 |     ctxt[plane].tskip = cm->mi_params.tx_skip[plane]; | 
 |     ctxt[plane].tskip_stride = cm->mi_params.tx_skip_stride[plane]; | 
 |     if (plane != AOM_PLANE_Y) | 
 |       ctxt[plane].qindex_offset = plane == AOM_PLANE_U | 
 |                                       ? cm->quant_params.u_dc_delta_q | 
 |                                       : cm->quant_params.v_dc_delta_q; | 
 |     else | 
 |       ctxt[plane].qindex_offset = cm->quant_params.y_dc_delta_q; | 
 |     ctxt[plane].wiener_class_id = cm->mi_params.wiener_class_id[plane]; | 
 |     ctxt[plane].wiener_class_id_stride = | 
 |         cm->mi_params.wiener_class_id_stride[plane]; | 
 | #endif  // CONFIG_LR_IMPROVEMENTS | 
 |  | 
 |     const AV1PixelRect tile_rect = ctxt[plane].tile_rect; | 
 |     const int max_tile_h = tile_rect.bottom - tile_rect.top; | 
 |  | 
 |     const int unit_size = cm->rst_info[plane].restoration_unit_size; | 
 |  | 
 |     num_rows_lr = | 
 |         AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h)); | 
 |   } | 
 |  | 
 |   const int num_workers = nworkers; | 
 |   int i; | 
 |   assert(MAX_MB_PLANE == 3); | 
 |  | 
 |   if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows || | 
 |       num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) { | 
 |     av1_loop_restoration_dealloc(lr_sync, num_workers); | 
 |     loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes, | 
 |                            cm->width); | 
 |   } | 
 |  | 
 |   // Initialize cur_sb_col to -1 for all SB rows. | 
 |   for (i = 0; i < num_planes; i++) { | 
 |     memset(lr_sync->cur_sb_col[i], -1, | 
 |            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); | 
 |   } | 
 |  | 
 |   enqueue_lr_jobs(lr_sync, lr_ctxt, cm); | 
 |  | 
 |   // Set up looprestoration thread data. | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     AVxWorker *const worker = &workers[i]; | 
 |     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; | 
 |     worker->hook = loop_restoration_row_worker; | 
 |     worker->data1 = lr_sync; | 
 |     worker->data2 = &lr_sync->lrworkerdata[i]; | 
 |  | 
 |     // Start loopfiltering | 
 |     if (i == num_workers - 1) { | 
 |       winterface->execute(worker); | 
 |     } else { | 
 |       winterface->launch(worker); | 
 |     } | 
 |   } | 
 |  | 
 |   // Wait till all rows are finished | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     winterface->sync(&workers[i]); | 
 |   } | 
 |  | 
 | #if CONFIG_LR_IMPROVEMENTS | 
 |   free(luma_buf); | 
 | #endif  // CONFIG_LR_IMPROVEMENTS | 
 | } | 
 |  | 
 | void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, | 
 |                                           AV1_COMMON *cm, int optimized_lr, | 
 |                                           AVxWorker *workers, int num_workers, | 
 |                                           AV1LrSync *lr_sync, void *lr_ctxt) { | 
 |   assert(!cm->features.all_lossless); | 
 |  | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; | 
 |  | 
 |   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, | 
 |                                          optimized_lr, num_planes); | 
 |  | 
 |   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, | 
 |                                  cm); | 
 | } |