blob: ad3f4a666e73dfb9f947a59b9860ad0b91578719 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stdlib.h>
#include "config/aom_config.h"
#include "aom_scale/yv12config.h"
#include "av1/common/common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/lookahead.h"
/* Return the buffer at the given absolute index and increment the index */
static struct lookahead_entry *pop(struct lookahead_ctx *ctx, int *idx) {
int index = *idx;
struct lookahead_entry *buf = ctx->buf + index;
assert(index < ctx->max_sz);
if (++index >= ctx->max_sz) index -= ctx->max_sz;
*idx = index;
return buf;
}
void av1_lookahead_destroy(struct lookahead_ctx *ctx) {
if (ctx) {
if (ctx->buf) {
int i;
for (i = 0; i < ctx->max_sz; i++) aom_free_frame_buffer(&ctx->buf[i].img);
free(ctx->buf);
}
free(ctx);
}
}
struct lookahead_ctx *av1_lookahead_init(
unsigned int width, unsigned int height, unsigned int subsampling_x,
unsigned int subsampling_y, unsigned int depth, const int border_in_pixels,
int byte_alignment, int num_lap_buffers, int enable_global_motion) {
struct lookahead_ctx *ctx = NULL;
int lag_in_frames = AOMMAX(1, depth);
// Add the lags to depth and clamp
depth += num_lap_buffers;
depth = clamp(depth, 1, MAX_TOTAL_BUFFERS);
// Allocate memory to keep previous source frames available.
depth += MAX_PRE_FRAMES;
// Allocate the lookahead structures
ctx = calloc(1, sizeof(*ctx));
if (ctx) {
unsigned int i;
ctx->max_sz = depth;
ctx->read_ctxs[ENCODE_STAGE].pop_sz = ctx->max_sz - MAX_PRE_FRAMES;
ctx->read_ctxs[ENCODE_STAGE].valid = 1;
if (num_lap_buffers) {
ctx->read_ctxs[LAP_STAGE].pop_sz = lag_in_frames;
ctx->read_ctxs[LAP_STAGE].valid = 1;
}
ctx->buf = calloc(depth, sizeof(*ctx->buf));
if (!ctx->buf) goto fail;
for (i = 0; i < depth; i++) {
aom_free_frame_buffer(&ctx->buf[i].img);
if (aom_realloc_frame_buffer(&ctx->buf[i].img, width, height,
subsampling_x, subsampling_y,
border_in_pixels, byte_alignment, NULL, NULL,
NULL, enable_global_motion))
goto fail;
}
}
return ctx;
fail:
av1_lookahead_destroy(ctx);
return NULL;
}
int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
int64_t ts_start, int64_t ts_end,
aom_enc_frame_flags_t flags, int enable_global_motion) {
struct lookahead_entry *buf;
int width = src->y_crop_width;
int height = src->y_crop_height;
int uv_width = src->uv_crop_width;
int uv_height = src->uv_crop_height;
int subsampling_x = src->subsampling_x;
int subsampling_y = src->subsampling_y;
int larger_dimensions, new_dimensions;
assert(ctx->read_ctxs[ENCODE_STAGE].valid == 1);
if (ctx->read_ctxs[ENCODE_STAGE].sz + 1 + MAX_PRE_FRAMES > ctx->max_sz)
return 1;
ctx->read_ctxs[ENCODE_STAGE].sz++;
if (ctx->read_ctxs[LAP_STAGE].valid) {
ctx->read_ctxs[LAP_STAGE].sz++;
}
buf = pop(ctx, &ctx->write_idx);
new_dimensions = width != buf->img.y_crop_width ||
height != buf->img.y_crop_height ||
uv_width != buf->img.uv_crop_width ||
uv_height != buf->img.uv_crop_height;
larger_dimensions = width > buf->img.y_width || height > buf->img.y_height ||
uv_width > buf->img.uv_width ||
uv_height > buf->img.uv_height;
assert(!larger_dimensions || new_dimensions);
if (larger_dimensions) {
YV12_BUFFER_CONFIG new_img;
memset(&new_img, 0, sizeof(new_img));
if (aom_alloc_frame_buffer(&new_img, width, height, subsampling_x,
subsampling_y, AOM_BORDER_IN_PIXELS, 0,
enable_global_motion))
return 1;
aom_free_frame_buffer(&buf->img);
buf->img = new_img;
} else if (new_dimensions) {
buf->img.y_crop_width = src->y_crop_width;
buf->img.y_crop_height = src->y_crop_height;
buf->img.uv_crop_width = src->uv_crop_width;
buf->img.uv_crop_height = src->uv_crop_height;
buf->img.subsampling_x = src->subsampling_x;
buf->img.subsampling_y = src->subsampling_y;
}
// Partial copy not implemented yet
av1_copy_and_extend_frame(src, &buf->img);
buf->ts_start = ts_start;
buf->ts_end = ts_end;
buf->flags = flags;
aom_remove_metadata_from_frame_buffer(&buf->img);
aom_copy_metadata_to_frame_buffer(&buf->img, src->metadata);
return 0;
}
struct lookahead_entry *av1_lookahead_pop(struct lookahead_ctx *ctx, int drain,
COMPRESSOR_STAGE stage) {
struct lookahead_entry *buf = NULL;
if (ctx) {
struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
if (read_ctx->sz && (drain || read_ctx->sz == read_ctx->pop_sz)) {
buf = pop(ctx, &read_ctx->read_idx);
read_ctx->sz--;
}
}
return buf;
}
struct lookahead_entry *av1_lookahead_peek(struct lookahead_ctx *ctx, int index,
COMPRESSOR_STAGE stage) {
struct lookahead_entry *buf = NULL;
struct read_ctx *read_ctx = NULL;
if (ctx == NULL) {
return buf;
}
read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
if (index >= 0) {
// Forward peek
if (index < read_ctx->sz) {
index += read_ctx->read_idx;
if (index >= ctx->max_sz) index -= ctx->max_sz;
buf = ctx->buf + index;
}
} else if (index < 0) {
// Backward peek
if (-index <= MAX_PRE_FRAMES) {
index += (int)(read_ctx->read_idx);
if (index < 0) index += (int)(ctx->max_sz);
buf = ctx->buf + index;
}
}
return buf;
}
unsigned int av1_lookahead_depth(struct lookahead_ctx *ctx,
COMPRESSOR_STAGE stage) {
struct read_ctx *read_ctx = NULL;
assert(ctx != NULL);
read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
return read_ctx->sz;
}
int av1_lookahead_pop_sz(struct lookahead_ctx *ctx, COMPRESSOR_STAGE stage) {
struct read_ctx *read_ctx = NULL;
assert(ctx != NULL);
read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
return read_ctx->pop_sz;
}