blob: 385438924b2550be188839ffcf2eaae904cbafcb [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "aom_ports/system_state.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/rdopt.h"
static AOM_INLINE int set_deltaq_rdmult(const AV1_COMP *const cpi,
const MACROBLOCK *const x) {
const AV1_COMMON *const cm = &cpi->common;
const CommonQuantParams *quant_params = &cm->quant_params;
return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
quant_params->y_dc_delta_q);
}
void av1_set_ssim_rdmult(const AV1_COMP *const cpi, MvCosts *const mv_costs,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int *const rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
int row, col;
double num_of_mi = 0.0;
double geom_mean_of_scale = 0.0;
assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
aom_clear_system_state();
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
num_of_mi += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
*rdmult = AOMMAX(*rdmult, 0);
av1_set_error_per_bit(mv_costs, *rdmult);
aom_clear_system_state();
}
// Return the end column for the current superblock, in unit of TPL blocks.
static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col,
int num_mi_w) {
// Find the start column of this superblock.
const int sb_mi_col_start = (mi_col >> cm->mib_size_log2)
<< cm->mib_size_log2;
// Same but in superres upscaled dimension.
const int sb_mi_col_start_sr =
coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator);
// Width of this superblock in mi units.
const int sb_mi_width = mi_size_wide[cm->sb_size];
// Same but in superres upscaled dimension.
const int sb_mi_width_sr =
coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator);
// Superblock end in mi units.
const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr;
// Superblock end in TPL units.
return (sb_mi_end + num_mi_w - 1) / num_mi_w;
}
int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int orig_rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->gf_group;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
const TplDepFrame *tpl_frame = &cpi->tpl_data.tpl_frame[tpl_idx];
const int deltaq_rdmult = set_deltaq_rdmult(cpi, x);
if (tpl_frame->is_valid == 0) return deltaq_rdmult;
if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return deltaq_rdmult;
if (tpl_idx >= MAX_TPL_FRAME_IDX) return deltaq_rdmult;
if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int block_mi_width_sr =
coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator);
const BLOCK_SIZE bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
// This is required because the end col of superblock may be off by 1 in case
// of superres.
const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w);
int row, col;
double base_block_count = 0.0;
double geom_mean_of_scale = 0.0;
aom_clear_system_state();
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col_sr / num_mi_h;
col < num_cols && col < mi_col_sr / num_mi_h + num_bcols &&
col < sb_bcol_end;
++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]);
base_block_count += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
rdmult = AOMMAX(rdmult, 0);
av1_set_error_per_bit(&x->mv_costs, rdmult);
aom_clear_system_state();
if (bsize == cm->sb_size) {
const int rdmult_sb = set_deltaq_rdmult(cpi, x);
assert(rdmult_sb == rdmult);
(void)rdmult_sb;
}
return rdmult;
}
static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
const int ctx = av1_get_pred_context_switchable_interp(xd, 0);
++counts->switchable_interp[ctx][mbmi->interp_fltr];
}
static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
const TX_MODE tx_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int plane_index = xd->tree_type == CHROMA_PART;
if (xd->lossless[mbmi->segment_id]) {
mbmi->tx_size = TX_4X4;
} else if (tx_mode != TX_MODE_SELECT) {
mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type[plane_index], tx_mode);
} else {
BLOCK_SIZE bsize = mbmi->sb_type[plane_index];
TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
}
if (is_inter_block(mbmi, xd->tree_type)) {
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
#if CONFIG_NEW_TX_PARTITION
memset(mbmi->tx_partition_type, TX_PARTITION_NONE,
sizeof(mbmi->tx_partition_type));
#endif // CONFIG_NEW_TX_PARTITION
}
const int stride = xd->tx_type_map_stride;
const int bw = mi_size_wide[mbmi->sb_type[plane_index]];
for (int row = 0; row < mi_size_high[mbmi->sb_type[plane_index]]; ++row) {
memset(xd->tx_type_map + row * stride, DCT_DCT,
bw * sizeof(xd->tx_type_map[0]));
}
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mbmi, AOM_PLANE_U);
for (int row = 0; row < mi_size_high[chroma_bsize]; ++row)
memset(xd->cctx_type_map + row * xd->cctx_type_map_stride, CCTX_NONE,
mi_size_wide[chroma_bsize] * sizeof(xd->cctx_type_map[0]));
#else
for (int row = 0; row < mi_size_high[mbmi->sb_type[plane_index]]; ++row)
memset(xd->cctx_type_map + row * xd->cctx_type_map_stride, CCTX_NONE,
bw * sizeof(xd->cctx_type_map[0]));
#endif // CONFIG_EXT_RECUR_PARTITION
av1_zero(txfm_info->blk_skip);
txfm_info->skip_txfm = 0;
}
// This function will copy the best reference mode information from
// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
MB_MODE_INFO_EXT *mbmi_ext,
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type
#if CONFIG_SEP_COMP_DRL
,
PREDICTION_MODE this_mode
#endif // CONFIG_SEP_COMP_DRL
) {
#if CONFIG_SEP_COMP_DRL
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame_type);
if (has_second_drl_by_mode(this_mode, rf)) {
memcpy(mbmi_ext->ref_mv_stack[rf[0]], mbmi_ext_best->ref_mv_stack[0],
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[rf[0]], mbmi_ext_best->weight[0],
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->ref_mv_count[rf[0]] = mbmi_ext_best->ref_mv_count[0];
memcpy(mbmi_ext->ref_mv_stack[rf[1]], mbmi_ext_best->ref_mv_stack[1],
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[rf[1]], mbmi_ext_best->weight[1],
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->ref_mv_count[rf[1]] = mbmi_ext_best->ref_mv_count[1];
} else {
memcpy(mbmi_ext->ref_mv_stack[ref_frame_type],
mbmi_ext_best->ref_mv_stack[0],
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight[0],
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count[0];
}
#else
memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
#endif // CONFIG_SEP_COMP_DRL
mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
sizeof(mbmi_ext->global_mvs));
#if CONFIG_EXTENDED_WARP_PREDICTION
if (ref_frame_type < INTER_REFS_PER_FRAME) {
memcpy(mbmi_ext->warp_param_stack[ref_frame_type],
mbmi_ext_best->warp_param_stack,
sizeof(mbmi_ext->warp_param_stack[MAX_WARP_REF_CANDIDATES]));
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
const PICK_MODE_CONTEXT *const ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const MB_MODE_INFO *const mi = &ctx->mic;
MB_MODE_INFO *const mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
assert(bsize < BLOCK_SIZES_ALL);
const int bw = mi_size_wide[mi->sb_type[xd->tree_type == CHROMA_PART]];
const int bh = mi_size_high[mi->sb_type[xd->tree_type == CHROMA_PART]];
const int mis = mi_params->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
assert(mi->sb_type[xd->tree_type == CHROMA_PART] == bsize);
*mi_addr = *mi;
mi_addr->chroma_ref_info = ctx->chroma_ref_info;
#if CONFIG_C071_SUBBLK_WARPMV
if (is_warp_mode(mi->motion_mode)) update_submi(xd, cm, ctx->submic, bsize);
#endif // CONFIG_C071_SUBBLK_WARPMV
if (xd->tree_type != CHROMA_PART)
copy_mbmi_ext_frame_to_mbmi_ext(x->mbmi_ext, &ctx->mbmi_ext_best,
av1_ref_frame_type(ctx->mic.ref_frame)
#if CONFIG_SEP_COMP_DRL
,
ctx->mic.mode
#endif // CONFIG_SEP_COMP_DRL
);
memcpy(txfm_info->blk_skip, ctx->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
if (xd->tree_type != CHROMA_PART) {
xd->tx_type_map = ctx->tx_type_map;
xd->tx_type_map_stride = mi_size_wide[bsize];
// If not dry_run, copy the transform type data into the frame level buffer.
// Encoder will fetch tx types when writing bitstream.
if (!dry_run) {
const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
TX_TYPE *const tx_type_map = mi_params->tx_type_map + grid_idx;
const int mi_stride = mi_params->mi_stride;
for (int blk_row = 0; blk_row < bh; ++blk_row) {
av1_copy_array(tx_type_map + blk_row * mi_stride,
xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
}
xd->tx_type_map = tx_type_map;
xd->tx_type_map_stride = mi_stride;
}
}
if (xd->tree_type != LUMA_PART && xd->is_chroma_ref &&
is_cctx_allowed(cm, xd)) {
xd->cctx_type_map = ctx->cctx_type_map;
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mi, AOM_PLANE_U);
xd->cctx_type_map_stride = mi_size_wide[chroma_bsize];
#else
xd->cctx_type_map_stride = mi_size_wide[bsize];
#endif // CONFIG_EXT_RECUR_PARTITIONS
// If not dry_run, copy the cctx type data into the frame level buffer.
// Encoder will fetch cctx types when writing bitstream.
if (!dry_run) {
const int mi_stride = mi_params->mi_stride;
CctxType cur_cctx_type =
txfm_info->skip_txfm ? CCTX_NONE : xd->cctx_type_map[0];
#if CONFIG_EXT_RECUR_PARTITIONS
const int chroma_bw = mi_size_wide[chroma_bsize];
const int chroma_bh = mi_size_high[chroma_bsize];
const int grid_idx =
get_mi_grid_idx(mi_params, mi->chroma_ref_info.mi_row_chroma_base,
mi->chroma_ref_info.mi_col_chroma_base);
CctxType *const cctx_type_map = mi_params->cctx_type_map + grid_idx;
for (int blk_row = 0; blk_row < chroma_bh; ++blk_row) {
memset(&cctx_type_map[blk_row * mi_stride], cur_cctx_type,
chroma_bw * sizeof(cctx_type_map[0]));
}
#else
// If this block is sub 8x8 in luma, derive the parent >= 8x8 block area,
// then update its corresponding chroma area in cctx_type_map to the
// current cctx type
const int ss_x = pd[AOM_PLANE_U].subsampling_x;
const int ss_y = pd[AOM_PLANE_U].subsampling_y;
const int mi_row_offset = (mi_row & 0x01) && (bh & 0x01) && ss_y;
const int mi_col_offset = (mi_col & 0x01) && (bw & 0x01) && ss_x;
const int grid_idx = get_mi_grid_idx(mi_params, mi_row - mi_row_offset,
mi_col - mi_col_offset);
CctxType *const cctx_type_map = mi_params->cctx_type_map + grid_idx;
for (int blk_row = 0; blk_row < (mi_row_offset ? 2 : bh); ++blk_row) {
memset(&cctx_type_map[blk_row * mi_stride], cur_cctx_type,
(mi_col_offset ? 2 : bw) * sizeof(cctx_type_map[0]));
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
xd->cctx_type_map = cctx_type_map;
xd->cctx_type_map_stride = mi_stride;
}
}
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
mi_addr->segment_id =
map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
xd->tree_type == SHARED_PART) {
av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize,
ctx->rd_stats.rate, ctx->rd_stats.dist,
txfm_info->skip_txfm);
}
if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
mi_addr->uv_mode = UV_DC_PRED;
}
for (i = (xd->tree_type == CHROMA_PART); i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].bobs = ctx->bobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++) {
for (x_idx = 0; x_idx < mi_width; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
const int mi_idx =
get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx);
xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx];
if (xd->tree_type == LUMA_PART) {
*(xd->mi[x_idx + y * mis]) = *mi_addr;
} else if (xd->tree_type == CHROMA_PART) {
xd->mi[x_idx + y * mis]->sb_type[PLANE_TYPE_UV] =
mi_addr->sb_type[PLANE_TYPE_UV];
xd->mi[x_idx + y * mis]->uv_mode = mi_addr->uv_mode;
xd->mi[x_idx + y * mis]->angle_delta[PLANE_TYPE_UV] =
mi_addr->angle_delta[PLANE_TYPE_UV];
xd->mi[x_idx + y * mis]->cfl_alpha_signs = mi_addr->cfl_alpha_signs;
xd->mi[x_idx + y * mis]->cfl_alpha_idx = mi_addr->cfl_alpha_idx;
xd->mi[x_idx + y * mis]->partition = mi_addr->partition;
#if CONFIG_EXT_RECUR_PARTITIONS
xd->mi[x_idx + y * mis]->chroma_mi_row_start =
mi_addr->chroma_mi_row_start;
xd->mi[x_idx + y * mis]->chroma_mi_col_start =
mi_addr->chroma_mi_col_start;
#endif // CONFIG_EXT_RECUR_PARTITIONS
xd->mi[x_idx + y * mis]
->palette_mode_info.palette_size[PLANE_TYPE_UV] =
mi_addr->palette_mode_info.palette_size[PLANE_TYPE_UV];
for (i = PALETTE_MAX_SIZE; i < 3 * PALETTE_MAX_SIZE; i++)
xd->mi[x_idx + y * mis]->palette_mode_info.palette_colors[i] =
mi_addr->palette_mode_info.palette_colors[i];
} else {
xd->mi[x_idx + y * mis] = mi_addr;
}
}
}
}
if (cpi->oxcf.q_cfg.aq_mode)
av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
if (dry_run) return;
if (mi_addr->ref_frame[0] != INTRA_FRAME) {
if (cm->features.interp_filter == SWITCHABLE &&
!is_warp_mode(mi_addr->motion_mode) &&
!is_nontrans_global_motion(xd, xd->mi[0])) {
update_filter_type_count(td->counts, xd, mi_addr);
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
const int x_inside_boundary = AOMMIN(bw, mi_params->mi_cols - mi_col);
const int y_inside_boundary = AOMMIN(bh, mi_params->mi_rows - mi_row);
if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_inside_boundary,
y_inside_boundary);
}
void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
PREDICTION_MODE mode, int16_t mode_context
#if CONFIG_EXTENDED_WARP_PREDICTION
,
const AV1_COMMON *const cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize
#endif // CONFIG_EXTENDED_WARP_PREDICTION
) {
(void)counts;
const int16_t ismode_ctx = inter_single_mode_ctx(mode_context);
#if CONFIG_ENTROPY_STATS
++counts->inter_single_mode[ismode_ctx][mode - SINGLE_INTER_MODE_START];
#endif // CONFIG_ENTROPY_STATS
#if CONFIG_EXTENDED_WARP_PREDICTION
if (is_warpmv_mode_allowed(cm, mbmi, bsize)) {
const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi);
update_cdf(fc->inter_warp_mode_cdf[iswarpmvmode_ctx], mode == WARPMV, 2);
if (mode == WARPMV) return;
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
update_cdf(fc->inter_single_mode_cdf[ismode_ctx],
mode - SINGLE_INTER_MODE_START, INTER_SINGLE_MODES);
}
static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
FRAME_COUNTS *counts) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
(void)counts;
if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) {
const int n = pmi->palette_size[0];
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
#if CONFIG_ENTROPY_STATS
++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
if (mbmi->uv_mode == UV_DC_PRED && xd->tree_type != LUMA_PART) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
}
static INLINE void update_fsc_cdf(const AV1_COMMON *const cm, MACROBLOCKD *xd,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
const int intraonly) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
if (allow_fsc_intra(cm, xd, bsize, mbmi)) {
#if CONFIG_ENTROPY_STATS
const int ctx = get_fsc_mode_ctx(xd, intraonly);
++counts->fsc_mode[ctx][fsc_bsize_groups[bsize]]
[mbmi->fsc_mode[xd->tree_type == CHROMA_PART]];
#endif // CONFIG_ENTROPY_STATS
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, intraonly);
update_cdf(fsc_cdf, mbmi->fsc_mode[xd->tree_type == CHROMA_PART],
FSC_MODES);
}
}
void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi) {
FRAME_CONTEXT *fc = xd->tile_ctx;
#if !CONFIG_AIMC
const PREDICTION_MODE y_mode = mbmi->mode;
#endif // !CONFIG_AIMC
(void)counts;
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
if (xd->tree_type != CHROMA_PART) {
const int intraonly = frame_is_intra_only(cm);
#if CONFIG_AIMC
const int context = get_y_mode_idx_ctx(xd);
const int mode_idx = mbmi->y_mode_idx;
int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
#if CONFIG_ENTROPY_STATS
++counts->y_mode_set_idx[mode_set_index];
#endif
update_cdf(fc->y_mode_set_cdf, mode_set_index, INTRA_MODE_SETS);
if (mode_set_index == 0) {
#if CONFIG_ENTROPY_STATS
++counts->y_mode_idx_0[context][mode_idx];
#endif
update_cdf(fc->y_mode_idx_cdf_0[context], mode_idx, FIRST_MODE_COUNT);
} else {
const int mode_idx_in_set = mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1);
#if CONFIG_ENTROPY_STATS
++counts->y_mode_idx_1[context][mode_idx_in_set];
#endif
update_cdf(fc->y_mode_idx_cdf_1[context], mode_idx_in_set,
SECOND_MODE_COUNT);
}
update_fsc_cdf(cm, xd,
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
intraonly);
#else
if (intraonly) {
#if CONFIG_ENTROPY_STATS
const int neighbor0_ctx = get_y_mode_ctx(xd->neighbors[0]);
const int neighbor1_ctx = get_y_mode_ctx(xd->neighbors[1]);
++counts->kf_y_mode[neighbor0_ctx][neighbor1_ctx][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(get_y_mode_cdf(fc, xd->neighbors[0], xd->neighbors[1]), y_mode,
INTRA_MODES);
} else {
#if CONFIG_ENTROPY_STATS
++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
}
update_fsc_cdf(cm, xd,
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
intraonly);
#endif // CONFIG_AIMC
if (cm->seq_params.enable_mrls && av1_is_directional_mode(mbmi->mode)) {
#if CONFIG_IMPROVED_INTRA_DIR_PRED
int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]);
update_cdf(fc->mrl_index_cdf[mrl_ctx], mbmi->mrl_index, MRL_LINE_NUMBER);
#if CONFIG_ENTROPY_STATS
++counts->mrl_index[mrl_ctx][mbmi->mrl_index];
#endif // CONFIG_ENTROPY_STATS
#else
update_cdf(fc->mrl_index_cdf, mbmi->mrl_index, MRL_LINE_NUMBER);
#if CONFIG_ENTROPY_STATS
++counts->mrl_index[mbmi->mrl_index];
#endif // CONFIG_ENTROPY_STATS
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
}
if (av1_filter_intra_allowed(cm, mbmi)) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra;
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
++counts->filter_intra[use_filter_intra_mode];
if (use_filter_intra_mode) {
++counts->filter_intra_mode[mbmi->filter_intra_mode_info
.filter_intra_mode];
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->filter_intra_cdfs, use_filter_intra_mode, 2);
#else
#if CONFIG_ENTROPY_STATS
++counts->filter_intra[bsize][use_filter_intra_mode];
if (use_filter_intra_mode) {
++counts->filter_intra_mode[mbmi->filter_intra_mode_info
.filter_intra_mode];
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->filter_intra_cdfs[bsize], use_filter_intra_mode, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
if (use_filter_intra_mode) {
update_cdf(fc->filter_intra_mode_cdf,
mbmi->filter_intra_mode_info.filter_intra_mode,
FILTER_INTRA_MODES);
}
}
#if !CONFIG_AIMC
if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->mode - V_PRED]
[mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
#endif
update_cdf(fc->angle_delta_cdf[PLANE_TYPE_Y][mbmi->mode - V_PRED],
mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
#endif // !CONFIG_AIMC
}
if (!xd->is_chroma_ref) return;
if (xd->tree_type != LUMA_PART) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
#if CONFIG_AIMC
const int uv_context = av1_is_directional_mode(mbmi->mode) ? 1 : 0;
#endif // CONFIG_AIMC
#if CONFIG_ENTROPY_STATS
#if CONFIG_AIMC
#if CONFIG_UV_CFL
if (cfl_allowed) {
const int cfl_ctx = get_cfl_ctx(xd);
++counts->cfl_mode[cfl_ctx][uv_mode == UV_CFL_PRED];
if (uv_mode != UV_CFL_PRED) {
++counts->uv_mode[uv_context][uv_mode];
}
} else {
++counts->uv_mode[uv_context][uv_mode];
}
#else
++counts->uv_mode[cfl_allowed][uv_context][uv_mode];
#endif // CONFIG_UV_CFL
#else
++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
#endif // CONFIG_AIMC
#endif // CONFIG_ENTROPY_STATS
#if CONFIG_AIMC
#if CONFIG_UV_CFL
if (cfl_allowed) {
const int cfl_ctx = get_cfl_ctx(xd);
update_cdf(fc->cfl_cdf[cfl_ctx], mbmi->uv_mode == UV_CFL_PRED, 2);
if (mbmi->uv_mode != UV_CFL_PRED) {
update_cdf(fc->uv_mode_cdf[uv_context], mbmi->uv_mode_idx,
UV_INTRA_MODES - 1);
}
} else {
update_cdf(fc->uv_mode_cdf[uv_context], mbmi->uv_mode_idx,
UV_INTRA_MODES - 1);
}
#else
update_cdf(fc->uv_mode_cdf[cfl_allowed][uv_context], mbmi->uv_mode_idx,
UV_INTRA_MODES - !cfl_allowed);
#endif // CONFIG_UV_CFL
#if CONFIG_IMPROVED_CFL
if (mbmi->uv_mode == UV_CFL_PRED) {
#if CONFIG_ENTROPY_STATS
++counts->cfl_index[mbmi->cfl_idx];
#endif
#if CONFIG_ENABLE_MHCCP
update_cdf(fc->cfl_index_cdf, mbmi->cfl_idx, CFL_TYPE_COUNT - 1);
if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) {
aom_cdf_prob *filter_dir_cdf = get_mhccp_dir_cdf(xd, bsize);
update_cdf(filter_dir_cdf, mbmi->mh_dir, MHCCP_MODE_NUM);
}
#else
update_cdf(fc->cfl_index_cdf, mbmi->cfl_idx, CFL_TYPE_COUNT);
#endif // CONFIG_ENABLE_MHCCP
}
#endif
#else
update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
UV_INTRA_MODES - !cfl_allowed);
#endif // CONFIG_AIMC
if (uv_mode == UV_CFL_PRED) {
const int8_t joint_sign = mbmi->cfl_alpha_signs;
const uint8_t idx = mbmi->cfl_alpha_idx;
#if CONFIG_ENTROPY_STATS
++counts->cfl_sign[joint_sign];
#endif
update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
#endif
update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
#endif
update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
}
}
#if !CONFIG_AIMC
if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[uv_mode - UV_V_PRED]
[mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
#endif
if (cm->seq_params.enable_sdp)
update_cdf(fc->angle_delta_cdf[PLANE_TYPE_UV][uv_mode - UV_V_PRED],
mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
else
update_cdf(fc->angle_delta_cdf[PLANE_TYPE_Y][uv_mode - UV_V_PRED],
mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
#endif // !CONFIG_AIMC
}
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
update_palette_cdf(xd, mbmi, counts);
}
}
void av1_restore_context(const AV1_COMMON *cm, MACROBLOCK *x,
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize, const int num_planes) {
(void)cm;
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = mi_size_wide[bsize];
const int num_4x4_blocks_high = mi_size_high[bsize];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = (xd->tree_type == CHROMA_PART); p < num_planes; p++) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(
xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
memcpy(xd->above_partition_context[p] + mi_col, ctx->sa + mi_width * p,
sizeof(*xd->above_partition_context[p]) * mi_width);
memcpy(xd->left_partition_context[p] + (mi_row & MAX_MIB_MASK),
ctx->sl + mi_height * p,
sizeof(xd->left_partition_context[p][0]) * mi_height);
}
#if !CONFIG_TX_PARTITION_CTX
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * mi_height);
#endif // !CONFIG_TX_PARTITION_CTX
av1_mark_block_as_not_coded(xd, mi_row, mi_col, bsize, cm->sb_size);
}
void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = (xd->tree_type == CHROMA_PART); p < num_planes; ++p) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(
ctx->a + mi_width * p,
xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
memcpy(ctx->l + mi_height * p,
xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
memcpy(ctx->sa + mi_width * p, xd->above_partition_context[p] + mi_col,
sizeof(*xd->above_partition_context[p]) * mi_width);
memcpy(ctx->sl + mi_height * p,
xd->left_partition_context[p] + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_partition_context[p][0]) * mi_height);
}
#if !CONFIG_TX_PARTITION_CTX
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * mi_height);
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
#endif // !CONFIG_TX_PARTITION_CTX
}
static void set_partial_sb_partition(const AV1_COMMON *const cm,
MB_MODE_INFO *mi, int bh_in, int bw_in,
int mi_rows_remaining,
int mi_cols_remaining, BLOCK_SIZE bsize,
MB_MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->mib_size; c += bw) {
const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
mib[grid_index] = mi + mi_index;
mib[grid_index]->sb_type[PLANE_TYPE_Y] =
mib[grid_index]->sb_type[PLANE_TYPE_UV] = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
MB_MODE_INFO **mib, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
MB_MODE_INFO *const mi_upper_left =
mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert(bsize >= mi_params->mi_alloc_bsize &&
"Attempted to use bsize < mi_params->mi_alloc_bsize");
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->mib_size) &&
(mi_rows_remaining >= cm->mib_size)) {
for (int block_row = 0; block_row < cm->mib_size; block_row += bh) {
for (int block_col = 0; block_col < cm->mib_size; block_col += bw) {
const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
mib[grid_index] = mi_upper_left + mi_index;
mib[grid_index]->sb_type[PLANE_TYPE_Y] = bsize;
mib[grid_index]->sb_type[PLANE_TYPE_UV] = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
int av1_is_leaf_split_partition(AV1_COMMON *cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
assert(bsize >= BLOCK_8X8);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
(mi_col + x_idx >= cm->mi_params.mi_cols))
return 0;
if (get_partition(cm, xd->tree_type == CHROMA_PART, mi_row + y_idx,
mi_col + x_idx, subsize) != PARTITION_NONE &&
subsize != BLOCK_8X8)
return 0;
}
return 1;
}
int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, int orig_rdmult) {
AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->gf_group;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
TplParams *const tpl_data = &cpi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
if (tpl_frame->is_valid == 0) return orig_rdmult;
if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return orig_rdmult;
if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return orig_rdmult;
#ifndef NDEBUG
int mi_count = 0;
#endif // NDEBUG
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << block_mis_log2;
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += this_stats->recrf_dist << RDDIV_BITS;
mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#ifndef NDEBUG
mi_count++;
#endif // NDEBUG
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
aom_clear_system_state();
double beta = 1.0;
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
const double rk = (double)intra_cost / mc_dep_cost;
beta = (r0 / rk);
}
int rdmult = av1_get_adaptive_rdmult(cpi, beta);
aom_clear_system_state();
rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
rdmult = AOMMAX(1, rdmult);
return rdmult;
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_params.mi_rows;
int is_active_h_edge = 0;
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_params.mi_cols;
int is_active_v_edge = 0;
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, SuperBlockEnc *sb_enc) {
sb_enc->tpl_data_count = 0;
if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE ||
update_type == KFFLT_OVERLAY_UPDATE)
return;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
AV1_COMMON *const cm = &cpi->common;
const int gf_group_index = cpi->gf_group.index;
TplParams *const tpl_data = &cpi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
if (tpl_frame->is_valid == 0) return;
if (gf_group_index >= MAX_TPL_FRAME_IDX) return;
int mi_count = 0;
int count = 0;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
// mi_cols_sr is mi_cols at superres case.
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
// TPL store unit size is not the same as the motion estimation unit size.
// Here always use motion estimation size to avoid getting repetitive inter/
// intra cost.
const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
const int row_step = mi_size_high[tpl_bsize];
const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
cm->superres_scale_denominator);
// Stride is only based on SB size, and we fill in values for every 16x16
// block in a SB.
sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
// Handle partial SB, so that no invalid values are used later.
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
sb_enc->tpl_inter_cost[count] = INT64_MAX;
sb_enc->tpl_intra_cost[count] = INT64_MAX;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
}
count++;
continue;
}
TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
sb_enc->tpl_inter_cost[count] = this_stats->inter_cost;
sb_enc->tpl_intra_cost[count] = this_stats->intra_cost;
memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
mi_count++;
count++;
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
sb_enc->tpl_data_count = mi_count;
}
// analysis_type 0: Use mc_dep_cost and intra_cost
// analysis_type 1: Use count of best inter predictor chosen
// analysis_type 2: Use cost reduction from intra to inter for best inter
// predictor chosen
int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->gf_group;
assert(IMPLIES(cpi->gf_group.size > 0,
cpi->gf_group.index < cpi->gf_group.size));
const int tpl_idx = cpi->gf_group.index;
TplParams *const tpl_data = &cpi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int base_qindex = cm->quant_params.base_qindex;
if (tpl_frame->is_valid == 0) return base_qindex;
if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return base_qindex;
if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return base_qindex;
#ifndef NDEBUG
int mi_count = 0;
#endif // NDEBUG
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << block_mis_log2;
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += this_stats->recrf_dist << RDDIV_BITS;
mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#ifndef NDEBUG
mi_count++;
#endif // NDEBUG
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
aom_clear_system_state();
int offset = 0;
double beta = 1.0;
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
const double rk = (double)intra_cost / mc_dep_cost;
beta = (r0 / rk);
assert(beta > 0.0);
}
offset = av1_get_deltaq_offset(cpi, base_qindex, beta);
aom_clear_system_state();
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex =
AOMMIN(qindex, cm->seq_params.bit_depth == AOM_BITS_8 ? MAXQ_8_BITS
: cm->seq_params.bit_depth == AOM_BITS_10 ? MAXQ_10_BITS
: MAXQ);
qindex = AOMMAX(qindex, MINQ);
return qindex;
}
void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
BLOCK_SIZE bsize) {
sms_tree->partitioning = PARTITION_NONE;
if (bsize >= BLOCK_8X8) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
assert(subsize < BLOCK_SIZES_ALL);
assert(is_square_block(subsize));
for (int idx = 0; idx < 4; ++idx)
av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
}
}
// Record the ref frames that have been selected by square partition blocks.
void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
BLOCK_SIZE bsize, int mib_size,
int mi_row, int mi_col) {
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
const int sb_size_mask = mib_size - 1;
const int mi_row_in_sb = mi_row & sb_size_mask;
const int mi_col_in_sb = mi_col & sb_size_mask;
const int mi_size_h = mi_size_high[bsize];
const int mi_size_w = mi_size_wide[bsize];
for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size_h; ++i) {
for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size_w; ++j) {
#if CONFIG_ALLOW_SAME_REF_COMPOUND
x->picked_ref_frames_mask[i * 32 + j] |= 1ULL << ref_type;
#else
x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
}
}
static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
int num_cdfs, int cdf_stride, int nsymbs,
int wt_left, int wt_tr) {
for (int i = 0; i < num_cdfs; i++) {
for (int j = 0; j <= nsymbs; j++) {
cdf_ptr_left[i * cdf_stride + j] =
(aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
(int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
((wt_left + wt_tr) / 2)) /
(wt_left + wt_tr));
assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
}
}
}
#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
do { \
aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
int num_cdfs = array_size / cdf_stride; \
avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
wt_left, wt_tr); \
} while (0)
static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
int wt_tr) {
AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
AVERAGE_CDF(nmv_left->amvd_joints_cdf, nmv_tr->amvd_joints_cdf, MV_JOINTS);
for (int i = 0; i < 2; i++) {
AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
MV_CLASSES);
AVERAGE_CDF(nmv_left->comps[i].amvd_classes_cdf,
nmv_tr->comps[i].amvd_classes_cdf, MV_CLASSES);
AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
nmv_tr->comps[i].class0_fp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
nmv_tr->comps[i].class0_hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
CLASS0_SIZE);
AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
}
}
// In case of row-based multi-threading of encoder, since we always
// keep a top - right sync, we can average the top - right SB's CDFs and
// the left SB's CDFs and use the same for current SB's encoding to
// improve the performance. This function facilitates the averaging
// of CDF and used only when row-mt is enabled in encoder.
void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
int wt_left, int wt_tr) {
AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
#if CONFIG_CONTEXT_DERIVATION
AVERAGE_CDF(ctx_left->v_txb_skip_cdf, ctx_tr->v_txb_skip_cdf, 2);
#endif // CONFIG_CONTEXT_DERIVATION
AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
#if CONFIG_CONTEXT_DERIVATION
AVERAGE_CDF(ctx_left->v_dc_sign_cdf, ctx_tr->v_dc_sign_cdf, 2);
AVERAGE_CDF(ctx_left->v_ac_sign_cdf, ctx_tr->v_ac_sign_cdf, 2);
#endif // CONFIG_CONTEXT_DERIVATION
AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16,
EOB_MAX_SYMS - 6);
AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32,
EOB_MAX_SYMS - 5);
AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64,
EOB_MAX_SYMS - 4);
AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128,
EOB_MAX_SYMS - 3);
AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256,
EOB_MAX_SYMS - 2);
AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512,
EOB_MAX_SYMS - 1);
AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024,
EOB_MAX_SYMS);
AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
AVERAGE_CDF(ctx_left->coeff_base_bob_cdf, ctx_tr->coeff_base_bob_cdf, 3);
AVERAGE_CDF(ctx_left->coeff_base_lf_cdf, ctx_tr->coeff_base_lf_cdf,
LF_BASE_SYMBOLS);
AVERAGE_CDF(ctx_left->coeff_base_lf_eob_cdf, ctx_tr->coeff_base_lf_eob_cdf,
LF_BASE_SYMBOLS - 1);
AVERAGE_CDF(ctx_left->coeff_br_lf_cdf, ctx_tr->coeff_br_lf_cdf, BR_CDF_SIZE);
AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
#if NEWCTX
AVERAGE_CDF(ctx_left->coeff_base_cdf_tcq, ctx_tr->coeff_base_cdf_tcq, 4);
AVERAGE_CDF(ctx_left->coeff_base_lf_cdf_tcq, ctx_tr->coeff_base_lf_cdf_tcq,
LF_BASE_SYMBOLS);
#endif
AVERAGE_CDF(ctx_left->idtx_sign_cdf, ctx_tr->idtx_sign_cdf, 2);
AVERAGE_CDF(ctx_left->coeff_base_cdf_idtx, ctx_tr->coeff_base_cdf_idtx, 4);
AVERAGE_CDF(ctx_left->coeff_br_cdf_idtx, ctx_tr->coeff_br_cdf_idtx,
BR_CDF_SIZE);
AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
AVERAGE_CDF(ctx_left->inter_single_mode_cdf, ctx_tr->inter_single_mode_cdf,
INTER_SINGLE_MODES);
#if CONFIG_EXTENDED_WARP_PREDICTION
AVERAGE_CDF(ctx_left->inter_warp_mode_cdf, ctx_tr->inter_warp_mode_cdf, 2);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_REFINEMV
AVERAGE_CDF(ctx_left->refinemv_flag_cdf, ctx_tr->refinemv_flag_cdf,
REFINEMV_NUM_MODES);
#endif // CONFIG_REFINEMV
AVERAGE_CDF(ctx_left->drl_cdf[0], ctx_tr->drl_cdf[0], 2);
AVERAGE_CDF(ctx_left->drl_cdf[1], ctx_tr->drl_cdf[1], 2);
AVERAGE_CDF(ctx_left->drl_cdf[2], ctx_tr->drl_cdf[2], 2);
#if CONFIG_SKIP_MODE_ENHANCEMENT
AVERAGE_CDF(ctx_left->skip_drl_cdf, ctx_tr->skip_drl_cdf, 2);
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_OPTFLOW_REFINEMENT
AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_REF_TYPES);
#else
AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
#endif // CONFIG_OPTFLOW_REFINEMENT
AVERAGE_CDF(ctx_left->cwp_idx_cdf, ctx_tr->cwp_idx_cdf, 2);
AVERAGE_CDF(ctx_left->jmvd_scale_mode_cdf, ctx_tr->jmvd_scale_mode_cdf,
JOINT_NEWMV_SCALE_FACTOR_CNT);
AVERAGE_CDF(ctx_left->jmvd_amvd_scale_mode_cdf,
ctx_tr->jmvd_amvd_scale_mode_cdf, JOINT_AMVD_SCALE_FACTOR_CNT);
AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
MASKED_COMPOUND_TYPES);
#if CONFIG_WEDGE_MOD_EXT
AVERAGE_CDF(ctx_left->wedge_angle_dir_cdf, ctx_tr->wedge_angle_dir_cdf, 2);
AVERAGE_CDF(ctx_left->wedge_angle_0_cdf, ctx_tr->wedge_angle_0_cdf,
H_WEDGE_ANGLES);
AVERAGE_CDF(ctx_left->wedge_angle_1_cdf, ctx_tr->wedge_angle_1_cdf,
H_WEDGE_ANGLES);
AVERAGE_CDF(ctx_left->wedge_dist_cdf, ctx_tr->wedge_dist_cdf, NUM_WEDGE_DIST);
AVERAGE_CDF(ctx_left->wedge_dist_cdf2, ctx_tr->wedge_dist_cdf2,
NUM_WEDGE_DIST - 1);
#else
AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
#endif
AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
INTERINTRA_MODES);
AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
#if CONFIG_EXTENDED_WARP_PREDICTION
AVERAGE_CDF(ctx_left->warped_causal_cdf, ctx_tr->warped_causal_cdf, 2);
AVERAGE_CDF(ctx_left->warp_delta_cdf, ctx_tr->warp_delta_cdf, 2);
AVERAGE_CDF(ctx_left->warp_delta_param_cdf, ctx_tr->warp_delta_param_cdf,
WARP_DELTA_NUM_SYMBOLS);
AVERAGE_CDF(ctx_left->warped_causal_warpmv_cdf,
ctx_tr->warped_causal_warpmv_cdf, 2);
AVERAGE_CDF(ctx_left->warp_ref_idx_cdf[0], ctx_tr->warp_ref_idx_cdf[0], 2);
AVERAGE_CDF(ctx_left->warp_ref_idx_cdf[1], ctx_tr->warp_ref_idx_cdf[1], 2);
AVERAGE_CDF(ctx_left->warp_ref_idx_cdf[2], ctx_tr->warp_ref_idx_cdf[2], 2);
AVERAGE_CDF(ctx_left->warpmv_with_mvd_flag_cdf,
ctx_tr->warpmv_with_mvd_flag_cdf, 2);
AVERAGE_CDF(ctx_left->warp_extend_cdf, ctx_tr->warp_extend_cdf, 2);
#else
AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_BAWP
#if CONFIG_BAWP_CHROMA
AVERAGE_CDF(ctx_left->bawp_cdf[0], ctx_tr->bawp_cdf[0], 2);
AVERAGE_CDF(ctx_left->bawp_cdf[1], ctx_tr->bawp_cdf[1], 2);
#else
AVERAGE_CDF(ctx_left->bawp_cdf, ctx_tr->bawp_cdf, 2);
#endif // CONFIG_BAWP_CHROMA
#if CONFIG_EXPLICIT_BAWP
AVERAGE_CDF(ctx_left->explicit_bawp_cdf, ctx_tr->explicit_bawp_cdf, 2);
AVERAGE_CDF(ctx_left->explicit_bawp_scale_cdf,
ctx_tr->explicit_bawp_scale_cdf, EXPLICIT_BAWP_SCALE_CNT);
#endif // CONFIG_EXPLICIT_BAWP
#endif
AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
PALETTE_SIZES);
AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
PALETTE_SIZES);
for (int j = 0; j < PALETTE_SIZES; j++) {
int nsymbs = j + PALETTE_MIN_SIZE;
AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
ctx_tr->palette_y_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
}
AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref0_cdf, ctx_tr->comp_ref0_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref1_cdf, ctx_tr->comp_ref1_cdf, 2);
#if CONFIG_NEW_TX_PARTITION
#if CONFIG_TX_PARTITION_CTX
AVERAGE_CDF(ctx_left->txfm_do_partition_cdf, ctx_tr->txfm_do_partition_cdf,
2);
AVERAGE_CDF(ctx_left->txfm_4way_partition_type_cdf,
ctx_tr->txfm_4way_partition_type_cdf, 3);
#else
// Square blocks
AVERAGE_CDF(ctx_left->inter_4way_txfm_partition_cdf[0],
ctx_tr->inter_4way_txfm_partition_cdf[0], 4);
// Rectangular blocks
AVERAGE_CDF(ctx_left->inter_4way_txfm_partition_cdf[1],
ctx_tr->inter_4way_txfm_partition_cdf[1], 4);
AVERAGE_CDF(ctx_left->inter_2way_txfm_partition_cdf,
ctx_tr->inter_2way_txfm_partition_cdf, 2);
#endif // CONFIG_TX_PARTITION_CTX
#else // CONFIG_NEW_TX_PARTITION
AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
#endif // CONFIG_NEW_TX_PARTITION
AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
#if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
AVERAGE_CDF(ctx_left->intra_inter_cdf[0], ctx_tr->intra_inter_cdf[0], 2);
AVERAGE_CDF(ctx_left->intra_inter_cdf[1], ctx_tr->intra_inter_cdf[1], 2);
#else
AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
#endif // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
#if CONFIG_IBC_BV_IMPROVEMENT
AVERAGE_CDF(ctx_left->intrabc_mode_cdf, ctx_tr->intrabc_mode_cdf, 2);
AVERAGE_CDF(ctx_left->intrabc_drl_idx_cdf, ctx_tr->intrabc_drl_idx_cdf, 2);
#endif // CONFIG_IBC_BV_IMPROVEMENT
AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
#if CONFIG_LR_IMPROVEMENTS
AVERAGE_CDF(ctx_left->switchable_flex_restore_cdf,
ctx_tr->switchable_flex_restore_cdf, 2);
#else
AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
#endif // CONFIG_LR_IMPROVEMENTS
AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
#if CONFIG_CCSO_EXT
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
AVERAGE_CDF(ctx_left->ccso_cdf[plane], ctx_tr->ccso_cdf[plane], 2);
}
#endif
AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
#if CONFIG_LR_IMPROVEMENTS
AVERAGE_CDF(ctx_left->wienerns_restore_cdf, ctx_tr->wienerns_restore_cdf, 2);
AVERAGE_CDF(ctx_left->wienerns_reduce_cdf, ctx_tr->wienerns_reduce_cdf, 2);
#if ENABLE_LR_4PART_CODE
AVERAGE_CDF(ctx_left->wienerns_4part_cdf, ctx_tr->wienerns_4part_cdf, 4);
#endif // ENABLE_LR_4PART_CODE
AVERAGE_CDF(ctx_left->pc_wiener_restore_cdf, ctx_tr->pc_wiener_restore_cdf,
2);
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_LR_MERGE_COEFFS
AVERAGE_CDF(ctx_left->merged_param_cdf, ctx_tr->merged_param_cdf, 2);
#endif // CONFIG_LR_MERGE_COEFFS
AVERAGE_CDF(ctx_left->fsc_mode_cdf, ctx_tr->fsc_mode_cdf, FSC_MODES);
AVERAGE_CDF(ctx_left->mrl_index_cdf, ctx_tr->mrl_index_cdf, MRL_LINE_NUMBER);
#if CONFIG_IMPROVED_CFL
#if CONFIG_ENABLE_MHCCP
AVERAGE_CDF(ctx_left->filter_dir_cdf, ctx_tr->filter_dir_cdf, MHCCP_MODE_NUM);
AVERAGE_CDF(ctx_left->cfl_index_cdf, ctx_tr->cfl_index_cdf,
CFL_TYPE_COUNT - 1);
#else
AVERAGE_CDF(ctx_left->cfl_index_cdf, ctx_tr->cfl_index_cdf, CFL_TYPE_COUNT);
#endif // CONFIG_ENABLE_MHCCP
#endif
#if CONFIG_AIMC
AVERAGE_CDF(ctx_left->y_mode_set_cdf, ctx_tr->y_mode_set_cdf,
INTRA_MODE_SETS);
AVERAGE_CDF(ctx_left->y_mode_idx_cdf_0, ctx_tr->y_mode_idx_cdf_0,
FIRST_MODE_COUNT);
AVERAGE_CDF(ctx_left->y_mode_idx_cdf_1, ctx_tr->y_mode_idx_cdf_1,
SECOND_MODE_COUNT);
#else
AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
#endif // CONFIG_AIMC
#if CONFIG_UV_CFL
AVERAGE_CDF(ctx_left->uv_mode_cdf, ctx_tr->uv_mode_cdf, UV_INTRA_MODES);
#else
AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
#endif // CONFIG_UV_CFL
#if CONFIG_EXT_RECUR_PARTITIONS
for (int plane_index = 0; plane_index < PARTITION_STRUCTURE_NUM;
plane_index++) {
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
AVERAGE_CDF(ctx_left->do_split_cdf[plane_index][i],
ctx_tr->do_split_cdf[plane_index][i], 2);
}
}
#if CONFIG_BLOCK_256
for (int plane_index = 0; plane_index < PARTITION_STRUCTURE_NUM;
plane_index++) {
for (int i = 0; i < SQUARE_SPLIT_CONTEXTS; i++) {
AVERAGE_CDF(ctx_left->do_square_split_cdf[plane_index][i],
ctx_tr->do_square_split_cdf[plane_index][i], 2);
}
}
#endif // CONFIG_BLOCK_256
for (int plane_index = 0; plane_index < PARTITION_STRUCTURE_NUM;
plane_index++) {
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
AVERAGE_CDF(ctx_left->rect_type_cdf[plane_index][i],
ctx_tr->rect_type_cdf[plane_index][i], 2);
}
}
for (int plane_index = 0; plane_index < PARTITION_STRUCTURE_NUM;
plane_index++) {
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
for (RECT_PART_TYPE rect = 0; rect < NUM_RECT_PARTS; rect++) {
AVERAGE_CDF(ctx_left->do_ext_partition_cdf[plane_index][rect][i],
ctx_tr->do_ext_partition_cdf[plane_index][rect][i], 2);
AVERAGE_CDF(
ctx_left->do_uneven_4way_partition_cdf[plane_index][rect][i],
ctx_tr->do_uneven_4way_partition_cdf[plane_index][rect][i], 2);
AVERAGE_CDF(
ctx_left->uneven_4way_partition_type_cdf[plane_index][rect][i],
ctx_tr->uneven_4way_partition_type_cdf[plane_index][rect][i],
NUM_UNEVEN_4WAY_PARTS);
}
}
}
#else
for (int plane_index = 0; plane_index < PARTITION_STRUCTURE_NUM;
plane_index++) {
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
if (i < 4) {
AVG_CDF_STRIDE(ctx_left->partition_cdf[plane_index][i],
ctx_tr->partition_cdf[plane_index][i], 4, CDF_SIZE(10));
} else if (i < 16) {
AVERAGE_CDF(ctx_left->partition_cdf[plane_index][i],
ctx_tr->partition_cdf[plane_index][i], 10);
} else {
AVG_CDF_STRIDE(ctx_left->partition_cdf[plane_index][i],
ctx_tr->partition_cdf[plane_index][i], 8, CDF_SIZE(10));
}
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
SWITCHABLE_FILTERS);
#if !CONFIG_AIMC
AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
2 * MAX_ANGLE_DELTA + 1);
#endif // !CONFIG_AIMC
#if CONFIG_NEW_TX_PARTITION
#if !CONFIG_TX_PARTITION_CTX
// Square blocks
AVERAGE_CDF(ctx_left->intra_4way_txfm_partition_cdf[0],
ctx_tr->intra_4way_txfm_partition_cdf[0], 4);
// Rectangular blocks
AVERAGE_CDF(ctx_left->intra_4way_txfm_partition_cdf[1],
ctx_tr->intra_4way_txfm_partition_cdf[1], 4);
AVERAGE_CDF(ctx_left->intra_2way_txfm_partition_cdf,
ctx_tr->intra_2way_txfm_partition_cdf, 2);
#endif // !CONFIG_TX_PARTITION_CTX
#else
AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
CDF_SIZE(MAX_TX_DEPTH + 1));
AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
MAX_TX_DEPTH + 1);
#endif // CONFIG_NEW_TX_PARTITION
AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
for (int i = 0; i < FRAME_LF_COUNT; i++) {
AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
DELTA_LF_PROBS + 1);
}
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1],
INTRA_TX_SET1, CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2],
INTRA_TX_SET2, CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
CDF_SIZE(TX_TYPES));
AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
CFL_ALPHABET_SIZE);
AVG_CDF_STRIDE(ctx_left->stx_cdf, ctx_tr->stx_cdf, STX_TYPES,
CDF_SIZE(STX_TYPES));
#if CONFIG_IST_SET_FLAG
AVERAGE_CDF(ctx_left->stx_set_cdf, ctx_tr->stx_set_cdf, IST_DIR_SIZE);
#endif // CONFIG_IST_SET_FLAG
for (int p = 0; p < NUM_MV_PREC_MPP_CONTEXT; ++p) {
AVG_CDF_STRIDE(ctx_left->pb_mv_mpp_flag_cdf[p],
ctx_tr->pb_mv_mpp_flag_cdf[p], 2, CDF_SIZE(2));
}
for (int p = MV_PRECISION_HALF_PEL; p < NUM_MV_PRECISIONS; ++p) {
int mb_precision_set = (p == MV_PRECISION_QTR_PEL);
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mb_precision_set];
int num_precisions = precision_def->num_precisions;
for (int j = 0; j < MV_PREC_DOWN_CONTEXTS; ++j) {
AVG_CDF_STRIDE(
ctx_left->pb_mv_precision_cdf[j][p - MV_PRECISION_HALF_PEL],
ctx_tr->pb_mv_precision_cdf[j][p - MV_PRECISION_HALF_PEL],
num_precisions - 1, CDF_SIZE(FLEX_MV_COSTS_SIZE));
}
}
AVERAGE_CDF(ctx_left->coeff_base_ph_cdf, ctx_tr->coeff_base_ph_cdf, 4);
AVERAGE_CDF(ctx_left->coeff_br_ph_cdf, ctx_tr->coeff_br_ph_cdf, 4);
AVERAGE_CDF(ctx_left->cctx_type_cdf, ctx_tr->cctx_type_cdf, CCTX_TYPES);
}
// Memset the mbmis at the current superblock to 0
void av1_reset_mbmi(const CommonModeInfoParams *const mi_params,
BLOCK_SIZE sb_size, int mi_row, int mi_col) {
// size of sb in unit of mi (BLOCK_4X4)
const int sb_size_mi = mi_size_wide[sb_size];
const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
// size of sb in unit of allocated mi size
const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
"mi is not allocated as a multiple of sb!");
assert(mi_params->mi_stride % sb_size_mi == 0 &&
"mi_grid_base is not allocated as a multiple of sb!");
const int mi_rows = mi_size_high[sb_size];
for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
mi_params->mi_stride);
const int mi_grid_idx =
get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
const int alloc_mi_idx =
get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->mi_grid_base));
memset(&mi_params->tx_type_map[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->tx_type_map));
#if CONFIG_C071_SUBBLK_WARPMV
memset(&mi_params->submi_grid_base[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->submi_grid_base));
#endif // CONFIG_C071_SUBBLK_WARPMV
memset(&mi_params->cctx_type_map[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->cctx_type_map));
if (cur_mi_row % mi_alloc_size_1d == 0) {
memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
#if CONFIG_C071_SUBBLK_WARPMV
memset(&mi_params->mi_alloc_sub[alloc_mi_idx], 0,
sb_size_alloc_mi * sizeof(*mi_params->mi_alloc_sub));
#endif // CONFIG_C071_SUBBLK_WARPMV
}
}
}
void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
ThreadData *td, const TileDataEnc *tile_data,
int mi_row, int mi_col) {
MACROBLOCK *x = &td->mb;
#if !CONFIG_TX_PARTITION_CTX
MACROBLOCKD *xd = &x->e_mbd;
const TileInfo *tile_info = &tile_data->tile_info;
#endif // !CONFIG_TX_PARTITION_CTX
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE sb_size = cm->sb_size;
#if !CONFIG_TX_PARTITION_CTX
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
#endif // !CONFIG_TX_PARTITION_CTX
av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
sb_fp_stats->rd_count = td->rd_counts;
sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
sb_fp_stats->fc = *td->counts;
memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
sizeof(sb_fp_stats->inter_mode_rd_models));
memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
sizeof(sb_fp_stats->thresh_freq_fact));
const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
sb_fp_stats->current_qindex =
cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
#if CONFIG_MVP_IMPROVEMENT
sb_fp_stats->ref_mv_bank = td->mb.e_mbd.ref_mv_bank;
#endif // CONFIG_MVP_IMPROVEMENT
#if WARP_CU_BANK
sb_fp_stats->warp_param_bank = td->mb.e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
#if CONFIG_EXT_RECUR_PARTITIONS
sb_fp_stats->min_partition_size = x->sb_enc.min_partition_size;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
ThreadData *td, TileDataEnc *tile_data, int mi_row,
int mi_col) {
MACROBLOCK *x = &td->mb;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE sb_size = cm->sb_size;
av1_restore_context(cm, x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
num_planes);
td->rd_counts = sb_fp_stats->rd_count;
x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
*td->counts = sb_fp_stats->fc;
memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
sizeof(sb_fp_stats->inter_mode_rd_models));
memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
sizeof(sb_fp_stats->thresh_freq_fact));
const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
sb_fp_stats->current_qindex;
#if CONFIG_MVP_IMPROVEMENT
x->e_mbd.ref_mv_bank = sb_fp_stats->ref_mv_bank;
#endif // CONFIG_MVP_IMPROVEMENT
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = sb_fp_stats->warp_param_bank;
#endif // WARP_CU_BANK
#if CONFIG_EXT_RECUR_PARTITIONS
x->sb_enc.min_partition_size = sb_fp_stats->min_partition_size;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
// Update the rate costs of some symbols according to the frequency directed
// by speed features
void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
const TileInfo *const tile_info, const int mi_row,
const int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
switch (cpi->oxcf.cost_upd_freq.coeff) {
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
if (cpi->sf.inter_sf.disable_sb_level_coeff_cost_upd &&
mi_col != tile_info->mi_col_start)
break;
av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
break;
default: assert(0);
}
switch (cpi->oxcf.cost_upd_freq.mode) {
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
av1_fill_mode_rates(cm, xd, &x->mode_costs, xd->tile_ctx);
break;
default: assert(0);
}
switch (cpi->oxcf.cost_upd_freq.mv) {
case COST_UPD_OFF: break;
case COST_UPD_TILE: // Tile level
if (mi_row != tile_info->mi_row_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SBROW: // SB row level in tile
if (mi_col != tile_info->mi_col_start) break;
AOM_FALLTHROUGH_INTENDED;
case COST_UPD_SB: // SB level
if (cpi->sf.inter_sf.disable_sb_level_mv_cost_upd &&
mi_col != tile_info->mi_col_start)
break;
av1_fill_mv_costs(xd->tile_ctx, cm->features.cur_frame_force_integer_mv,
cm->features.fr_mv_precision, &x->mv_costs);
#if CONFIG_IBC_BV_IMPROVEMENT
if (cm->features.allow_intrabc) {
fill_dv_costs(&x->dv_costs, xd->tile_ctx, &x->mv_costs);
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
break;
default: assert(0);
}
}