blob: 77823b7f44f29336418f706afb8d6fd21331e3dc [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/common.h"
#include "av1/common/filter.h"
#include "av1/common/mvref_common.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
static INLINE void init_mv_cost_params(MV_COST_PARAMS *mv_cost_params,
const MvCosts *mv_costs,
int is_adaptive_mvd, const MV *ref_mv,
MvSubpelPrecision pb_mv_precision
#if CONFIG_IBC_BV_IMPROVEMENT
,
const int is_ibc_cost
#endif
) {
mv_cost_params->ref_mv = ref_mv;
mv_cost_params->full_ref_mv = get_fullmv_from_mv(ref_mv);
mv_cost_params->mv_cost_type = MV_COST_ENTROPY;
mv_cost_params->mv_costs = mv_costs;
mv_cost_params->pb_mv_precision = pb_mv_precision;
mv_cost_params->is_adaptive_mvd = is_adaptive_mvd;
#if CONFIG_IBC_BV_IMPROVEMENT
mv_cost_params->is_ibc_cost = is_ibc_cost;
#endif
}
static INLINE void init_ms_buffers(MSBuffers *ms_buffers, const MACROBLOCK *x) {
ms_buffers->ref = &x->e_mbd.plane[0].pre[0];
ms_buffers->src = &x->plane[0].src;
av1_set_ms_compound_refs(ms_buffers, NULL, NULL, 0, 0);
ms_buffers->wsrc = x->obmc_buffer.wsrc;
ms_buffers->obmc_mask = x->obmc_buffer.mask;
}
static AOM_INLINE SEARCH_METHODS
get_faster_search_method(SEARCH_METHODS search_method) {
// Note on search method's accuracy:
// 1. NSTEP
// 2. DIAMOND
// 3. BIGDIA \approx SQUARE
// 4. HEX.
// 5. FAST_HEX \approx FAST_DIAMOND
switch (search_method) {
case NSTEP: return DIAMOND;
case DIAMOND: return BIGDIA;
case BIGDIA: return HEX;
case SQUARE: return HEX;
case HEX: return FAST_HEX;
case FAST_HEX: return FAST_HEX;
case FAST_DIAMOND: return FAST_DIAMOND;
case FAST_BIGDIA: return FAST_BIGDIA;
default: assert(0 && "Invalid search method!"); return DIAMOND;
}
}
void av1_make_default_fullpel_ms_params(
FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct AV1_COMP *cpi,
const MACROBLOCK *x, BLOCK_SIZE bsize, const MV *ref_mv,
const MvSubpelPrecision pb_mv_precision,
#if CONFIG_IBC_BV_IMPROVEMENT
const int is_ibc_cost,
#endif
const search_site_config search_sites[NUM_DISTINCT_SEARCH_METHODS],
int fine_search_interval) {
const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf;
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_adaptive_mvd =
enable_adaptive_mvd_resolution(&cpi->common, mbmi);
ms_params->xd = xd;
// High level params
ms_params->bsize = bsize;
ms_params->vfp = &cpi->fn_ptr[bsize];
init_ms_buffers(&ms_params->ms_buffers, x);
SEARCH_METHODS search_method = mv_sf->search_method;
const int min_dim = AOMMIN(block_size_wide[bsize], block_size_high[bsize]);
if (mv_sf->use_bsize_dependent_search_method) {
if (min_dim >= 32) {
search_method = get_faster_search_method(search_method);
}
}
#if CONFIG_BLOCK_256
const int max_dim = AOMMAX(block_size_wide[bsize], block_size_high[bsize]);
if (cpi->sf.mv_sf.fast_motion_estimation_on_block_256 && max_dim >= 256) {
search_method = get_faster_search_method(search_method);
}
#endif // CONFIG_BLOCK_256
// MV search of flex MV precision is supported only for NSTEP or DIAMOND
// search
if (cpi->common.seq_params.enable_flex_mvres &&
(search_method != NSTEP && search_method != DIAMOND))
search_method = NSTEP;
av1_set_mv_search_method(ms_params, search_sites, search_method);
const int use_downsampled_sad =
mv_sf->use_downsampled_sad && block_size_high[bsize] >= 16;
if (use_downsampled_sad) {
ms_params->sdf = ms_params->vfp->sdsf;
ms_params->sdx4df = ms_params->vfp->sdsx4df;
} else {
ms_params->sdf = ms_params->vfp->sdf;
ms_params->sdx4df = ms_params->vfp->sdx4df;
}
ms_params->mesh_patterns[0] = mv_sf->mesh_patterns;
ms_params->mesh_patterns[1] = mv_sf->intrabc_mesh_patterns;
ms_params->force_mesh_thresh = mv_sf->exhaustive_searches_thresh;
ms_params->prune_mesh_search = mv_sf->prune_mesh_search;
ms_params->run_mesh_search = 0;
ms_params->fine_search_interval = fine_search_interval;
ms_params->is_intra_mode = 0;
ms_params->fast_obmc_search =
(pb_mv_precision == mbmi->max_mv_precision)
? mv_sf->obmc_full_pixel_search_level
: cpi->sf.flexmv_sf.low_prec_obmc_full_pixel_search_level;
ms_params->mv_limits = x->mv_limits;
if (is_tip_ref_frame(mbmi->ref_frame[0])) {
av1_set_tip_mv_search_range(&ms_params->mv_limits);
} else {
av1_set_mv_search_range(&ms_params->mv_limits, ref_mv, pb_mv_precision
);
}
// Mvcost params
init_mv_cost_params(&ms_params->mv_cost_params, &x->mv_costs, is_adaptive_mvd,
ref_mv, pb_mv_precision
#if CONFIG_IBC_BV_IMPROVEMENT
,
is_ibc_cost
#endif
);
}
void av1_make_default_subpel_ms_params(SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct AV1_COMP *cpi,
const MACROBLOCK *x, BLOCK_SIZE bsize,
const MV *ref_mv,
const MvSubpelPrecision pb_mv_precision,
const int *cost_list) {
const AV1_COMMON *cm = &cpi->common;
#if CONFIG_IBC_BV_IMPROVEMENT
const int is_ibc_cost = 0;
#endif
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
#if !BUGFIX_AMVD_AMVR
assert(
!(is_adaptive_mvd && (mbmi->pb_mv_precision != mbmi->max_mv_precision)));
#endif // BUGFIX_AMVD_AMVR
// High level params
ms_params->forced_stop = cpi->sf.mv_sf.subpel_force_stop;
ms_params->iters_per_step = cpi->sf.mv_sf.subpel_iters_per_step;
ms_params->cost_list = cond_cost_list_const(cpi, cost_list);
if (is_tip_ref_frame(mbmi->ref_frame[0])) {
av1_set_tip_subpel_mv_search_range(&ms_params->mv_limits, &x->mv_limits);
} else {
av1_set_subpel_mv_search_range(
&ms_params->mv_limits, &x->mv_limits, ref_mv, pb_mv_precision
);
}
// Mvcost params
init_mv_cost_params(&ms_params->mv_cost_params, &x->mv_costs, is_adaptive_mvd,
ref_mv, pb_mv_precision
#if CONFIG_IBC_BV_IMPROVEMENT
,
is_ibc_cost
#endif
);
// Subpel variance params
ms_params->var_params.vfp = &cpi->fn_ptr[bsize];
ms_params->var_params.subpel_search_type = cpi->sf.mv_sf.subpel_search_type;
#if CONFIG_BLOCK_256
if (cpi->sf.mv_sf.fast_motion_estimation_on_block_256 &&
AOMMAX(block_size_wide[bsize], block_size_high[bsize]) >= 256) {
ms_params->var_params.subpel_search_type =
AOMMIN(ms_params->var_params.subpel_search_type, USE_2_TAPS);
}
#endif // CONFIG_BLOCK_256
ms_params->var_params.w = block_size_wide[bsize];
ms_params->var_params.h = block_size_high[bsize];
// Ref and src buffers
MSBuffers *ms_buffers = &ms_params->var_params.ms_buffers;
init_ms_buffers(ms_buffers, x);
assert(ms_params->var_params.subpel_search_type &&
"Subpel type 2_TAPS_ORIG is no longer supported!");
}
static INLINE int get_offset_from_fullmv(const FULLPEL_MV *mv, int stride) {
return mv->row * stride + mv->col;
}
static INLINE const uint16_t *get_buf_from_fullmv(const struct buf_2d *buf,
const FULLPEL_MV *mv) {
return &buf->buf[get_offset_from_fullmv(mv, buf->stride)];
}
void av1_set_mv_search_range(FullMvLimits *mv_limits, const MV *mv,
MvSubpelPrecision pb_mv_precision
) {
// We have to make sure the generated mv_limits
// are compatible with target precision.
// prec_shift is the number of LSBs need to be 0 to make the mv/mv_limit
// compatible
const int prec_shift = (pb_mv_precision < MV_PRECISION_ONE_PEL)
? (MV_PRECISION_ONE_PEL - pb_mv_precision)
: 0;
const int max_full_mv = av1_lower_mv_limit(MAX_FULL_PEL_VAL, prec_shift);
// Producing the reference mv value to the target precision
FULLPEL_MV full_ref_mv = get_fullmv_from_mv(mv);
MV low_prec_mv = { GET_MV_SUBPEL(full_ref_mv.row),
GET_MV_SUBPEL(full_ref_mv.col) };
lower_mv_precision(&low_prec_mv, pb_mv_precision);
// Calculate the outermost full-pixel MVs which are inside the limits set by
// av1_set_subpel_mv_search_range().
//
// The subpel limits are simply mv->col +/- 8*MAX_FULL_PEL_VAL, and similar
// for mv->row. We can then divide by 8 to find the fullpel MV limits. But
// we have to be careful about the rounding. We want these bounds to be
// at least as tight as the subpel limits, which means that we must round
// the minimum values up and the maximum values down when dividing.
int col_min = ((low_prec_mv.col + 7) >> 3) - max_full_mv;
int row_min = ((low_prec_mv.row + 7) >> 3) - max_full_mv;
int col_max = (low_prec_mv.col >> 3) + max_full_mv;
int row_max = (low_prec_mv.row >> 3) + max_full_mv;
col_min = AOMMAX(col_min, (MV_LOW >> 3) + (1 << prec_shift));
row_min = AOMMAX(row_min, (MV_LOW >> 3) + (1 << prec_shift));
col_max = AOMMIN(col_max, (MV_UPP >> 3) - (1 << prec_shift));
row_max = AOMMIN(row_max, (MV_UPP >> 3) - (1 << prec_shift));
full_pel_lower_mv_precision_one_comp(&mv_limits->col_min, pb_mv_precision, 0);
full_pel_lower_mv_precision_one_comp(&mv_limits->row_min, pb_mv_precision, 0);
full_pel_lower_mv_precision_one_comp(&mv_limits->col_max, pb_mv_precision, 1);
full_pel_lower_mv_precision_one_comp(&mv_limits->row_max, pb_mv_precision, 1);
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
if (mv_limits->col_min < col_min) mv_limits->col_min = col_min;
if (mv_limits->col_max > col_max) mv_limits->col_max = col_max;
if (mv_limits->row_min < row_min) mv_limits->row_min = row_min;
if (mv_limits->row_max > row_max) mv_limits->row_max = row_max;
mv_limits->col_max = AOMMAX(mv_limits->col_min, mv_limits->col_max);
mv_limits->row_max = AOMMAX(mv_limits->row_min, mv_limits->row_max);
}
#if CONFIG_OPFL_MV_SEARCH
// Obtain number of iterations for optical flow based MV search.
int get_opfl_mv_iterations(const AV1_COMP *cpi, const MB_MODE_INFO *mbmi) {
// Allowed only for screen content
const AV1_COMMON *cm = &cpi->common;
if (!cm->features.allow_screen_content_tools) return 0;
if (mbmi->ref_frame[0] == NONE_FRAME) return 0;
// Optical flow MV search is allowed for NEWMV and WARPMV only, since it
// shows little improvements in compound modes.
if (mbmi->mode == NEWMV
#if CONFIG_EXTENDED_WARP_PREDICTION
|| mbmi->mode == WARPMV
#endif // CONFIG_EXTENDED_WARP_PREDICTION
)
return 3;
return 0;
}
// Derive a MVD based on optical flow method. In the two sided optical flow
// refinement implemented in av1_get_optflow_based_mv_highbd, two predicted
// blocks (P0, P1) are used to solve a MV delta, which is scaled based on d0
// and d1 to derive MVs of src relative to P0 and P1. Alternatively, this
// routine is a one sided optical flow solver, which uses the source block (src)
// and one predicted block (P0) to derives an MV delta, which is by itself
// relative to P0.
int opfl_refine_fullpel_mv_one_sided(
const AV1_COMMON *cm, MACROBLOCKD *xd,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, MB_MODE_INFO *mbmi,
const FULLPEL_MV *const smv, int_mv *mv_refined, BLOCK_SIZE bsize) {
(void)cm;
(void)xd;
(void)mbmi;
int bw = block_size_wide[bsize];
int bh = block_size_high[bsize];
const struct buf_2d *const pred = ms_params->ms_buffers.ref;
const struct buf_2d *const src = ms_params->ms_buffers.src;
uint16_t *pred_ptr = &pred->buf[smv->row * pred->stride + smv->col];
#if OMVS_EARLY_TERM
// Early termination based on SAD
// int sad = ms_params->vfp->sdf(dst0, bw, dst1, bw);
int sad = ms_params->vfp->sdf(src->buf, src->stride, pred_ptr, pred->stride);
if (sad < bw * bh * OMVS_SAD_THR) return 1;
#endif
int vx0, vx1, vy0, vy1;
int16_t *gx0, *gy0;
uint16_t *dst0 = NULL, *dst1 = NULL;
gx0 = (int16_t *)aom_memalign(16, bw * bh * sizeof(int16_t));
gy0 = (int16_t *)aom_memalign(16, bw * bh * sizeof(int16_t));
dst0 = (uint16_t *)aom_memalign(16, bw * bh * sizeof(uint16_t));
dst1 = (uint16_t *)aom_memalign(16, bw * bh * sizeof(uint16_t));
// Obrain Pred as dst0 and Cur as dst1
aom_highbd_convolve_copy(pred_ptr, pred->stride, dst0, bw, bw, bh);
aom_highbd_convolve_copy(src->buf, src->stride, dst1, bw, bw, bh);
int grad_prec_bits;
int16_t *tmp0 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
int16_t *tmp1 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
// tmp0 = (P0 + Cur) / 2, tmp1 = P0 - Cur
if (bw < 8)
av1_copy_pred_array_highbd_c(dst0, dst1, tmp0, tmp1, bw, bh, 1, -1, 1);
else
av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, 1, -1, 1);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0);
int bits = 3 + get_opfl_mv_upshift_bits(mbmi);
#if OMVS_AVG_POOLING
int n = AOMMIN(8, AOMMIN(bw, bh));
avg_pooling_pdiff_gradients(tmp1, bw, gx0, gy0, bw, bw, bh, n);
// The SIMD version performs refinement for every 4x8 or 8x8 region. It is
// only applicable when n == 8 in optical flow based MV search
if (n == 8)
av1_opfl_mv_refinement_nxn_interp_grad(tmp1, bw, gx0, gy0, bw, n, n, n, 1,
0, grad_prec_bits, bits, &vx0, &vy0,
&vx1, &vy1);
else
av1_opfl_mv_refinement_interp_grad(tmp1, bw, gx0, gy0, bw, n, n, 1, 0,
grad_prec_bits, bits, &vx0, &vy0, &vx1,
&vy1);
#else
av1_opfl_mv_refinement_interp_grad(tmp1, bw, gx0, gy0, bw, bw, bh, 1, 0,
grad_prec_bits, bits, &vx0, &vy0, &vx1,
&vy1);
#endif
aom_free(tmp0);
aom_free(tmp1);
aom_free(dst0);
aom_free(dst1);
aom_free(gx0);
aom_free(gy0);
mv_refined[0].as_mv.row += vy0;
mv_refined[0].as_mv.col += vx0;
return 0;
}
#endif // CONFIG_OPFL_MV_SEARCH
void av1_set_tip_mv_search_range(FullMvLimits *mv_limits) {
const int tmvp_mv = (TIP_MV_SEARCH_RANGE << TMVP_MI_SZ_LOG2);
const int col_min = -tmvp_mv;
const int row_min = -tmvp_mv;
const int col_max = tmvp_mv;
const int row_max = tmvp_mv;
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
if (mv_limits->col_min < col_min) mv_limits->col_min = col_min;
if (mv_limits->col_max > col_max) mv_limits->col_max = col_max;
if (mv_limits->row_min < row_min) mv_limits->row_min = row_min;
if (mv_limits->row_max > row_max) mv_limits->row_max = row_max;
}
int av1_init_search_range(int size) {
int sr = 0;
// Minimum search size no matter what the passed in value.
size = AOMMAX(16, size);
while ((size << sr) < MAX_FULL_PEL_VAL) sr++;
sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2);
return sr;
}
// ============================================================================
// Cost of motion vectors
// ============================================================================
// TODO(any): Adaptively adjust the regularization strength based on image size
// and motion activity instead of using hard-coded values. It seems like we
// roughly half the lambda for each increase in resolution
// These are multiplier used to perform regularization in motion compensation
// when x->mv_cost_type is set to MV_COST_L1.
// LOWRES
#define SSE_LAMBDA_LOWRES 2 // Used by mv_cost_err_fn
#define SAD_LAMBDA_LOWRES 32 // Used by mvsad_err_cost during full pixel search
// MIDRES
#define SSE_LAMBDA_MIDRES 0 // Used by mv_cost_err_fn
#define SAD_LAMBDA_MIDRES 15 // Used by mvsad_err_cost during full pixel search
// HDRES
#define SSE_LAMBDA_HDRES 1 // Used by mv_cost_err_fn
#define SAD_LAMBDA_HDRES 8 // Used by mvsad_err_cost during full pixel search
// Returns the rate of encoding the current motion vector based on the
// joint_cost and comp_cost. joint_costs covers the cost of transmitting
// JOINT_MV, and comp_cost covers the cost of transmitting the actual motion
// vector.
static INLINE int mv_cost(const MV *mv, const int *joint_cost,
const int *const comp_cost[2]) {
return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] +
comp_cost[1][mv->col];
}
#define CONVERT_TO_CONST_MVCOST(ptr) ((const int *const *)(ptr))
static INLINE int get_mv_cost_with_precision(
const MV mv, const MV ref_mv, const MvSubpelPrecision pb_mv_precision,
const int is_adaptive_mvd,
#if CONFIG_IBC_BV_IMPROVEMENT
const int is_ibc_cost,
#endif
const MvCosts *mv_costs, int weight, int round_bits) {
const int *mvjcost =
is_adaptive_mvd
? mv_costs->amvd_nmv_joint_cost
#if CONFIG_IBC_BV_IMPROVEMENT
: (is_ibc_cost ? mv_costs->dv_joint_cost : mv_costs->nmv_joint_cost);
#else
: mv_costs->nmv_joint_cost;
#endif
const int *const *mvcost =
is_adaptive_mvd
? CONVERT_TO_CONST_MVCOST(mv_costs->amvd_nmv_cost)
#if CONFIG_IBC_BV_IMPROVEMENT
: (is_ibc_cost ? CONVERT_TO_CONST_MVCOST(mv_costs->dv_nmv_cost)
: CONVERT_TO_CONST_MVCOST(
mv_costs->nmv_costs[pb_mv_precision]));
#else
: CONVERT_TO_CONST_MVCOST(mv_costs->nmv_costs[pb_mv_precision]);
#endif
MV low_prec_ref_mv = ref_mv;
#if BUGFIX_AMVD_AMVR
if (!is_adaptive_mvd)
#endif
#if CONFIG_C071_SUBBLK_WARPMV
if (pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&low_prec_ref_mv, pb_mv_precision);
const MV diff = { mv.row - low_prec_ref_mv.row,
mv.col - low_prec_ref_mv.col };
#if CONFIG_C071_SUBBLK_WARPMV
assert(is_this_mv_precision_compliant(diff, pb_mv_precision));
#endif // CONFIG_C071_SUBBLK_WARPMV
if (mvcost) {
return (int)ROUND_POWER_OF_TWO_64(
(int64_t)mv_cost(&diff, mvjcost, mvcost) * weight, round_bits);
}
return 0;
}
static INLINE int get_intrabc_mv_cost_with_precision(
const MV diff, const IntraBCMvCosts *dv_costs, int weight, int round_bits) {
const int *dvjcost = dv_costs->joint_mv;
const int *const *dvcost = CONVERT_TO_CONST_MVCOST(dv_costs->dv_costs);
if (dv_costs) {
return (int)ROUND_POWER_OF_TWO_64(
(int64_t)mv_cost(&diff, dvjcost, dvcost) * weight, round_bits);
}
return 0;
}
// Returns the cost of encoding the motion vector diff := *mv - *ref. The cost
// is defined as the rate required to encode diff * weight, rounded to the
// nearest 2 ** 7.
// This is NOT used during motion compensation.
int av1_mv_bit_cost(const MV *mv, const MV *ref_mv,
const MvSubpelPrecision pb_mv_precision,
const MvCosts *mv_costs, int weight,
const int is_adaptive_mvd) {
#if CONFIG_IBC_BV_IMPROVEMENT
// For ibc block this function should not be called
const int is_ibc_cost = 0;
#endif
return get_mv_cost_with_precision(*mv, *ref_mv, pb_mv_precision,
is_adaptive_mvd,
#if CONFIG_IBC_BV_IMPROVEMENT
is_ibc_cost,
#endif
mv_costs, weight, 7);
}
int av1_intrabc_mv_bit_cost(const MV *mv, const MV *ref_mv,
const IntraBCMvCosts *mv_costs, int weight) {
const MV diff = { mv->row - ref_mv->row, mv->col - ref_mv->col };
return get_intrabc_mv_cost_with_precision(diff, mv_costs, weight, 7);
}
// Returns the cost of using the current mv during the motion search. This is
// used when var is used as the error metric.
#define PIXEL_TRANSFORM_ERROR_SCALE 4
static INLINE int mv_err_cost(const MV mv,
const MV_COST_PARAMS *mv_cost_params) {
const MV ref_mv = *mv_cost_params->ref_mv;
const MvSubpelPrecision pb_mv_precision = mv_cost_params->pb_mv_precision;
const MV_COST_TYPE mv_cost_type = mv_cost_params->mv_cost_type;
const MvCosts *mv_costs = mv_cost_params->mv_costs;
MV low_prec_ref_mv = ref_mv;
#if BUGFIX_AMVD_AMVR
if (!mv_cost_params->is_adaptive_mvd)
#endif
#if CONFIG_C071_SUBBLK_WARPMV
if (pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&low_prec_ref_mv, pb_mv_precision);
const MV diff = { mv.row - low_prec_ref_mv.row,
mv.col - low_prec_ref_mv.col };
#if CONFIG_C071_SUBBLK_WARPMV
assert(is_this_mv_precision_compliant(diff, pb_mv_precision));
#endif // CONFIG_C071_SUBBLK_WARPMV
const MV abs_diff = { abs(diff.row), abs(diff.col) };
switch (mv_cost_type) {
case MV_COST_ENTROPY:
return get_mv_cost_with_precision(
mv, ref_mv, mv_cost_params->pb_mv_precision,
mv_cost_params->is_adaptive_mvd,
#if CONFIG_IBC_BV_IMPROVEMENT
mv_cost_params->is_ibc_cost,
#endif
mv_costs, mv_costs->errorperbit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
case MV_COST_L1_LOWRES:
return (SSE_LAMBDA_LOWRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_MIDRES:
return (SSE_LAMBDA_MIDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_HDRES:
return (SSE_LAMBDA_HDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_NONE: return 0;
default: assert(0 && "Invalid rd_cost_type"); return 0;
}
}
// Returns the cost of using the current mv during the motion search. This is
// only used during full pixel motion search when sad is used as the error
// metric
static INLINE int mvsad_err_cost(const FULLPEL_MV mv,
const MV_COST_PARAMS *mv_cost_params) {
MV this_mv = { GET_MV_SUBPEL(mv.row), GET_MV_SUBPEL(mv.col) };
const MvSubpelPrecision pb_mv_precision = mv_cost_params->pb_mv_precision;
MV ref_mv = { GET_MV_SUBPEL(mv_cost_params->full_ref_mv.row),
GET_MV_SUBPEL(mv_cost_params->full_ref_mv.col) };
#if BUGFIX_AMVD_AMVR
if (!mv_cost_params->is_adaptive_mvd)
#endif
lower_mv_precision(&ref_mv, pb_mv_precision);
const MV diff = { (this_mv.row - ref_mv.row), (this_mv.col - ref_mv.col) };
const MV abs_diff = { abs(diff.row), abs(diff.col) };
const MvCosts *mv_costs = mv_cost_params->mv_costs;
#if CONFIG_IBC_BV_IMPROVEMENT
const int *mvjcost =
mv_cost_params->is_ibc_cost
? mv_costs->dv_joint_cost
: (mv_cost_params->is_adaptive_mvd ? mv_costs->amvd_nmv_joint_cost
: mv_costs->nmv_joint_cost);
const int *const *mvcost =
mv_cost_params->is_ibc_cost
? CONVERT_TO_CONST_MVCOST(mv_costs->dv_nmv_cost)
: (mv_cost_params->is_adaptive_mvd
? CONVERT_TO_CONST_MVCOST(mv_costs->amvd_nmv_cost)
: CONVERT_TO_CONST_MVCOST(
mv_costs->nmv_costs[pb_mv_precision]));
#else
const int *mvjcost = mv_cost_params->is_adaptive_mvd
? mv_costs->amvd_nmv_joint_cost
: mv_costs->nmv_joint_cost;
const int *const *mvcost =
mv_cost_params->is_adaptive_mvd
? CONVERT_TO_CONST_MVCOST(mv_costs->amvd_nmv_cost)
: CONVERT_TO_CONST_MVCOST(mv_costs->nmv_costs[pb_mv_precision]);
#endif
const int sad_per_bit = mv_costs->sadperbit;
const MV_COST_TYPE mv_cost_type = mv_cost_params->mv_cost_type;
switch (mv_cost_type) {
case MV_COST_ENTROPY:
return ROUND_POWER_OF_TWO((unsigned)mv_cost(&diff, mvjcost, mvcost
) *
sad_per_bit,
AV1_PROB_COST_SHIFT);
case MV_COST_L1_LOWRES:
return (SAD_LAMBDA_LOWRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_MIDRES:
return (SAD_LAMBDA_MIDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_HDRES:
return (SAD_LAMBDA_HDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_NONE: return 0;
default: assert(0 && "Invalid rd_cost_type"); return 0;
}
}
// =============================================================================
// Fullpixel Motion Search: Translational
// =============================================================================
#define MAX_PATTERN_SCALES 11
#define MAX_PATTERN_CANDIDATES 8 // max number of candidates per scale
#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
void av1_init_dsmotion_compensation(search_site_config *cfg, int stride) {
int num_search_steps = 0;
int stage_index = MAX_MVSEARCH_STEPS - 1;
cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0;
cfg->site[stage_index][0].offset = 0;
cfg->stride = stride;
for (int radius = MAX_FIRST_STEP; radius > 0; radius /= 2) {
int num_search_pts = 8;
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 }, { -radius, 0 }, { radius, 0 },
{ 0, -radius }, { 0, radius }, { -radius, -radius },
{ radius, radius }, { -radius, radius }, { radius, -radius },
};
int i;
for (i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
--stage_index;
++num_search_steps;
}
cfg->num_search_steps = num_search_steps;
}
void av1_init_motion_fpf(search_site_config *cfg, int stride) {
int num_search_steps = 0;
int stage_index = MAX_MVSEARCH_STEPS - 1;
cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0;
cfg->site[stage_index][0].offset = 0;
cfg->stride = stride;
for (int radius = MAX_FIRST_STEP; radius > 0; radius /= 2) {
// Generate offsets for 8 search sites per step.
int tan_radius = AOMMAX((int)(0.41 * radius), 1);
int num_search_pts = 12;
if (radius == 1) num_search_pts = 8;
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 },
{ -radius, 0 },
{ radius, 0 },
{ 0, -radius },
{ 0, radius },
{ -radius, -tan_radius },
{ radius, tan_radius },
{ -tan_radius, radius },
{ tan_radius, -radius },
{ -radius, tan_radius },
{ radius, -tan_radius },
{ tan_radius, radius },
{ -tan_radius, -radius },
};
int i;
for (i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
--stage_index;
++num_search_steps;
}
cfg->num_search_steps = num_search_steps;
}
// Search site initialization for NSTEP search method.
void av1_init_motion_compensation_nstep(search_site_config *cfg, int stride) {
int num_search_steps = 0;
int stage_index = 0;
cfg->stride = stride;
int radius = 1;
#if CONFIG_MV_SEARCH_RANGE
for (stage_index = 0; stage_index < 16; ++stage_index) {
#else
for (stage_index = 0; stage_index < 15; ++stage_index) {
#endif // CONFIG_MV_SEARCH_RANGE
int tan_radius = AOMMAX((int)(0.41 * radius), 1);
int num_search_pts = 12;
if (radius <= 5) {
tan_radius = radius;
num_search_pts = 8;
}
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 },
{ -radius, 0 },
{ radius, 0 },
{ 0, -radius },
{ 0, radius },
{ -radius, -tan_radius },
{ radius, tan_radius },
{ -tan_radius, radius },
{ tan_radius, -radius },
{ -radius, tan_radius },
{ radius, -tan_radius },
{ tan_radius, radius },
{ -tan_radius, -radius },
};
for (int i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
++num_search_steps;
#if !CONFIG_MV_SEARCH_RANGE
if (stage_index < 12)
#endif // CONFIG_MV_SEARCH_RANGE
radius = (int)AOMMAX((radius * 1.5 + 0.5), radius + 1);
}
cfg->num_search_steps = num_search_steps;
}
// Search site initialization for BIGDIA / FAST_BIGDIA / FAST_DIAMOND
// search methods.
void av1_init_motion_compensation_bigdia(search_site_config *cfg, int stride) {
cfg->stride = stride;
// First scale has 4-closest points, the rest have 8 points in diamond
// shape at increasing scales
static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// BIGDIA search method candidates.
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const FULLPEL_MV
site_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 } },
{ { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 },
{ -1, 1 }, { -2, 0 } },
{ { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 },
{ -2, 2 }, { -4, 0 } },
{ { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 },
{ -4, 4 }, { -8, 0 } },
{ { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 },
{ -8, 8 }, { -16, 0 } },
{ { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 },
{ 0, 32 }, { -16, 16 }, { -32, 0 } },
{ { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 },
{ 0, 64 }, { -32, 32 }, { -64, 0 } },
{ { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 },
{ 0, 128 }, { -64, 64 }, { -128, 0 } },
{ { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 },
{ 128, 128 }, { 0, 256 }, { -128, 128 }, { -256, 0 } },
{ { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 },
{ 256, 256 }, { 0, 512 }, { -256, 256 }, { -512, 0 } },
{ { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 },
{ 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = bigdia_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = site_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
// Search site initialization for SQUARE search method.
void av1_init_motion_compensation_square(search_site_config *cfg, int stride) {
cfg->stride = stride;
// All scales have 8 closest points in square shape.
static const int square_num_candidates[MAX_PATTERN_SCALES] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Square search method candidates.
// Note that the largest candidate step at each scale is 2^scale.
/* clang-format off */
static const FULLPEL_MV
square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 },
{ -2, 2 }, { -2, 0 } },
{ { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 },
{ -4, 4 }, { -4, 0 } },
{ { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 },
{ -8, 8 }, { -8, 0 } },
{ { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 },
{ 0, 16 }, { -16, 16 }, { -16, 0 } },
{ { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 },
{ 0, 32 }, { -32, 32 }, { -32, 0 } },
{ { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 },
{ 0, 64 }, { -64, 64 }, { -64, 0 } },
{ { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 },
{ 128, 128 }, { 0, 128 }, { -128, 128 }, { -128, 0 } },
{ { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 },
{ 256, 256 }, { 0, 256 }, { -256, 256 }, { -256, 0 } },
{ { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 },
{ 512, 512 }, { 0, 512 }, { -512, 512 }, { -512, 0 } },
{ { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 },
{ 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = square_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = square_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
// Search site initialization for HEX / FAST_HEX search methods.
void av1_init_motion_compensation_hex(search_site_config *cfg, int stride) {
cfg->stride = stride;
// First scale has 8-closest points, the rest have 6 points in hex shape
// at increasing scales.
static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6 };
// Note that the largest candidate step at each scale is 2^scale.
/* clang-format off */
static const FULLPEL_MV
hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } },
{ { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } },
{ { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } },
{ { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 },
{ -8, 16 }, { -16, 0 } },
{ { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 },
{ -32, 0 } },
{ { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 },
{ -64, 0 } },
{ { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 },
{ -64, 128 }, { -128, 0 } },
{ { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 },
{ -128, 256 }, { -256, 0 } },
{ { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 },
{ -256, 512 }, { -512, 0 } },
{ { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 },
{ -512, 1024 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = hex_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < hex_num_candidates[i]; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = hex_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
// Checks whether the mv is within range of the mv_limits
static INLINE int check_bounds(const FullMvLimits *mv_limits, int row, int col,
int range) {
return ((row - range) >= mv_limits->row_min) &
((row + range) <= mv_limits->row_max) &
((col - range) >= mv_limits->col_min) &
((col + range) <= mv_limits->col_max);
}
#if CONFIG_IBC_BV_IMPROVEMENT
int av1_get_mv_err_cost(const MV *mv, const MV_COST_PARAMS *mv_cost_params) {
return mv_err_cost(*mv, mv_cost_params);
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
static INLINE int get_mvpred_var_cost(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV sub_this_mv = get_mv_from_fullmv(this_mv);
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
unsigned unused;
int bestsme;
bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv),
ref_stride, &unused);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*ms_params->mv_cost_params.ref_mv, &sub_mv_offset,
ms_params->mv_cost_params.pb_mv_precision);
if (ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_HALF_PEL) {
sub_this_mv.col += sub_mv_offset.col;
sub_this_mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
bestsme += mv_err_cost(sub_this_mv, &ms_params->mv_cost_params);
return bestsme;
}
static INLINE int get_mvpred_sad(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct buf_2d *const src,
const uint16_t *const ref_address,
const int ref_stride) {
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride);
}
static INLINE int get_mvpred_compound_var_cost(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
const uint8_t *mask = ms_params->ms_buffers.mask;
const uint16_t *second_pred = ms_params->ms_buffers.second_pred;
const int mask_stride = ms_params->ms_buffers.mask_stride;
const int invert_mask = ms_params->ms_buffers.inv_mask;
unsigned unused;
int bestsme;
if (mask) {
bestsme = vfp->msvf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0,
src_buf, src_stride, second_pred, mask, mask_stride,
invert_mask, &unused);
} else if (second_pred) {
bestsme = vfp->svaf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0,
src_buf, src_stride, &unused, second_pred);
} else {
bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv),
ref_stride, &unused);
}
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV sub_this_mv = get_mv_from_fullmv(this_mv);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*ms_params->mv_cost_params.ref_mv, &sub_mv_offset,
ms_params->mv_cost_params.pb_mv_precision);
if (ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_HALF_PEL) {
sub_this_mv.col += sub_mv_offset.col;
sub_this_mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
bestsme += mv_err_cost(sub_this_mv, &ms_params->mv_cost_params);
return bestsme;
}
// Set weighting factor for two reference frames
static INLINE void set_cmp_weight(const MB_MODE_INFO *mi, int invert_mask,
DIST_WTD_COMP_PARAMS *jcp_param) {
int weight = get_cwp_idx(mi);
weight = invert_mask ? (1 << CWP_WEIGHT_BITS) - weight : weight;
jcp_param->fwd_offset = weight;
jcp_param->bck_offset = (1 << CWP_WEIGHT_BITS) - weight;
}
static INLINE int get_mvpred_compound_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct buf_2d *const src, const uint16_t *const ref_address,
const int ref_stride) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
const uint8_t *mask = ms_params->ms_buffers.mask;
const uint16_t *second_pred = ms_params->ms_buffers.second_pred;
const int mask_stride = ms_params->ms_buffers.mask_stride;
const int invert_mask = ms_params->ms_buffers.inv_mask;
if (mask) {
return vfp->msdf(src_buf, src_stride, ref_address, ref_stride, second_pred,
mask, mask_stride, invert_mask);
} else if (second_pred) {
const MB_MODE_INFO *mi = ms_params->xd->mi[0];
if (get_cwp_idx(mi) != CWP_EQUAL) {
DIST_WTD_COMP_PARAMS jcp_param;
set_cmp_weight(mi, invert_mask, &jcp_param);
return vfp->jsdaf(src_buf, src_stride, ref_address, ref_stride,
second_pred, &jcp_param);
}
return vfp->sdaf(src_buf, src_stride, ref_address, ref_stride, second_pred);
} else {
return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride);
}
}
// Calculates and returns a sad+mvcost list around an integer best pel during
// fullpixel motion search. The resulting list can be used to speed up subpel
// motion search later.
#define USE_SAD_COSTLIST 1
// calc_int_cost_list uses var to populate the costlist, which is more accurate
// than sad but slightly slower.
static AOM_FORCE_INLINE void calc_int_cost_list(
const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int *cost_list) {
static const FULLPEL_MV neighbors[4] = {
{ 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }
};
const int br = best_mv.row;
const int bc = best_mv.col;
// costlist is not supported for the 2/4 MV precision
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
cost_list[0] = get_mvpred_var_cost(ms_params, &best_mv);
if (check_bounds(&ms_params->mv_limits, br, bc, 1)) {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV neighbor_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
cost_list[i + 1] = get_mvpred_var_cost(ms_params, &neighbor_mv);
}
} else {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV neighbor_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, neighbor_mv,
ms_params->mv_cost_params.pb_mv_precision
)) {
cost_list[i + 1] = INT_MAX;
} else {
cost_list[i + 1] = get_mvpred_var_cost(ms_params, &neighbor_mv);
}
}
}
}
// calc_int_sad_list uses sad to populate the costlist, which is less accurate
// than var but faster.
static AOM_FORCE_INLINE void calc_int_sad_list(
const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int *cost_list, int costlist_has_sad) {
static const FULLPEL_MV neighbors[4] = {
{ 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }
};
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
const int br = best_mv.row;
const int bc = best_mv.col;
assert(av1_is_fullmv_in_range(&ms_params->mv_limits, best_mv,
ms_params->mv_cost_params.pb_mv_precision));
// costlist is not supported for the 2/4 MV precision
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
// Refresh the costlist it does not contain valid sad
if (!costlist_has_sad) {
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(best_mv.row),
(int16_t)GET_MV_SUBPEL(best_mv.col) };
int flag = av1_is_dv_valid(sub_mv, ms_params->cm, ms_params->xd,
ms_params->mi_row, ms_params->mi_col,
ms_params->bsize, ms_params->mib_size_log2);
if (flag) {
cost_list[0] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &best_mv), ref_stride);
} else {
cost_list[0] = INT_MAX;
}
} else {
cost_list[0] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &best_mv), ref_stride);
}
#else
cost_list[0] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &best_mv), ref_stride);
#endif // CONFIG_IBC_SR_EXT
if (check_bounds(&ms_params->mv_limits, br, bc, 1)) {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV this_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(this_mv.row),
(int16_t)GET_MV_SUBPEL(this_mv.col) };
int flag = av1_is_dv_valid(
sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize, ms_params->mib_size_log2);
if (flag) {
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
} else {
cost_list[i + 1] = INT_MAX;
}
} else {
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
}
#else
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
#endif // CONFIG_IBC_SR_EXT
}
} else {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV this_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
if (!av1_is_fullmv_in_range(
&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision)) {
cost_list[i + 1] = INT_MAX;
} else {
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(this_mv.row),
(int16_t)GET_MV_SUBPEL(this_mv.col) };
int flag = av1_is_dv_valid(
sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize, ms_params->mib_size_log2);
if (flag) {
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv),
ref_stride);
} else {
cost_list[i + 1] = INT_MAX;
}
} else {
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
}
#else
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
#endif // CONFIG_IBC_SR_EXT
}
}
}
}
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
cost_list[0] += mvsad_err_cost(best_mv, mv_cost_params);
for (int idx = 0; idx < 4; idx++) {
if (cost_list[idx + 1] != INT_MAX) {
const FULLPEL_MV this_mv = { br + neighbors[idx].row,
bc + neighbors[idx].col };
cost_list[idx + 1] += mvsad_err_cost(this_mv, mv_cost_params);
}
}
}
// Computes motion vector cost and adds to the sad cost.
// Then updates the best sad and motion vectors.
// Inputs:
// this_sad: the sad to be evaluated.
// mv: the current motion vector.
// mv_cost_params: a structure containing information to compute mv cost.
// best_sad: the current best sad.
// raw_best_sad (optional): the current best sad without calculating mv cost.
// best_mv: the current best motion vector.
// second_best_mv (optional): the second best motion vector up to now.
// Modifies:
// best_sad, raw_best_sad, best_mv, second_best_mv
// If the current sad is lower than the current best sad.
// Returns:
// Whether the input sad (mv) is better than the current best.
static int update_mvs_and_sad(const unsigned int this_sad, const FULLPEL_MV *mv,
const MV_COST_PARAMS *mv_cost_params,
unsigned int *best_sad,
unsigned int *raw_best_sad, FULLPEL_MV *best_mv,
FULLPEL_MV *second_best_mv) {
if (this_sad >= *best_sad) return 0;
// Add the motion vector cost.
const unsigned int sad = this_sad + mvsad_err_cost(*mv, mv_cost_params);
if (sad < *best_sad) {
if (raw_best_sad) *raw_best_sad = this_sad;
*best_sad = sad;
if (second_best_mv) *second_best_mv = *best_mv;
*best_mv = *mv;
return 1;
}
return 0;
}
// Calculate sad4 and update the bestmv information
// in FAST_DIAMOND search method.
static void calc_sad4_update_bestmv(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
FULLPEL_MV *temp_best_mv, unsigned int *bestsad, unsigned int *raw_bestsad,
int search_step, int *best_site, int cand_start) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
uint16_t const *block_offset[4];
unsigned int sads[4];
const uint16_t *best_address;
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
best_address = get_buf_from_fullmv(ref, temp_best_mv);
// Loop over number of candidates.
for (int j = 0; j < 4; j++)
block_offset[j] = site[cand_start + j].offset + best_address;
// 4-point sad calculation.
ms_params->sdx4df(src_buf, src_stride, block_offset, ref->stride, sads);
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
for (int j = 0; j < 4; j++) {
const FULLPEL_MV this_mv = {
temp_best_mv->row + site[cand_start + j].mv.row,
temp_best_mv->col + site[cand_start + j].mv.col
};
const int found_better_mv = update_mvs_and_sad(
sads[j], &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = cand_start + j;
}
}
// Calculate sad and update the bestmv information
// in FAST_DIAMOND search method.
static void calc_sad_update_bestmv(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
FULLPEL_MV *temp_best_mv, unsigned int *bestsad, unsigned int *raw_bestsad,
int search_step, int *best_site, const int num_candidates, int cand_start) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
// Loop over number of candidates.
for (int i = cand_start; i < num_candidates; i++) {
const FULLPEL_MV this_mv = { temp_best_mv->row + site[i].mv.row,
temp_best_mv->col + site[i].mv.col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision))
continue;
int thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref->stride);
const int found_better_mv = update_mvs_and_sad(
thissad, &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = i;
}
}
// Generic pattern search function that searches over multiple scales.
// Each scale can have a different number of candidates and shape of
// candidates as indicated in the num_candidates and candidates arrays
// passed into this function
static int pattern_search(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
static const int search_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, s, t;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site_config *search_sites = ms_params->search_sites;
const int *num_candidates = search_sites->searches_per_step;
const int ref_stride = ref->stride;
const int last_is_4 = num_candidates[0] == 4;
int br, bc;
unsigned int bestsad = UINT_MAX, raw_bestsad = UINT_MAX;
int thissad;
int k = -1;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
search_step = AOMMIN(search_step, MAX_MVSEARCH_STEPS - 1);
assert(search_step >= 0);
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
int best_init_s = search_steps[search_step];
// adjust ref_mv to make sure it is within MV range
clamp_fullmv(&start_mv, &ms_params->mv_limits);
br = start_mv.row;
bc = start_mv.col;
if (cost_list != NULL) {
cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
INT_MAX;
}
int costlist_has_sad = 0;
// Work out the start point for the search
raw_bestsad = get_mvpred_sad(ms_params, src,
get_buf_from_fullmv(ref, &start_mv), ref_stride);
bestsad = raw_bestsad + mvsad_err_cost(start_mv, mv_cost_params);
// Search all possible scales up to the search param around the center point
// pick the scale of the point that is best as the starting scale of
// further steps around it.
if (do_init_search) {
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
int best_site = -1;
FULLPEL_MV temp_best_mv;
temp_best_mv.row = br;
temp_best_mv.col = bc;
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << t)) {
// Call 4-point sad for multiples of 4 candidates.
const int no_of_4_cand_loops = num_candidates[t] >> 2;
for (i = 0; i < no_of_4_cand_loops; i++) {
calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, t,
&best_site, i * 4);
}
// Rest of the candidates
const int remaining_cand = num_candidates[t] % 4;
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, t,
&best_site, remaining_cand,
no_of_4_cand_loops * 4);
} else {
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, t,
&best_site, num_candidates[t], 0);
}
if (best_site == -1) {
continue;
} else {
best_init_s = t;
k = best_site;
}
}
if (best_init_s != -1) {
br += search_sites->site[best_init_s][k].mv.row;
bc += search_sites->site[best_init_s][k].mv.col;
}
}
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
const int last_s = (last_is_4 && cost_list != NULL);
int best_site = -1;
s = best_init_s;
for (; s >= last_s; s--) {
// No need to search all points the 1st time if initial search was used
if (!do_init_search || s != best_init_s) {
FULLPEL_MV temp_best_mv;
temp_best_mv.row = br;
temp_best_mv.col = bc;
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
// Call 4-point sad for multiples of 4 candidates.
const int no_of_4_cand_loops = num_candidates[s] >> 2;
for (i = 0; i < no_of_4_cand_loops; i++) {
calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, s,
&best_site, i * 4);
}
// Rest of the candidates
const int remaining_cand = num_candidates[s] % 4;
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, s,
&best_site, remaining_cand,
no_of_4_cand_loops * 4);
} else {
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv,
&temp_best_mv, &bestsad, &raw_bestsad, s,
&best_site, num_candidates[s], 0);
}
if (best_site == -1) {
continue;
} else {
br += search_sites->site[s][best_site].mv.row;
bc += search_sites->site[s][best_site].mv.col;
k = best_site;
}
}
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const FULLPEL_MV this_mv = {
br + search_sites->site[s][next_chkpts_indices[i]].mv.row,
bc + search_sites->site[s][next_chkpts_indices[i]].mv.col
};
thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const FULLPEL_MV this_mv = {
br + search_sites->site[s][next_chkpts_indices[i]].mv.row,
bc + search_sites->site[s][next_chkpts_indices[i]].mv.col
};
if (!av1_is_fullmv_in_range(
&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision))
continue;
thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += search_sites->site[s][k].mv.row;
bc += search_sites->site[s][k].mv.col;
}
} while (best_site != -1);
}
// Note: If we enter the if below, then cost_list must be non-NULL.
if (s == 0) {
cost_list[0] = raw_bestsad;
costlist_has_sad = 1;
if (!do_init_search || s != best_init_s) {
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const FULLPEL_MV this_mv = { br + search_sites->site[s][i].mv.row,
bc + search_sites->site[s][i].mv.col };
cost_list[i + 1] = thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const FULLPEL_MV this_mv = { br + search_sites->site[s][i].mv.row,
bc + search_sites->site[s][i].mv.col };
if (!av1_is_fullmv_in_range(
&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision))
continue;
cost_list[i + 1] = thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
}
if (best_site != -1) {
br += search_sites->site[s][best_site].mv.row;
bc += search_sites->site[s][best_site].mv.col;
k = best_site;
}
}
while (best_site != -1) {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
cost_list[((k + 2) % 4) + 1] = cost_list[0];
cost_list[0] = raw_bestsad;
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const FULLPEL_MV this_mv = {
br + search_sites->site[s][next_chkpts_indices[i]].mv.row,
bc + search_sites->site[s][next_chkpts_indices[i]].mv.col
};
cost_list[next_chkpts_indices[i] + 1] = thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const FULLPEL_MV this_mv = {
br + search_sites->site[s][next_chkpts_indices[i]].mv.row,
bc + search_sites->site[s][next_chkpts_indices[i]].mv.col
};
if (!av1_is_fullmv_in_range(
&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision)) {
cost_list[next_chkpts_indices[i] + 1] = INT_MAX;
continue;
}
cost_list[next_chkpts_indices[i] + 1] = thissad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
const int found_better_mv =
update_mvs_and_sad(thissad, &this_mv, mv_cost_params, &bestsad,
&raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) best_site = i;
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += search_sites->site[s][k].mv.row;
bc += search_sites->site[s][k].mv.col;
}
}
}
}
best_mv->row = br;
best_mv->col = bc;
// Returns the one-away integer pel cost/sad around the best as follows:
// cost_list[0]: cost/sad at the best integer pel
// cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel
// cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel
// cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel
// cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel
if (cost_list) {
if (USE_SAD_COSTLIST) {
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
best_mv->row = br;
best_mv->col = bc;
const int var_cost = get_mvpred_var_cost(ms_params, best_mv);
return var_cost;
}
// For the following foo_search, the input arguments are:
// start_mv: where we are starting our motion search
// ms_params: a collection of motion search parameters
// search_step: how many steps to skip in our motion search. For example,
// a value 3 suggests that 3 search steps have already taken place prior to
// this function call, so we jump directly to step 4 of the search process
// do_init_search: if on, do an initial search of all possible scales around the
// start_mv, and then pick the best scale.
// cond_list: used to hold the cost around the best full mv so we can use it to
// speed up subpel search later.
// best_mv: the best mv found in the motion search
static int hex_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv);
}
static int bigdia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv);
}
static int square_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv);
}
static int fast_hex_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return hex_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step), do_init_search,
cost_list, best_mv);
}
static int fast_dia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return bigdia_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step),
do_init_search, cost_list, best_mv);
}
static int fast_bigdia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv) {
return bigdia_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 3, search_step),
do_init_search, cost_list, best_mv);
}
static int diamond_search_sad(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, int *num00,
FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
const uint16_t *best_address;
const uint8_t *mask = ms_params->ms_buffers.mask;
const uint16_t *second_pred = ms_params->ms_buffers.second_pred;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const search_site_config *cfg = ms_params->search_sites;
const int prec_shift =
(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL)
? 0
: (MV_PRECISION_ONE_PEL - ms_params->mv_cost_params.pb_mv_precision);
const int prec_multiplier = (1 << prec_shift);
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(&start_mv),
ms_params->mv_cost_params.pb_mv_precision));
unsigned int bestsad = INT_MAX;
int best_site = 0;
int is_off_center = 0;
clamp_fullmv(&start_mv, &ms_params->mv_limits);
// search_step determines the length of the initial step and hence the number
// of iterations.
const int tot_steps = cfg->num_search_steps - search_step;
*num00 = 0;
*best_mv = start_mv;
// Check the starting position
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode && ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(start_mv.row),
(int16_t)GET_MV_SUBPEL(start_mv.col) };
if (av1_is_dv_valid(sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize,
ms_params->mib_size_log2)) {
best_address = get_buf_from_fullmv(ref, &start_mv);
bestsad =
get_mvpred_compound_sad(ms_params, src, best_address, ref_stride);
bestsad += mvsad_err_cost(*best_mv, &ms_params->mv_cost_params);
} else {
best_address = get_buf_from_fullmv(ref, &start_mv);
bestsad = INT_MAX;
}
} else {
best_address = get_buf_from_fullmv(ref, &start_mv);
bestsad = get_mvpred_compound_sad(ms_params, src, best_address, ref_stride);
bestsad += mvsad_err_cost(*best_mv, &ms_params->mv_cost_params);
}
#else
best_address = get_buf_from_fullmv(ref, &start_mv);
bestsad = get_mvpred_compound_sad(ms_params, src, best_address, ref_stride);
bestsad += mvsad_err_cost(*best_mv, &ms_params->mv_cost_params);
#endif // CONFIG_IBC_SR_EXT
int next_step_size = tot_steps > 2 ? cfg->radius[tot_steps - 2] : 1;
for (int step = tot_steps - 1; step >= 0; --step) {
const search_site *site = cfg->site[step];
best_site = 0;
if (step > 0) next_step_size = cfg->radius[step - 1];
int all_in = 1, j;
// Trap illegal vectors
all_in &= best_mv->row + (site[1].mv.row * prec_multiplier) >=
ms_params->mv_limits.row_min;
all_in &= best_mv->row + (site[2].mv.row * prec_multiplier) <=
ms_params->mv_limits.row_max;
all_in &= best_mv->col + (site[3].mv.col * prec_multiplier) >=
ms_params->mv_limits.col_min;
all_in &= best_mv->col + (site[4].mv.col * prec_multiplier) <=
ms_params->mv_limits.col_max;
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
for (j = 0; j < 4; j++) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(best_mv->row + site[1 + j].mv.row),
(int16_t)GET_MV_SUBPEL(best_mv->col +
site[1 + j].mv.col) };
all_in &= av1_is_dv_valid(sub_mv, ms_params->cm, ms_params->xd,
ms_params->mi_row, ms_params->mi_col,
ms_params->bsize, ms_params->mib_size_log2);
}
}
#endif // CONFIG_IBC_SR_EXT
// TODO(anyone): Implement 4 points search for msdf&sdaf
if (all_in && !mask && !second_pred) {
const uint16_t *src_buf = src->buf;
const int src_stride = src->stride;
for (int idx = 1; idx <= cfg->searches_per_step[step]; idx += 4) {
uint16_t const *block_offset[4];
unsigned int sads[4];
#if CONFIG_IBC_SR_EXT
int valid = 1;
for (j = 0; j < 4; j++) {
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = {
(int16_t)GET_MV_SUBPEL(best_mv->row + site[idx + j].mv.row),
(int16_t)GET_MV_SUBPEL(best_mv->col + site[idx + j].mv.col)
};
valid &= av1_is_dv_valid(
sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize, ms_params->mib_size_log2);
}
}
if (!valid) continue;
#endif // CONFIG_IBC_SR_EXT
for (j = 0; j < 4; j++) {
int row = (site[idx + j].mv.row * prec_multiplier);
int col = (site[idx + j].mv.col * prec_multiplier);
block_offset[j] = (row * ref_stride + col) + best_address;
}
ms_params->sdx4df(src_buf, src_stride, block_offset, ref_stride, sads);
for (j = 0; j < 4; j++) {
if (sads[j] < bestsad) {
const FULLPEL_MV this_mv = {
best_mv->row + (site[idx + j].mv.row * prec_multiplier),
best_mv->col + (site[idx + j].mv.col * prec_multiplier)
};
unsigned int thissad =
sads[j] + mvsad_err_cost(this_mv, mv_cost_params);
if (thissad < bestsad) {
bestsad = thissad;
best_site = idx + j;
}
}
}
}
} else {
for (int idx = 1; idx <= cfg->searches_per_step[step]; idx++) {
const FULLPEL_MV this_mv = {
best_mv->row + (site[idx].mv.row * prec_multiplier),
best_mv->col + (site[idx].mv.col * prec_multiplier)
};
if (av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv,
ms_params->mv_cost_params.pb_mv_precision)) {
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode &&
ms_params->cm->features.allow_local_intrabc) {
MV sub_mv = { (int16_t)GET_MV_SUBPEL(this_mv.row),
(int16_t)GET_MV_SUBPEL(this_mv.col) };
int valid = av1_is_dv_valid(
sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize, ms_params->mib_size_log2);
if (!valid) continue;
}
#endif // CONFIG_IBC_SR_EXT
int r = (site[idx].mv.row * prec_multiplier);
int c = (site[idx].mv.col * prec_multiplier);
const uint16_t *const check_here =
(r * ref_stride + c) + best_address;
unsigned int thissad;
thissad =
get_mvpred_compound_sad(ms_params, src, check_here, ref_stride);
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(&this_mv),
ms_params->mv_cost_params.pb_mv_precision));
if (thissad < bestsad) {
thissad += mvsad_err_cost(this_mv, mv_cost_params);
if (thissad < bestsad) {
bestsad = thissad;
best_site = idx;
}
}
}
}
}
if (best_site != 0) {
if (second_best_mv) {
*second_best_mv = *best_mv;
}
best_mv->row += (site[best_site].mv.row * prec_multiplier);
best_mv->col += (site[best_site].mv.col * prec_multiplier);
best_address += (site[best_site].mv.row * prec_multiplier) * ref_stride +
(site[best_site].mv.col * prec_multiplier);
is_off_center = 1;
}
if (is_off_center == 0) (*num00)++;
if (best_site == 0) {
while (next_step_size == cfg->radius[step] && step > 2) {
++(*num00);
--step;
next_step_size = cfg->radius[step - 1];
}
}
}
return bestsad;
}
/* do_refine: If last step (1-away) of n-step search doesn't pick the center
point as the best match, we will do a final 1-away diamond
refining search */
static int full_pixel_diamond(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, int *cost_list,
FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) {
const search_site_config *cfg = ms_params->search_sites;
int thissme, n, num00 = 0;
int bestsme = diamond_search_sad(start_mv, ms_params, step_param, &n, best_mv,
second_best_mv);
if (bestsme < INT_MAX) {
bestsme = get_mvpred_compound_var_cost(ms_params, best_mv);
}
// If there won't be more n-step search, check to see if refining search is
// needed.
const int further_steps = cfg->num_search_steps - 1 - step_param;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
// TODO(chiyotsai@google.com): There is another bug here where the second
// best mv gets incorrectly overwritten. Fix it later.
FULLPEL_MV tmp_best_mv;
thissme = diamond_search_sad(start_mv, ms_params, step_param + n, &num00,
&tmp_best_mv, second_best_mv);
if (thissme < INT_MAX) {
thissme = get_mvpred_compound_var_cost(ms_params, &tmp_best_mv);
}
if (thissme < bestsme) {
bestsme = thissme;
*best_mv = tmp_best_mv;
}
}
}
// Return cost list.
if (cost_list) {
if (USE_SAD_COSTLIST) {
const int costlist_has_sad = 0;
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
return bestsme;
}
// Exhaustive motion search around a given centre position with a given
// step size.
static int exhaustive_mesh_search(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int range, const int step,
FULLPEL_MV *best_mv,
FULLPEL_MV *second_best_mv) {
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
unsigned int best_sad = INT_MAX;
int r, c, i;
int start_col, end_col, start_row, end_row;
const int col_step = (step > 1) ? step : 4;
assert(step >= 1);
clamp_fullmv(&start_mv, &ms_params->mv_limits);
*best_mv = start_mv;
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode && ms_params->cm->features.allow_local_intrabc) {
const MV sub_mv = { (int16_t)GET_MV_SUBPEL(start_mv.row),
(int16_t)GET_MV_SUBPEL(start_mv.col) };
if (av1_is_dv_valid(sub_mv, ms_params->cm, ms_params->xd, ms_params->mi_row,
ms_params->mi_col, ms_params->bsize,
ms_params->mib_size_log2)) {
best_sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &start_mv), ref_stride);
best_sad += mvsad_err_cost(start_mv, mv_cost_params);
} else {
best_sad = INT_MAX;
}
} else {
best_sad = get_mvpred_sad(ms_params, src,
get_buf_from_fullmv(ref, &start_mv), ref_stride);
best_sad += mvsad_err_cost(start_mv, mv_cost_params);
}
#else
best_sad = get_mvpred_sad(ms_params, src, get_buf_from_fullmv(ref, &start_mv),
ref_stride);
best_sad += mvsad_err_cost(start_mv, mv_cost_params);
#endif // CONFIG_IBC_SR_EXT
start_row = AOMMAX(-range, ms_params->mv_limits.row_min - start_mv.row);
start_col = AOMMAX(-range, ms_params->mv_limits.col_min - start_mv.col);
end_row = AOMMIN(range, ms_params->mv_limits.row_max - start_mv.row);
end_col = AOMMIN(range, ms_params->mv_limits.col_max - start_mv.col);
#if CONFIG_IBC_SR_EXT
if (ms_params->is_intra_mode && ms_params->cm->features.allow_local_intrabc) {
int part_size = 65;
int part_start_row;
int part_start_col;
int part_end_row;
int part_end_col;
FULLPEL_MV best_valid_mv = start_mv;
unsigned int best_valid_sad = best_sad;
for (part_start_row = start_row; part_start_row <= end_row;
part_start_row += part_size) {
part_end_row = AOMMIN(part_start_row + part_size - 1, end_row);
for (part_start_col = start_col; part_start_col <= end_col;
part_start_col += part_size) {
part_end_col = AOMMIN(part_start_col + part_size - 1, end_col);
for (r = part_start_row; r <= part_end_row; r += step) {
for (c = part_start_col; c <= part_end_col; c += col_step) {
// Step > 1 means we are not checking every location in this pass.
if (step > 1) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c };
unsigned int sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv,
second_best_mv);
} else {
// 4 sads in a single call if we are checking every location
if (c + 3 <= part_end_col) {
unsigned int sads[4];
const uint16_t *addrs[4];
for (i = 0; i < 4; ++i) {
const FULLPEL_MV mv = { start_mv.row + r,
start_mv.col + c + i };
addrs[i] = get_buf_from_fullmv(ref, &mv);
}
ms_params->sdx4df(src->buf, src->stride, addrs, ref_stride,
sads);
for (i = 0; i < 4; ++i) {
if (sads[i] < best_sad) {
const FULLPEL_MV mv = { start_mv.row + r,
start_mv.col + c + i };
update_mvs_and_sad(sads[i], &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv,
second_best_mv);
}
}
} else {
for (i = 0; i < part_end_col - c; ++i) {
const FULLPEL_MV mv = { start_mv.row + r,
start_mv.col + c + i };
unsigned int sad =
get_mvpred_sad(ms_params, src,
get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv,
second_best_mv);
}
}
}
}
}
// stores the best valid mv
if (best_valid_mv.row != best_mv->row ||
best_valid_mv.col != best_mv->col) {
const MV sub_mv = { (int16_t)GET_MV_SUBPEL(best_mv->row),
(int16_t)GET_MV_SUBPEL(best_mv->col) };
if (av1_is_dv_valid(sub_mv, ms_params->cm, ms_params->xd,
ms_params->mi_row, ms_params->mi_col,
ms_params->bsize, ms_params->mib_size_log2)) {
best_valid_mv = *best_mv;
best_valid_sad = best_sad;
}
}
*best_mv = best_valid_mv;
best_sad = best_valid_sad;
}
}
return best_sad;
}
#endif // CONFIG_IBC_SR_EXT
for (r = start_row; r <= end_row; r += step) {
for (c = start_col; c <= end_col; c += col_step) {
// Step > 1 means we are not checking every location in this pass.
if (step > 1) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c };
unsigned int sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv, second_best_mv);
} else {
// 4 sads in a single call if we are checking every location
if (c + 3 <= end_col) {
unsigned int sads[4];
const uint16_t *addrs[4];
for (i = 0; i < 4; ++i) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
addrs[i] = get_buf_from_fullmv(ref, &mv);
}
ms_params->sdx4df(src->buf, src->stride, addrs, ref_stride, sads);
for (i = 0; i < 4; ++i) {
if (sads[i] < best_sad) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
update_mvs_and_sad(sads[i], &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv,
second_best_mv);
}
}
} else {
for (i = 0; i < end_col - c; ++i) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
unsigned int sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv, second_best_mv);
}
}
}
}
}
return best_sad;
}
// Runs an limited range exhaustive mesh search using a pattern set
// according to the encode speed profile.
static int full_pixel_exhaustive(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct MESH_PATTERN *const mesh_patterns,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV *second_best_mv) {
const int kMinRange = 7;
const int kMaxRange = 256;
const int kMinInterval = 1;
int bestsme;
int i;
int interval = mesh_patterns[0].interval;
int range = mesh_patterns[0].range;
int baseline_interval_divisor;
*best_mv = start_mv;
// Trap illegal values for interval and range for this function.
if ((range < kMinRange) || (range > kMaxRange) || (interval < kMinInterval) ||
(interval > range))
return INT_MAX;
baseline_interval_divisor = range / interval;
// Check size of proposed first range against magnitude of the centre
// value used as a starting point.
range = AOMMAX(range, (5 * AOMMAX(abs(best_mv->row), abs(best_mv->col))) / 4);
range = AOMMIN(range, kMaxRange);
interval = AOMMAX(interval, range / baseline_interval_divisor);
// Use a small search step/interval for certain kind of clips.
// For example, screen content clips with a lot of texts.
// Large interval could lead to a false matching position, and it can't find
// the best global candidate in following iterations due to reduced search
// range. The solution here is to use a small search iterval in the beginning
// and thus reduces the chance of missing the best candidate.
if (ms_params->fine_search_interval) {
interval = AOMMIN(interval, 4);
}
// initial search
bestsme = exhaustive_mesh_search(*best_mv, ms_params, range, interval,
best_mv, second_best_mv);
if ((interval > kMinInterval) && (range > kMinRange)) {
// Progressive searches with range and step size decreasing each time
// till we reach a step size of 1. Then break out.
for (i = 1; i < MAX_MESH_STEP; ++i) {
// First pass with coarser step and longer range
bestsme = exhaustive_mesh_search(
*best_mv, ms_params, mesh_patterns[i].range,
mesh_patterns[i].interval, best_mv, second_best_mv);
if (mesh_patterns[i].interval == 1) break;
}
}
if (bestsme < INT_MAX) {
bestsme = get_mvpred_var_cost(ms_params, best_mv);
}
// Return cost list.
if (cost_list) {
if (USE_SAD_COSTLIST) {
const int costlist_has_sad = 0;
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
return bestsme;
}
// This function is called when we do joint motion search in comp_inter_inter
// mode, or when searching for one component of an ext-inter compound mode.
int av1_refining_search_8p_c(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const FULLPEL_MV start_mv, FULLPEL_MV *best_mv) {
static const search_neighbors neighbors[8] = {
{ { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 }
};
uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P *
SEARCH_GRID_STRIDE_8P] = { 0 };
int grid_center = SEARCH_GRID_CENTER_8P;
int grid_coord = grid_center;
assert(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL);
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const struct buf_2d *src = ms_buffers->src;
const struct buf_2d *ref = ms_buffers->ref;
const int ref_stride = ref->stride;
*best_mv = start_mv;
clamp_fullmv(best_mv, mv_limits);
unsigned int best_sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, best_mv), ref_stride);
best_sad += mvsad_err_cost(*best_mv, mv_cost_params);
do_refine_search_grid[grid_coord] = 1;
for (int i = 0; i < SEARCH_RANGE_8P; ++i) {
int best_site = -1;
for (int j = 0; j < 8; ++j) {
grid_coord = grid_center + neighbors[j].coord_offset;
if (do_refine_search_grid[grid_coord] == 1) {
continue;
}
const FULLPEL_MV mv = { best_mv->row + neighbors[j].coord.row,
best_mv->col + neighbors[j].coord.col };
do_refine_search_grid[grid_coord] = 1;
if (av1_is_fullmv_in_range(mv_limits, mv
,
ms_params->mv_cost_params.pb_mv_precision
)) {
unsigned int sad;
sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
if (sad < best_sad) {
sad += mvsad_err_cost(mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
best_mv->row += neighbors[best_site].coord.row;
best_mv->col += neighbors[best_site].coord.col;
grid_center += neighbors[best_site].coord_offset;
}
}
return best_sad;
}
// This function is called when precision of motion vector is lower than inter
// pel. This function is called when we do joint motion search in
// comp_inter_inter mode, or when searching for one component of an ext-inter
// compound mode.
int av1_refining_search_8p_c_low_precision(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV start_mv,
FULLPEL_MV *best_mv, int fast_mv_refinement) {
assert(ms_params->mv_cost_params.pb_mv_precision < MV_PRECISION_ONE_PEL);
const int search_range =
1 << (MV_PRECISION_ONE_PEL - ms_params->mv_cost_params.pb_mv_precision);
const int search_grid_stride = (2 * search_range + 1);
const search_neighbors neighbors[8] = {
{ { -search_range, 0 }, -search_range * search_grid_stride + 0 },
{ { 0, -search_range }, 0 * search_grid_stride - search_range },
{ { 0, search_range }, 0 * search_grid_stride + search_range },
{ { search_range, 0 }, search_range * search_grid_stride + 0 },
{ { -search_range, -search_range },
-search_range * search_grid_stride - search_range },
{ { search_range, -search_range },
search_range * search_grid_stride - search_range },
{ { -search_range, search_range },
-search_range * search_grid_stride + search_range },
{ { search_range, search_range },
search_range * search_grid_stride + search_range }
};
const int num_of_search_steps = fast_mv_refinement ? 1 : 3;
assert(ms_params->mv_cost_params.pb_mv_precision < MV_PRECISION_ONE_PEL);
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const struct buf_2d *src = ms_buffers->src;
const struct buf_2d *ref = ms_buffers->ref;
const int ref_stride = ref->stride;
*best_mv = start_mv;
clamp_fullmv(best_mv, mv_limits);
unsigned int best_sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, best_mv), ref_stride);
best_sad += mvsad_err_cost(*best_mv, mv_cost_params);
for (int step = 0; step < num_of_search_steps; step++) {
int best_site = -1;
// TODO(Mohammed): remove retundant search points to reduce complexity
for (int j = 0; j < 8; ++j) {
const FULLPEL_MV mv = { best_mv->row + neighbors[j].coord.row,
best_mv->col + neighbors[j].coord.col };
if (av1_is_fullmv_in_range(mv_limits, mv,
ms_params->mv_cost_params.pb_mv_precision)) {
unsigned int sad;
sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
if (sad < best_sad) {
sad += mvsad_err_cost(mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
best_mv->row += neighbors[best_site].coord.row;
best_mv->col += neighbors[best_site].coord.col;
}
}
return best_sad;
}
int av1_full_pixel_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, int *cost_list,
FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) {
const BLOCK_SIZE bsize = ms_params->bsize;
const SEARCH_METHODS search_method = ms_params->search_method;
const int is_intra_mode = ms_params->is_intra_mode;
int run_mesh_search = ms_params->run_mesh_search;
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(&start_mv),
ms_params->mv_cost_params.pb_mv_precision));
int var = 0;
MARK_MV_INVALID(best_mv);
if (second_best_mv) {
MARK_MV_INVALID(second_best_mv);
}
assert(ms_params->ms_buffers.second_pred == NULL &&
ms_params->ms_buffers.mask == NULL &&
"av1_full_pixel_search does not support compound pred");
if (cost_list) {
cost_list[0] = INT_MAX;
cost_list[1] = INT_MAX;
cost_list[2] = INT_MAX;
cost_list[3] = INT_MAX;
cost_list[4] = INT_MAX;
}
switch (search_method) {
case FAST_BIGDIA:
var = fast_bigdia_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv);
break;
case FAST_DIAMOND:
var = fast_dia_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv);
break;
case FAST_HEX:
var = fast_hex_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv);
break;
case HEX:
var = hex_search(start_mv, ms_params, step_param, 1, cost_list, best_mv);
break;
case SQUARE:
var =
square_search(start_mv, ms_params, step_param, 1, cost_list, best_mv);
break;
case BIGDIA:
var =
bigdia_search(start_mv, ms_params, step_param, 1, cost_list, best_mv);
break;
case NSTEP:
case DIAMOND:
var = full_pixel_diamond(start_mv, ms_params, step_param, cost_list,
best_mv, second_best_mv);
break;
default: assert(0 && "Invalid search method.");
}
#if CONFIG_DEBUG
if (best_mv) {
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(best_mv),
ms_params->mv_cost_params.pb_mv_precision));
}
if (second_best_mv) {
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(second_best_mv),
ms_params->mv_cost_params.pb_mv_precision));
}
assert((!(ms_params->mv_cost_params.pb_mv_precision < MV_PRECISION_ONE_PEL &&
search_method != NSTEP && search_method != DIAMOND)));
#endif
// Should we allow a follow on exhaustive search?
if (!run_mesh_search && search_method == NSTEP) {
int exhaustive_thr = ms_params->force_mesh_thresh;
const int right_shift =
10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]);
if (right_shift >= 0) {
exhaustive_thr >>= right_shift;
} else {
exhaustive_thr <<= (-right_shift);
}
// Threshold variance for an exhaustive full search.
if (var > exhaustive_thr) run_mesh_search = 1;
}
// TODO(yunqing): the following is used to reduce mesh search in temporal
// filtering. Can extend it to intrabc.
if (!is_intra_mode && ms_params->prune_mesh_search) {
const int full_pel_mv_diff = AOMMAX(abs(start_mv.row - best_mv->row),
abs(start_mv.col - best_mv->col));
if (full_pel_mv_diff <= 4) {
run_mesh_search = 0;
}
}
if ((ms_params->sdf != ms_params->vfp->sdf) &&
(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL)) {
// If we are skipping rows when we perform the motion search, we need to
// check the quality of skipping. If it's bad, then we run mesh search with
// skip row features off.
// TODO(chiyotsai@google.com): Handle the case where we have a vertical
// offset of 1 before we hit this statement to avoid having to redo
// motion search.
const struct buf_2d *src = ms_params->ms_buffers.src;
const struct buf_2d *ref = ms_params->ms_buffers.ref;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
const uint16_t *src_address = src->buf;
const uint16_t *best_address = get_buf_from_fullmv(ref, best_mv);
const int sad =
ms_params->vfp->sdf(src_address, src_stride, best_address, ref_stride);
const int skip_sad =
ms_params->vfp->sdsf(src_address, src_stride, best_address, ref_stride);
// We will keep the result of skipping rows if it's good enough. Here, good
// enough means the error is less than 1 per pixel.
const int kSADThresh =
1 << (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]);
if (sad > kSADThresh && abs(skip_sad - sad) * 10 >= AOMMAX(sad, 1) * 9) {
// There is a large discrepancy between skipping and not skipping, so we
// need to redo the motion search.
FULLPEL_MOTION_SEARCH_PARAMS new_ms_params = *ms_params;
new_ms_params.sdf = new_ms_params.vfp->sdf;
new_ms_params.sdx4df = new_ms_params.vfp->sdx4df;
return av1_full_pixel_search(start_mv, &new_ms_params, step_param,
cost_list, best_mv, second_best_mv);
}
}
if (run_mesh_search &&
(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL)) {
int var_ex;
FULLPEL_MV tmp_mv_ex;
// Pick the mesh pattern for exhaustive search based on the toolset (intraBC
// or non-intraBC)
// TODO(chiyotsai@google.com): There is a bug here where the second best mv
// gets overwritten without actually comparing the rdcost.
const MESH_PATTERN *const mesh_patterns =
ms_params->mesh_patterns[is_intra_mode];
// TODO(chiyotsai@google.com): the second best mv is not set correctly by
// full_pixel_exhaustive, which can incorrectly override it.
var_ex = full_pixel_exhaustive(*best_mv, ms_params, mesh_patterns,
cost_list, &tmp_mv_ex, second_best_mv);
assert(is_this_mv_precision_compliant(
get_mv_from_fullmv(&tmp_mv_ex),
ms_params->mv_cost_params.pb_mv_precision));
if (var_ex < var) {
var = var_ex;
*best_mv = tmp_mv_ex;
}
}
return var;
}
// Get the cost for compound weighted prediction
int av1_get_cwp_idx_cost(int8_t cwp_idx, const AV1_COMMON *const cm,
const MACROBLOCK *x) {
assert(cwp_idx >= CWP_MIN && cwp_idx <= CWP_MAX);
const MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mi = xd->mi[0];
int cost = 0;
int bit_cnt = 0;
const int ctx = 0;
const int8_t final_idx = get_cwp_coding_idx(cwp_idx, 1, cm, mi);
for (int idx = 0; idx < MAX_CWP_NUM - 1; ++idx) {
cost += x->mode_costs.cwp_idx_cost[ctx][bit_cnt][final_idx != idx];
if (final_idx == idx) return cost;
++bit_cnt;
}
return cost;
}
#if CONFIG_IBC_BV_IMPROVEMENT
int av1_get_ref_mvpred_var_cost(const AV1_COMP *cpi, const MACROBLOCKD *xd,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params) {
const BLOCK_SIZE bsize = ms_params->bsize;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MV *dv = ms_params->mv_cost_params.ref_mv;
if (!av1_is_dv_valid(*dv, &cpi->common, xd, mi_row, mi_col, bsize,
cpi->common.mib_size_log2))
return INT_MAX;
FULLPEL_MV cur_mv = get_fullmv_from_mv(dv);
if (!av1_is_fullmv_in_range(mv_limits, cur_mv, MV_PRECISION_ONE_PEL))
return INT_MAX;
int cost = get_mvpred_var_cost(ms_params, &cur_mv) -
mv_err_cost(*dv, &ms_params->mv_cost_params);
return cost;
}
void av1_init_ref_mv(MV_COST_PARAMS *mv_cost_params, const MV *ref_mv) {
mv_cost_params->ref_mv = ref_mv;
mv_cost_params->full_ref_mv = get_fullmv_from_mv(ref_mv);
}
void get_default_ref_bv(int_mv *cur_ref_bv,
const FULLPEL_MOTION_SEARCH_PARAMS *fullms_params) {
if (cur_ref_bv->as_int == 0 || cur_ref_bv->as_int == INVALID_MV) {
cur_ref_bv->as_int = 0;
}
if (cur_ref_bv->as_int == 0) {
const TileInfo *const tile = &fullms_params->xd->tile;
const AV1_COMMON *cm = fullms_params->cm;
const int mi_row = fullms_params->mi_row;
av1_find_ref_dv(cur_ref_bv, tile, cm->mib_size, mi_row);
}
// Ref DV should not have sub-pel.
assert((cur_ref_bv->as_mv.col & 7) == 0);
assert((cur_ref_bv->as_mv.row & 7) == 0);
}
int av1_get_intrabc_drl_idx_cost(int max_ref_bv_num, int intrabc_drl_idx,
const MACROBLOCK *x) {
assert(intrabc_drl_idx < max_ref_bv_num);
int cost = 0;
int bit_cnt = 0;
for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) {
cost += x->mode_costs.intrabc_drl_idx_cost[bit_cnt][intrabc_drl_idx != idx];
if (intrabc_drl_idx == idx) return cost;
++bit_cnt;
}
return cost;
}
int av1_get_ref_bv_rate_cost(int intrabc_mode, int intrabc_drl_idx,
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
int max_bvp_drl_bits,
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
MACROBLOCK *x,
FULLPEL_MOTION_SEARCH_PARAMS fullms_params,
int ref_bv_cnt) {
(void)ref_bv_cnt;
int ref_bv_cost = 0;
ref_bv_cost += x->mode_costs.intrabc_mode_cost[intrabc_mode];
ref_bv_cost +=
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
av1_get_intrabc_drl_idx_cost(max_bvp_drl_bits + 1, intrabc_drl_idx, x);
#else
av1_get_intrabc_drl_idx_cost(MAX_REF_BV_STACK_SIZE, intrabc_drl_idx, x);
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
ref_bv_cost = (int)ROUND_POWER_OF_TWO_64(
(int64_t)ref_bv_cost * fullms_params.mv_cost_params.mv_costs->errorperbit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT + 4);
return ref_bv_cost;
}
int av1_pick_ref_bv(FULLPEL_MV *best_full_mv,
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
int max_bvp_drl_bits,
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
const FULLPEL_MOTION_SEARCH_PARAMS *fullms_params) {
MACROBLOCK *x = fullms_params->x;
const MACROBLOCKD *const xd = fullms_params->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
int ref_bv_cnt = fullms_params->ref_bv_cnt;
int cur_intrabc_drl_idx = 0;
int_mv cur_ref_bv;
cur_ref_bv.as_int = 0;
int cur_ref_bv_cost = INT_MAX;
MV best_mv = get_mv_from_fullmv(best_full_mv);
int best_ref_bv_cost = INT_MAX;
FULLPEL_MOTION_SEARCH_PARAMS ref_bv_ms_params = *fullms_params;
for (cur_intrabc_drl_idx = 0; cur_intrabc_drl_idx < ref_bv_cnt;
cur_intrabc_drl_idx++) {
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
if (cur_intrabc_drl_idx > max_bvp_drl_bits) break;
#else
if (cur_intrabc_drl_idx > MAX_REF_BV_STACK_SIZE - 1) break;
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
cur_ref_bv = xd->ref_mv_stack[INTRA_FRAME][cur_intrabc_drl_idx].this_mv;
get_default_ref_bv(&cur_ref_bv, fullms_params);
ref_bv_ms_params.mv_limits = fullms_params->mv_limits;
av1_init_ref_mv(&ref_bv_ms_params.mv_cost_params, &cur_ref_bv.as_mv);
// ref_mv value is changed. mv_limits need to recalculate
av1_set_mv_search_range(&ref_bv_ms_params.mv_limits, &cur_ref_bv.as_mv,
mbmi->pb_mv_precision);
if (!av1_is_fullmv_in_range(&ref_bv_ms_params.mv_limits, *best_full_mv,
MV_PRECISION_ONE_PEL))
continue;
cur_ref_bv_cost =
av1_get_ref_bv_rate_cost(0, cur_intrabc_drl_idx,
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
max_bvp_drl_bits,
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
x, ref_bv_ms_params, ref_bv_cnt) +
av1_get_mv_err_cost(&best_mv, &ref_bv_ms_params.mv_cost_params);
if (cur_ref_bv_cost < best_ref_bv_cost) {
best_ref_bv_cost = cur_ref_bv_cost;
mbmi->intrabc_mode = 0;
mbmi->intrabc_drl_idx = cur_intrabc_drl_idx;
mbmi->ref_bv = cur_ref_bv;
}
}
if (best_ref_bv_cost != INT_MAX) {
assert(mbmi->intrabc_drl_idx >= 0);
return best_ref_bv_cost;
}
return INT_MAX;
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
int av1_intrabc_hash_search(const AV1_COMP *cpi, const MACROBLOCKD *xd,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
IntraBCHashInfo *intrabc_hash_info,
FULLPEL_MV *best_mv) {
if (!av1_use_hash_me(cpi)) return INT_MAX;
const BLOCK_SIZE bsize = ms_params->bsize;
const int block_width = block_size_wide[bsize];
const int block_height = block_size_high[bsize];
if (block_width != block_height) return INT_MAX;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MSBuffers *ms_buffer = &ms_params->ms_buffers;
const uint16_t *src = ms_buffer->src->buf;
const int src_stride = ms_buffer->src->stride;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int x_pos = mi_col * MI_SIZE;
const int y_pos = mi_row * MI_SIZE;
uint32_t hash_value1, hash_value2;
int best_hash_cost = INT_MAX;
#if CONFIG_IBC_BV_IMPROVEMENT
int best_intrabc_mode = 0;
int best_intrabc_drl_idx = 0;
int_mv best_ref_bv;
best_ref_bv.as_mv = *ms_params->mv_cost_params.ref_mv;
MB_MODE_INFO *mbmi = xd->mi[0];
#endif // CONFIG_IBC_BV_IMPROVEMENT
// for the hashMap
hash_table *ref_frame_hash = &intrabc_hash_info->intrabc_hash_table;
av1_get_block_hash_value(intrabc_hash_info, src, src_stride, block_width,
&hash_value1, &hash_value2);
const int count = av1_hash_table_count(ref_frame_hash, hash_value1);
if (count <= 1) {
return INT_MAX;
}
Iterator iterator = av1_hash_get_first_iterator(ref_frame_hash, hash_value1);
for (int i = 0; i < count; i++, aom_iterator_increment(&iterator)) {
block_hash ref_block_hash = *(block_hash *)(aom_iterator_get(&iterator));
if (hash_value2 == ref_block_hash.hash_value2) {
// Make sure the prediction is from valid area.
const MV dv = { GET_MV_SUBPEL(ref_block_hash.y - y_pos),
GET_MV_SUBPEL(ref_block_hash.x - x_pos) };
if (!av1_is_dv_valid(dv, &cpi->common, xd, mi_row, mi_col, bsize,
cpi->common.mib_size_log2))
continue;
FULLPEL_MV hash_mv;
hash_mv.col = ref_block_hash.x - x_pos;
hash_mv.row = ref_block_hash.y - y_pos;
if (!av1_is_fullmv_in_range(mv_limits, hash_mv
,
ms_params->mv_cost_params.pb_mv_precision
))
continue;
#if CONFIG_IBC_BV_IMPROVEMENT
int refCost = get_mvpred_var_cost(ms_params, &hash_mv);
int cur_intrabc_mode = 0;
int cur_intrabc_drl_idx = 0;
int_mv cur_ref_bv;
cur_ref_bv.as_mv = *(ms_params->mv_cost_params.ref_mv);
int_mv cur_bv;
cur_bv.as_mv = get_mv_from_fullmv(&hash_mv);
int cur_dist = refCost - av1_get_mv_err_cost(&cur_bv.as_mv,
&ms_params->mv_cost_params);
int cur_rate = av1_pick_ref_bv(&hash_mv,
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
cpi->common.features.max_bvp_drl_bits,
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
ms_params);
if (cur_rate != INT_MAX) {
cur_ref_bv.as_mv = mbmi->ref_bv.as_mv;
cur_intrabc_drl_idx = mbmi->intrabc_drl_idx;
cur_intrabc_mode = mbmi->intrabc_mode;
assert(cur_intrabc_mode == 0);
refCost = cur_dist + cur_rate;
}
#else
const int refCost = get_mvpred_var_cost(ms_params, &hash_mv);
#endif // CONFIG_IBC_BV_IMPROVEMENT
if (refCost < best_hash_cost) {
best_hash_cost = refCost;
*best_mv = hash_mv;
#if CONFIG_IBC_BV_IMPROVEMENT
best_intrabc_mode = cur_intrabc_mode;
best_intrabc_drl_idx = cur_intrabc_drl_idx;
best_ref_bv = cur_ref_bv;
#endif // CONFIG_IBC_BV_IMPROVEMENT
}
}
}
#if CONFIG_IBC_BV_IMPROVEMENT
mbmi->ref_bv = best_ref_bv;
mbmi->intrabc_drl_idx = best_intrabc_drl_idx;
mbmi->intrabc_mode = best_intrabc_mode;
#endif // CONFIG_IBC_BV_IMPROVEMENT
return best_hash_cost;
}
// =============================================================================
// Fullpixel Motion Search: OBMC
// =============================================================================
static INLINE int get_obmc_mvpred_var(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *ref_buf = ms_buffers->ref;
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV mv = get_mv_from_fullmv(this_mv);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*mv_cost_params->ref_mv, &sub_mv_offset,
mv_cost_params->pb_mv_precision);
if (mv_cost_params->pb_mv_precision >= MV_PRECISION_HALF_PEL) {
mv.col += sub_mv_offset.col;
mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
unsigned int unused;
return vfp->ovf(get_buf_from_fullmv(ref_buf, this_mv), ref_buf->stride, wsrc,
mask, &unused) +
mv_err_cost(mv, mv_cost_params);
}
static int obmc_refining_search_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV *best_mv) {
const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *ref_buf = ms_buffers->ref;
const int prec_shift =
(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL)
? 0
: (MV_PRECISION_ONE_PEL - ms_params->mv_cost_params.pb_mv_precision);
const FULLPEL_MV neighbors[4] = { { -(1 << prec_shift), 0 },
{ 0, -(1 << prec_shift) },
{ 0, (1 << prec_shift) },
{ (1 << prec_shift), 0 } };
const int kSearchRange = 8;
unsigned int best_sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, best_mv),
ref_buf->stride, wsrc, mask) +
mvsad_err_cost(*best_mv, mv_cost_params);
for (int i = 0; i < kSearchRange; i++) {
int best_site = -1;
for (int j = 0; j < 4; j++) {
const FULLPEL_MV mv = { best_mv->row + neighbors[j].row,
best_mv->col + neighbors[j].col };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv,
ms_params->mv_cost_params.pb_mv_precision)) {
unsigned int sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, &mv),
ref_buf->stride, wsrc, mask);
if (sad < best_sad) {
sad += mvsad_err_cost(mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
best_mv->row += neighbors[best_site].row;
best_mv->col += neighbors[best_site].col;
}
}
return best_sad;
}
static int obmc_diamond_search_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV start_mv,
FULLPEL_MV *best_mv, int search_step, int *num00) {
const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp;
const search_site_config *cfg = ms_params->search_sites;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *const ref_buf = ms_buffers->ref;
// search_step determines the length of the initial step and hence the number
// of iterations
// 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 =
// (MAX_FIRST_STEP/4) pel... etc.
const int tot_steps = MAX_MVSEARCH_STEPS - 1 - search_step;
const uint16_t *best_address, *init_ref;
int best_sad = INT_MAX;
int best_site = 0;
int step;
clamp_fullmv(&start_mv, &ms_params->mv_limits);
best_address = init_ref = get_buf_from_fullmv(ref_buf, &start_mv);
*num00 = 0;
*best_mv = start_mv;
// Check the starting position
best_sad = fn_ptr->osdf(best_address, ref_buf->stride, wsrc, mask) +
mvsad_err_cost(*best_mv, mv_cost_params);
const int prec_shift =
(ms_params->mv_cost_params.pb_mv_precision >= MV_PRECISION_ONE_PEL)
? 0
: (MV_PRECISION_ONE_PEL - ms_params->mv_cost_params.pb_mv_precision);
const int prec_multiplier = (1 << prec_shift);
for (step = tot_steps; step >= 0; --step) {
const search_site *const site = cfg->site[step];
best_site = 0;
for (int idx = 1; idx <= cfg->searches_per_step[step]; ++idx) {
int r = (site[idx].mv.row * prec_multiplier);
int c = (site[idx].mv.col * prec_multiplier);
int offset = r * ref_buf->stride + c;
const FULLPEL_MV mv = { best_mv->row + r, best_mv->col + c };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv,
ms_params->mv_cost_params.pb_mv_precision
)) {
int sad =
fn_ptr->osdf(best_address + offset, ref_buf->stride, wsrc, mask);
if (sad < best_sad) {
sad += mvsad_err_cost(mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = idx;
}
}
}
}
if (best_site != 0) {
best_mv->row += (site[best_site].mv.row * prec_multiplier);
best_mv->col += (site[best_site].mv.col * prec_multiplier);
best_address +=
((site[best_site].mv.row * prec_multiplier) * ref_buf->stride +
(site[best_site].mv.col * prec_multiplier));
} else if (best_address == init_ref) {
(*num00)++;
}
}
return best_sad;
}
static int obmc_full_pixel_diamond(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV start_mv,
int step_param, int do_refine, FULLPEL_MV *best_mv) {
const search_site_config *cfg = ms_params->search_sites;
FULLPEL_MV tmp_mv;
int thissme, n, num00 = 0;
int bestsme =
obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv, step_param, &n);
if (bestsme < INT_MAX) bestsme = get_obmc_mvpred_var(ms_params, &tmp_mv);
*best_mv = tmp_mv;
// If there won't be more n-step search, check to see if refining search is
// needed.
const int further_steps = cfg->num_search_steps - 1 - step_param;
if (n > further_steps) do_refine = 0;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
thissme = obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv,
step_param + n, &num00);
if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, &tmp_mv);
// check to see if refining search is needed.
if (num00 > further_steps - n) do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
*best_mv = tmp_mv;
}
}
}
// final 1-away diamond refining search
if (do_refine) {
tmp_mv = *best_mv;
thissme = obmc_refining_search_sad(ms_params, &tmp_mv);
if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, &tmp_mv);
if (thissme < bestsme) {
bestsme = thissme;
*best_mv = tmp_mv;
}
}
return bestsme;
}
int av1_obmc_full_pixel_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, FULLPEL_MV *best_mv) {
if (!ms_params->fast_obmc_search) {
const int do_refine = 1;
const int bestsme = obmc_full_pixel_diamond(ms_params, start_mv, step_param,
do_refine, best_mv);
return bestsme;
} else {
*best_mv = start_mv;
clamp_fullmv(best_mv, &ms_params->mv_limits);
int thissme = obmc_refining_search_sad(ms_params, best_mv);
if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, best_mv);
return thissme;
}
}
// =============================================================================
// Subpixel Motion Search: Translational
// =============================================================================
#define INIT_SUBPEL_STEP_SIZE (4)
/*
* To avoid the penalty for crossing cache-line read, preload the reference
* area in a small buffer, which is aligned to make sure there won't be crossing
* cache-line read while reading from this buffer. This reduced the cpu
* cycles spent on reading ref data in sub-pixel filter functions.
* TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x
* 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we
* could reduce the area.
*/
// Returns the subpel offset used by various subpel variance functions [m]sv[a]f
static INLINE int get_subpel_part(int x) { return x & 7; }
// Gets the address of the ref buffer at subpel location (r, c), rounded to the
// nearest fullpel precision toward - \infty
static INLINE const uint16_t *get_buf_from_mv(const struct buf_2d *buf,
const MV mv) {
const int offset = (mv.row >> 3) * buf->stride + (mv.col >> 3);
return &buf->buf[offset];
}
// Estimates the variance of prediction residue using bilinear filter for fast
// search.
static INLINE int estimated_pref_error(
const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint16_t *src = ms_buffers->src->buf;
const uint16_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int src_stride = ms_buffers->src->stride;
const int ref_stride = ms_buffers->ref->stride;
const uint16_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
if (second_pred == NULL) {
return vfp->svf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse);
} else if (mask) {
return vfp->msvf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
second_pred, mask, mask_stride, invert_mask, sse);
} else {
return vfp->svaf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse, second_pred);
}
}
// Calculates the variance of prediction residue.
static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm,
const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint16_t *src = ms_buffers->src->buf;
const uint16_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int src_stride = ms_buffers->src->stride;
const int ref_stride = ms_buffers->ref->stride;
const uint16_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
const int w = var_params->w;
const int h = var_params->h;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
unsigned int besterr;
const int is_scaled_ref = ms_buffers->src->width == ms_buffers->ref->width &&
ms_buffers->src->height == ms_buffers->ref->height;
DECLARE_ALIGNED(16, uint16_t, pred[MAX_SB_SQUARE]);
if (second_pred != NULL) {
if (mask) {
aom_highbd_comp_mask_upsampled_pred(
xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h, subpel_x_q3,
subpel_y_q3, ref, ref_stride, mask, mask_stride, invert_mask, xd->bd,
subpel_search_type);
} else {
if (get_cwp_idx(xd->mi[0]) != CWP_EQUAL) {
DIST_WTD_COMP_PARAMS jcp_param;
set_cmp_weight(xd->mi[0], invert_mask, &jcp_param);
aom_highbd_dist_wtd_comp_avg_upsampled_pred(
xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd, &jcp_param,
subpel_search_type);
} else
aom_highbd_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, this_mv,
pred, second_pred, w, h, subpel_x_q3,
subpel_y_q3, ref, ref_stride, xd->bd,
subpel_search_type);
}
} else {
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd,
subpel_search_type, is_scaled_ref);
}
besterr = vfp->vf(pred, w, src, src_stride, sse);
return besterr;
}
// Estimates whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account. It is suffixed "fast" because
// it uses bilinear filter to estimate the prediction.
static INLINE unsigned int check_better_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *has_better_mv, int is_scaled) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
int thismse;
if (is_scaled) {
thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse);
} else {
thismse = estimated_pref_error(this_mv, var_params, &sse);
}
cost = mv_err_cost(*this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*has_better_mv |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
// Checks whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account.
static AOM_FORCE_INLINE unsigned int check_better(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *is_better) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
int thismse;
thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse);
cost = mv_err_cost(*this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*is_better |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
static INLINE MV get_best_diag_step(int step_size, unsigned int left_cost,
unsigned int right_cost,
unsigned int up_cost,
unsigned int down_cost) {
const MV diag_step = { up_cost <= down_cost ? -step_size : step_size,
left_cost <= right_cost ? -step_size : step_size };
return diag_step;
}
// Searches the four cardinal direction for a better mv, then follows up with a
// search in the best quadrant. This uses bilinear filter to speed up the
// calculation.
static AOM_FORCE_INLINE MV first_level_check_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv,
int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int is_scaled) {
// Check the four cardinal directions
const MV left_mv = { this_mv.row, this_mv.col - hstep };
int dummy = 0;
const unsigned int left = check_better_fast(
xd, cm, &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy, is_scaled);
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const unsigned int right = check_better_fast(
xd, cm, &right_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy, is_scaled);
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const unsigned int up = check_better_fast(
xd, cm, &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy, is_scaled);
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
const unsigned int down = check_better_fast(
xd, cm, &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy, is_scaled);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
check_better_fast(xd, cm, &diag_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
return diag_step;
}
// Performs a following up search after first_level_check_fast is called. This
// performs two extra chess pattern searches in the best quadrant.
static AOM_FORCE_INLINE void second_level_check_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, const MV diag_step,
MV *best_mv, int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int is_scaled) {
assert(diag_step.row == hstep || diag_step.row == -hstep);
assert(diag_step.col == hstep || diag_step.col == -hstep);
const int tr = this_mv.row;
const int tc = this_mv.col;
const int br = best_mv->row;
const int bc = best_mv->col;
int dummy = 0;
if (tr != br && tc != bc) {
assert(diag_step.col == bc - tc);
assert(diag_step.row == br - tr);
const MV chess_mv_1 = { br, bc + diag_step.col };
const MV chess_mv_2 = { br + diag_step.row, bc };
check_better_fast(xd, cm, &chess_mv_1, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &chess_mv_2, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
} else if (tr == br && tc != bc) {
assert(diag_step.col == bc - tc);
// Continue searching in the best direction
const MV bottom_long_mv = { br + hstep, bc + diag_step.col };
const MV top_long_mv = { br - hstep, bc + diag_step.col };
check_better_fast(xd, cm, &bottom_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
// Search in the direction opposite of the best quadrant
const MV rev_mv = { br - diag_step.row, bc };
check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
} else if (tr != br && tc == bc) {
assert(diag_step.row == br - tr);
// Continue searching in the best direction
const MV right_long_mv = { br + diag_step.row, bc + hstep };
const MV left_long_mv = { br + diag_step.row, bc - hstep };
check_better_fast(xd, cm, &right_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &left_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
// Search in the direction opposite of the best quadrant
const MV rev_mv = { br, bc - diag_step.col };
check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
}
}
// Combines first level check and second level check when applicable. This first
// searches the four cardinal directions, and perform several
// diagonal/chess-pattern searches in the best quadrant.
static AOM_FORCE_INLINE void two_level_checks_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv,
int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int iters, int is_scaled) {
const MV diag_step = first_level_check_fast(
xd, cm, this_mv, best_mv, hstep, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, is_scaled);
if (iters > 1) {
second_level_check_fast(xd, cm, this_mv, diag_step, best_mv, hstep,
mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, is_scaled);
}
}
static AOM_FORCE_INLINE MV
first_level_check(MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv,
MV *best_mv, const int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
int dummy = 0;
const MV left_mv = { this_mv.row, this_mv.col - hstep };
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
const unsigned int left =
check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int right =
check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int up =
check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int down =
check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy);
return diag_step;
}
// A newer version of second level check that gives better quality.
// TODO(chiyotsai@google.com): evaluate this on subpel_search_types different
// from av1_find_best_sub_pixel_tree
static AOM_FORCE_INLINE void second_level_check_v2(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step,
MV *best_mv, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
assert(best_mv->row == this_mv.row + diag_step.row ||
best_mv->col == this_mv.col + diag_step.col);
if (CHECK_MV_EQUAL(this_mv, *best_mv)) {
return;
} else if (this_mv.row == best_mv->row) {
// Search away from diagonal step since diagonal search did not provide any
// improvement
diag_step.row *= -1;
} else if (this_mv.col == best_mv->col) {
diag_step.col *= -1;
}
const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col };
const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col };
const MV diag_bias_mv = { best_mv->row + diag_step.row,
best_mv->col + diag_step.col };
int has_better_mv = 0;
check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
}
}
// Gets the error at the beginning when the mv has fullpel precision
static unsigned int setup_center_error(
const MACROBLOCKD *xd, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
(void)xd;
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const int w = var_params->w;
const int h = var_params->h;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint16_t *src = ms_buffers->src->buf;
const uint16_t *y = get_buf_from_mv(ms_buffers->ref, *bestmv);
const int src_stride = ms_buffers->src->stride;
const int y_stride = ms_buffers->ref->stride;
const uint16_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
unsigned int besterr;
if (second_pred != NULL) {
DECLARE_ALIGNED(16, uint16_t, comp_pred[MAX_SB_SQUARE]);
if (mask) {
aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask,
mask_stride, invert_mask);
} else {
aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
} else {
besterr = vfp->vf(y, y_stride, src, src_stride, sse1);
}
*distortion = besterr;
besterr += mv_err_cost(*bestmv, mv_cost_params);
return besterr;
}
// Gets the error at the beginning when the mv has fullpel precision
static unsigned int upsampled_setup_center_error(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
unsigned int besterr = upsampled_pref_error(xd, cm, bestmv, var_params, sse1);
*distortion = besterr;
besterr += mv_err_cost(*bestmv, mv_cost_params);
return besterr;
}
static INLINE int divide_and_round(int n, int d) {
return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
}
static INLINE int is_cost_list_wellbehaved(const int *cost_list) {
return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] &&
cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4];
}
// Returns surface minima estimate at given precision in 1/2^n bits.
// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
// For a given set of costs S0, S1, S2, S3, S4 at points
// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
// the solution for the location of the minima (x0, y0) is given by:
// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
// The code below is an integerized version of that.
static AOM_INLINE void get_cost_surf_min(const int *cost_list, int *ir, int *ic,
int bits) {
*ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
(cost_list[1] - 2 * cost_list[0] + cost_list[3]));
*ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
(cost_list[4] - 2 * cost_list[0] + cost_list[2]));
}
// Checks the list of mvs searched in the last iteration and see if we are
// repeating it. If so, return 1. Otherwise we update the last_mv_search_list
// with current_mv and return 0.
static INLINE int check_repeated_mv_and_update(int_mv *last_mv_search_list,
const MV current_mv, int iter) {
if (last_mv_search_list) {
if (CHECK_MV_EQUAL(last_mv_search_list[iter].as_mv, current_mv)) {
return 1;
}
last_mv_search_list[iter].as_mv = current_mv;
}
return 0;
}
static AOM_INLINE int setup_center_error_facade(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion,
int is_scaled) {
if (is_scaled) {
return upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
} else {
return setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1,
distortion);
}
}
// motion search for joint mvd coding
int joint_mvd_search(const AV1_COMMON *const cm, MACROBLOCKD *xd,
SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV ref_mv,
MV *start_mv, MV *bestmv, int *distortion,
unsigned int *sse1, int ref_idx, MV *other_mv,
MV *best_other_mv, uint16_t *second_pred,
InterPredParams *inter_pred_params,
int_mv *last_mv_search_list) {
const int forced_stop = ms_params->forced_stop;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
MB_MODE_INFO *const mbmi = xd->mi[0];
// perform prediction for second MV
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if CONFIG_C071_SUBBLK_WARPMV
if (mbmi->pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&ref_mv, mbmi->pb_mv_precision);
// We are not signaling other_mv. So frame level precision should be okay.
// How many steps to take. A round of 0 means fullpel search only, 1 means
// half-pel, and so on.
const int round = (mbmi->pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMIN(FULL_PEL - forced_stop,
mbmi->pb_mv_precision - MV_PRECISION_ONE_PEL)
: 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = *start_mv;
*best_other_mv = *other_mv;
#if CONFIG_C071_SUBBLK_WARPMV
if (mbmi->pb_mv_precision >= MV_PRECISION_HALF_PEL) {
FULLPEL_MV tmp_full_bestmv = get_fullmv_from_mv(bestmv);
*bestmv = get_mv_from_fullmv(&tmp_full_bestmv);
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(ref_mv, &sub_mv_offset, mbmi->pb_mv_precision);
bestmv->col += sub_mv_offset.col;
bestmv->row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
const int same_side = is_ref_frame_same_side(cm, mbmi);
const int cur_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[ref_idx]];
int other_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[1 - ref_idx]];
other_ref_dist = same_side ? other_ref_dist : -other_ref_dist;
int dummy = 0;
// full-pel search for one list
static const search_neighbors neighbors[9] = {
{ { 0, 0 }, 0 * SEARCH_GRID_STRIDE_8P + 0 },
{ { -8, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { 0, -8 }, 0 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 0, 8 }, 0 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 8, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { -8, -8 }, -1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 8, -8 }, 1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { -8, 8 }, -1 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 8, 8 }, 1 * SEARCH_GRID_STRIDE_8P + 1 }
};
uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P *
SEARCH_GRID_STRIDE_8P] = { 0 };
int grid_center = SEARCH_GRID_CENTER_8P;
int grid_coord;
// do_refine_search_grid[grid_coord] = 0;
for (int i = 0; i < SEARCH_RANGE_8P; ++i) {
int best_site = -1;
for (int j = 0; j < 9; ++j) {
grid_coord = grid_center + neighbors[j].coord_offset;
if (do_refine_search_grid[grid_coord] == 1) {
continue;
}
const MV cur_mv = { bestmv->row + neighbors[j].coord.row,
bestmv->col + neighbors[j].coord.col };
const MV cur_mvd = { cur_mv.row - ref_mv.row, cur_mv.col - ref_mv.col };
MV other_mvd = { 0, 0 };
MV other_cand_mv = { 0, 0 };
do_refine_search_grid[grid_coord] = 1;
if (av1_is_subpelmv_in_range(mv_limits, cur_mv)) {
// fprintf(stdout, "has happened\n");
get_mv_projection(&other_mvd, cur_mvd, other_ref_dist, cur_ref_dist);
scale_other_mvd(&other_mvd, mbmi->jmvd_scale_mode, mbmi->mode);
#if !CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&other_mvd, cm->features.fr_mv_precision);
#endif // !CONFIG_C071_SUBBLK_WARPMV
other_cand_mv.row = (int)(other_mv->row + other_mvd.row);
other_cand_mv.col = (int)(other_mv->col + other_mvd.col);
if (av1_is_subpelmv_in_range(mv_limits, other_cand_mv) == 0) continue;
av1_enc_build_one_inter_predictor(second_pred, block_size_wide[bsize],
&other_cand_mv, inter_pred_params);
unsigned int sad =
check_better(xd, cm, &cur_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy);
if (sad == besterr && bestmv->row == cur_mv.row &&
bestmv->col == cur_mv.col) {
best_site = j;
// best mv on the other reference list
best_other_mv->row = other_cand_mv.row;
best_other_mv->col = other_cand_mv.col;
}
}
}
if (best_site == -1) {
break;
} else {
grid_center += neighbors[best_site].coord_offset;
}
} // end of full-pel search
if (besterr == INT_MAX) {
bestmv->row = ref_mv.row;
bestmv->col = ref_mv.col;
start_mv->row = ref_mv.row;
start_mv->col = ref_mv.col;
}
// If forced_stop is FULL_PEL, return.
if (round == 0) return besterr;
// fractional motion search
const int cand_pos[4][2] = {
{ 0, -1 }, // left
{ 0, +1 }, // right
{ -1, 0 }, // up
{ +1, 0 } // down
};
for (int iter = 0; iter < round; ++iter) {
MV iter_center_mv = *bestmv;
if (check_repeated_mv_and_update(last_mv_search_list, iter_center_mv,
iter)) {
return INT_MAX;
}
MV candidate_mv[2];
MV cur_mvd = { 0, 0 };
// mv cost of top, left, right, bottom
int mvcost[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
for (int i = 0; i < 5; ++i) {
#if CONFIG_C071_SUBBLK_WARPMV
if (av1_is_subpelmv_in_range(mv_limits, iter_center_mv) == 0) continue;
#endif // CONFIG_C071_SUBBLK_WARPMV
if (i < 4) {
cur_mvd.row = cand_pos[i][0] * hstep;
cur_mvd.col = cand_pos[i][1] * hstep;
} else {
cur_mvd = get_best_diag_step(hstep, mvcost[0], mvcost[1], mvcost[2],
mvcost[3]);
}
MV other_mvd = { 0, 0 };
candidate_mv[0].row = iter_center_mv.row + cur_mvd.row;
candidate_mv[0].col = iter_center_mv.col + cur_mvd.col;
#if CONFIG_C071_SUBBLK_WARPMV
if (av1_is_subpelmv_in_range(mv_limits, candidate_mv[0]) == 0) continue;
#endif // CONFIG_C071_SUBBLK_WARPMV
const MV final_mvd = { candidate_mv[0].row - ref_mv.row,
candidate_mv[0].col - ref_mv.col };
get_mv_projection(&other_mvd, final_mvd, other_ref_dist, cur_ref_dist);
scale_other_mvd(&other_mvd, mbmi->jmvd_scale_mode, mbmi->mode);
#if !CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&other_mvd, cm->features.fr_mv_precision);
#endif // !CONFIG_C071_SUBBLK_WARPMV
candidate_mv[1].row = (int)(other_mv->row + other_mvd.row);
candidate_mv[1].col = (int)(other_mv->col + other_mvd.col);
if (av1_is_subpelmv_in_range(mv_limits, candidate_mv[1]) == 0) continue;
av1_enc_build_one_inter_predictor(second_pred, block_size_wide[bsize],
&candidate_mv[1], inter_pred_params);
mvcost[i] =
check_better(xd, cm, &candidate_mv[0], bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy);
// best mv on the other reference list
if (bestmv->row == candidate_mv[0].row &&
bestmv->col == candidate_mv[0].col) {
// fprintf(stdout, "has selected\n");
best_other_mv->row = candidate_mv[1].row;
best_other_mv->col = candidate_mv[1].col;
}
}
hstep >>= 1;
}
#if CONFIG_C071_SUBBLK_WARPMV
if (av1_is_subpelmv_in_range(&ms_params->mv_limits, *bestmv) == 0)
besterr = INT_MAX;
#endif // CONFIG_C071_SUBBLK_WARPMV
return besterr;
}
// motion search for 2/4/8 pel precision for joint mvd coding
int low_precision_joint_mvd_search(const AV1_COMMON *const cm, MACROBLOCKD *xd,
SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV ref_mv, MV *start_mv, MV *bestmv,
int *distortion, unsigned int *sse1,
int ref_idx, MV *other_mv, MV *best_other_mv,
uint16_t *second_pred,
InterPredParams *inter_pred_params) {
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
MB_MODE_INFO *const mbmi = xd->mi[0];
// perform prediction for second MV
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if CONFIG_C071_SUBBLK_WARPMV
if (mbmi->pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif
lower_mv_precision(&ref_mv, mbmi->pb_mv_precision);
// We are not signaling other_mv. So frame level precision should be okay.
unsigned int besterr = INT_MAX;
*bestmv = *start_mv;
*best_other_mv = *other_mv;
const int same_side = is_ref_frame_same_side(cm, mbmi);
const int cur_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[ref_idx]];
int other_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[1 - ref_idx]];
other_ref_dist = same_side ? other_ref_dist : -other_ref_dist;
int dummy = 0;
const int search_range = 1 << (MV_PRECISION_ONE_PEL - mbmi->pb_mv_precision);
const int search_grid_stride = (2 * search_range + 1);
const search_neighbors neighbors[9] = {
{ { 0, 0 }, 0 * search_grid_stride + 0 },
{ { -search_range, 0 }, -search_range * search_grid_stride + 0 },
{ { 0, -search_range }, 0 * search_grid_stride - search_range },
{ { 0, search_range }, 0 * search_grid_stride + search_range },
{ { search_range, 0 }, search_range * search_grid_stride + 0 },
{ { -search_range, -search_range },
-search_range * search_grid_stride - search_range },
{ { search_range, -search_range },
search_range * search_grid_stride - search_range },
{ { -search_range, search_range },
-search_range * search_grid_stride + search_range },
{ { search_range, search_range },
search_range * search_grid_stride + search_range }
};
const int num_of_search_steps = 3;
for (int i = 0; i < num_of_search_steps; ++i) {
int best_site = -1;
for (int j = 0; j < 9; ++j) {
const MV cur_mv = { (bestmv->row + (neighbors[j].coord.row * 8)),
(bestmv->col + (neighbors[j].coord.col * 8)) };
const MV cur_mvd = { cur_mv.row - ref_mv.row, cur_mv.col - ref_mv.col };
MV other_mvd = { 0, 0 };
MV other_cand_mv = { 0, 0 };
if (av1_is_subpelmv_in_range(mv_limits, cur_mv)) {
get_mv_projection(&other_mvd, cur_mvd, other_ref_dist, cur_ref_dist);
scale_other_mvd(&other_mvd, mbmi->jmvd_scale_mode, mbmi->mode);
#if !CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&other_mvd, cm->features.fr_mv_precision);
#endif // !CONFIG_C071_SUBBLK_WARPMV
other_cand_mv.row = (int)(other_mv->row + other_mvd.row);
other_cand_mv.col = (int)(other_mv->col + other_mvd.col);
if (av1_is_subpelmv_in_range(mv_limits, other_cand_mv) == 0) continue;
av1_enc_build_one_inter_predictor(second_pred, block_size_wide[bsize],
&other_cand_mv, inter_pred_params);
unsigned int sad =
check_better(xd, cm, &cur_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy);
if (sad == besterr && bestmv->row == cur_mv.row &&
bestmv->col == cur_mv.col) {
best_site = j;
// best mv on the other reference list
best_other_mv->row = other_cand_mv.row;
best_other_mv->col = other_cand_mv.col;
}
}
}
if (best_site == -1) {
break;
}
} // end of full-pel search
if (besterr == INT_MAX) {
bestmv->row = ref_mv.row;
bestmv->col = ref_mv.col;
start_mv->row = ref_mv.row;
start_mv->col = ref_mv.col;
}
#if CONFIG_DEBUG
const MV xxmv = { bestmv->row, bestmv->col };
assert(is_this_mv_precision_compliant(xxmv, mbmi->pb_mv_precision));
(void)xxmv;
#endif
return besterr;
}
// motion search for near_new and new_near mode when adaptive MVD resolution is
// applied
int adaptive_mvd_search(const AV1_COMMON *const cm, MACROBLOCKD *xd,
SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv,
MV *bestmv, int *distortion, unsigned int *sse1) {
const int allow_hp = 0;
const int forced_stop = ms_params->forced_stop;
// const int iters_per_step = ms_params->iters_per_step;
MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SUBPEL_SEARCH_TYPE subpel_search_type =
ms_params->var_params.subpel_search_type;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
MB_MODE_INFO *const mbmi = xd->mi[0];
#if BUGFIX_AMVD_AMVR
set_amvd_mv_precision(mbmi, mbmi->max_mv_precision);
mv_cost_params->pb_mv_precision = mbmi->pb_mv_precision;
#else
assert(mbmi->pb_mv_precision == mbmi->max_mv_precision);
#endif
// How many steps to take. A round of 0 means fullpel search only, 1 means
// half-pel, and so on.
int round = AOMMIN(FULL_PEL - forced_stop, FULL_PEL - !allow_hp);
if (cm->features.cur_frame_force_integer_mv) round = 0;
int hstep = 8 >> round; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
if (subpel_search_type != FILTER_UNUSED) {
besterr = upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
} else {
besterr = setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1,
distortion);
}
MV iter_center_mv = start_mv;
const int cand_pos[4][2] = {
{ 0, -1 }, // left
{ 0, +1 }, // right
{ -1, 0 }, // above
{ +1, 0 } // down
};
for (int iter = hstep; iter <= 256;) {
int dummy = 0;
MV candidate_mv[2];
// loop 4 directions, left, right, above, and right
for (int i = 0; i < 4; ++i) {
const MV cur_mvd = { cand_pos[i][0] * iter, cand_pos[i][1] * iter };
candidate_mv[0].row = iter_center_mv.row + cur_mvd.row;
candidate_mv[0].col = iter_center_mv.col + cur_mvd.col;
check_better(xd, cm, &candidate_mv[0], bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy);
}
// fast encoder method to early terminate the MV search
// after searching [-2,+2] MV samples, if the best MV is still within
// [-1/2,1/2], stop the MV search
if (iter >= 16) {
if (abs(bestmv->row - start_mv.row) <= iter / 4 &&
abs(bestmv->col - start_mv.col) <= iter / 4)
break;
}
// allow integer and fractional MVD in (0,1]
if (iter < 8) iter += hstep;
// only allow integer MVD in (1,2]
else if (iter < 16)
iter += 8;
// only allow 4 integer MVD in (2,4]
else if (iter < 32)
iter += 16;
// only allow 8 sample integer MVD in (4,8]
else if (iter < 64)
iter += 32;
// only allow 16 sample integer MVD in (8,16]
else if (iter < 128)
iter += 64;
// only allow 32 sample integer MVD in (16,32]
else
iter += 128;
}
return besterr;
}
int av1_joint_amvd_motion_search(const AV1_COMMON *const cm, MACROBLOCKD *xd,
SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV *start_mv, MV *bestmv,
int *distortion, unsigned int *sse1,
int ref_idx, MV *other_mv, MV *best_other_mv,
uint16_t *second_pred,
InterPredParams *inter_pred_params) {
const int allow_hp_mvd = 0;
const int forced_stop = ms_params->forced_stop;
// const int iters_per_step = ms_params->iters_per_step;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SUBPEL_SEARCH_TYPE subpel_search_type =
ms_params->var_params.subpel_search_type;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
MB_MODE_INFO *const mbmi = xd->mi[0];
// perform prediction for second MV
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if BUGFIX_AMVD_AMVR
set_amvd_mv_precision(mbmi, mbmi->max_mv_precision);
#else
assert(mbmi->pb_mv_precision == mbmi->max_mv_precision);
#endif
// How many steps to take. A round of 0 means fullpel search only, 1 means
// half-pel, and so on.
int round = AOMMIN(FULL_PEL - forced_stop, 3 - !allow_hp_mvd);
if (cm->features.cur_frame_force_integer_mv) round = 0;
int hstep = 8 >> round; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = *start_mv;
*best_other_mv = *other_mv;
if (subpel_search_type != FILTER_UNUSED) {
besterr = upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
} else {
besterr = setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1,
distortion);
}
MV iter_center_mv = *start_mv;
const int cand_pos[4][2] = {
{ 0, -1 }, // left
{ 0, +1 }, // right
{ -1, 0 }, // above
{ +1, 0 } // down
};
const int same_side = is_ref_frame_same_side(cm, mbmi);
const int cur_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[ref_idx]];
int other_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[1 - ref_idx]];
other_ref_dist = same_side ? other_ref_dist : -other_ref_dist;
for (int iter = hstep; iter <= 256;) {
int dummy = 0;
MV candidate_mv[2];
// loop left, right, above, bottom directions
for (int i = 0; i < 4; ++i) {
const MV cur_mvd = { cand_pos[i][0] * iter, cand_pos[i][1] * iter };
MV other_mvd = { 0, 0 };
candidate_mv[0].row = iter_center_mv.row + cur_mvd.row;
candidate_mv[0].col = iter_center_mv.col + cur_mvd.col;
get_mv_projection(&other_mvd, cur_mvd, other_ref_dist, cur_ref_dist);
scale_other_mvd(&other_mvd, mbmi->jmvd_scale_mode, mbmi->mode);
#if !CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&other_mvd,
#if BUGFIX_AMVD_AMVR
cm->features.fr_mv_precision);
#else
mbmi->pb_mv_precision);
#endif
#endif // !CONFIG_C071_SUBBLK_WARPMV
candidate_mv[1].row = (int)(other_mv->row + other_mvd.row);
candidate_mv[1].col = (int)(other_mv->col + other_mvd.col);
if (av1_is_subpelmv_in_range(mv_limits, candidate_mv[1]) == 0) continue;
av1_enc_build_one_inter_predictor(second_pred, block_size_wide[bsize],
&candidate_mv[1], inter_pred_params);
check_better(xd, cm, &candidate_mv[0], bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy);
// best mv on the other reference list
if (bestmv->row == candidate_mv[0].row &&
bestmv->col == candidate_mv[0].col) {
best_other_mv->row = candidate_mv[1].row;
best_other_mv->col = candidate_mv[1].col;
}
}
// fast encoder method to early terminate the MV search
// after searching [-2,+2] MV samples, if the best MV is still within
// [-1/2,1/2], stop the MV search
if (iter >= 16) {
if (abs(bestmv->row - start_mv->row) <= iter / 4 &&
abs(bestmv->col - start_mv->col) <= iter / 4)
break;
}
// allow integer and fractional MVD in (0,1]
if (iter < 8) iter += hstep;
// only allow integer MVD in (1,2]
else if (iter < 16)
iter += 8;
// only allow 4 integer MVD in (2,4]
else if (iter < 32)
iter += 16;
// only allow 8 sample integer MVD in (4,8]
else if (iter < 64)
iter += 32;
// only allow 16 sample integer MVD in (8,16]
else if (iter < 128)
iter += 64;
// only allow 32 sample integer MVD in (16,32]
else
iter += 128;
}
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned_evenmore(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, MV *bestmv,
int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) {
(void)cm;
const int iters_per_step = ms_params->iters_per_step;
const int *cost_list = ms_params->cost_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const MvSubpelPrecision pb_mv_precision = mv_cost_params->pb_mv_precision;
const int forced_stop =
(pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMAX(ms_params->forced_stop,
MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision)
: FULL_PEL;
// The iteration we are current searching for. Iter 0 corresponds to fullpel
// mv, iter 1 to half pel, and so on
int iter = 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf =
is_intrabc_block(xd->mi[0], xd->tree_type)
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
besterr = setup_center_error_facade(
xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion, is_scaled);
// If forced_stop is FULL_PEL, return.
if (forced_stop == FULL_PEL) return besterr;
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
int ir, ic;
int dummy = 0;
get_cost_surf_min(cost_list, &ir, &ic, 2);
if (ir != 0 || ic != 0) {
const MV this_mv = { start_mv.row + 2 * ir, start_mv.col + 2 * ic };
check_better_fast(xd, cm, &this_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
}
} else {
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
if (forced_stop < HALF_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
}
if (forced_stop == EIGHTH_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned_more(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, MV *bestmv,
int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) {
(void)cm;
const int iters_per_step = ms_params->iters_per_step;
const int *cost_list = ms_params->cost_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const MvSubpelPrecision pb_mv_precision = mv_cost_params->pb_mv_precision;
const int forced_stop =
(pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMAX(ms_params->forced_stop,
MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision)
: FULL_PEL;
// The iteration we are current searching for. Iter 0 corresponds to fullpel
// mv, iter 1 to half pel, and so on
int iter = 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf =
is_intrabc_block(xd->mi[0], xd->tree_type)
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
besterr = setup_center_error_facade(
xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion, is_scaled);
// If forced_stop is FULL_PEL, return.
if (forced_stop == FULL_PEL) return besterr;
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
int ir, ic;
get_cost_surf_min(cost_list, &ir, &ic, 1);
if (ir != 0 || ic != 0) {
const MV this_mv = { start_mv.row + ir * hstep,
start_mv.col + ic * hstep };
int dummy = 0;
check_better_fast(xd, cm, &this_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
}
} else {
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
if (forced_stop < HALF_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
if (forced_stop == EIGHTH_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, MV *bestmv,
int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) {
(void)cm;
const int iters_per_step = ms_params->iters_per_step;
const int *cost_list = ms_params->cost_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const MvSubpelPrecision pb_mv_precision = mv_cost_params->pb_mv_precision;
const int forced_stop =
(pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMAX(ms_params->forced_stop,
MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision)
: FULL_PEL;
// The iteration we are current searching for. Iter 0 corresponds to fullpel
// mv, iter 1 to half pel, and so on
int iter = 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf =
is_intrabc_block(xd->mi[0], xd->tree_type)
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
besterr = setup_center_error_facade(
xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion, is_scaled);
// If forced_stop is FULL_PEL, return.
if (forced_stop == FULL_PEL) return besterr;
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX) {
const unsigned int whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
(cost_list[2] < cost_list[4] ? 0 : 2);
const MV left_mv = { start_mv.row, start_mv.col - hstep };
const MV right_mv = { start_mv.row, start_mv.col + hstep };
const MV bottom_mv = { start_mv.row + hstep, start_mv.col };
const MV top_mv = { start_mv.row - hstep, start_mv.col };
const MV bottom_left_mv = { start_mv.row + hstep, start_mv.col - hstep };
const MV bottom_right_mv = { start_mv.row + hstep, start_mv.col + hstep };
const MV top_left_mv = { start_mv.row - hstep, start_mv.col - hstep };
const MV top_right_mv = { start_mv.row - hstep, start_mv.col + hstep };
int dummy = 0;
switch (whichdir) {
case 0: // bottom left quadrant
check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_left_mv, bestmv, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, &dummy, is_scaled);
break;
case 1: // bottom right quadrant
check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_right_mv, bestmv, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, &dummy, is_scaled);
break;
case 2: // top left quadrant
check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
break;
case 3: // top right quadrant
check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
break;
}
} else {
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
if (forced_stop < HALF_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
if (forced_stop == EIGHTH_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
return besterr;
}
int av1_find_best_sub_pixel_tree(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv, MV *bestmv, int *distortion,
unsigned int *sse1,
int_mv *last_mv_search_list) {
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
// How many steps to take. A round of 0 means fullpel search only, 1 means
// half-pel, and so on.
const int round =
(mv_cost_params->pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMIN(FULL_PEL - forced_stop,
mv_cost_params->pb_mv_precision - MV_PRECISION_ONE_PEL)
: 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
besterr = upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
// If forced_stop is FULL_PEL, return.
if (!round) return besterr;
for (int iter = 0; iter < round; ++iter) {
MV iter_center_mv = *bestmv;
if (check_repeated_mv_and_update(last_mv_search_list, iter_center_mv,
iter)) {
return INT_MAX;
}
MV diag_step;
diag_step = first_level_check(xd, cm, iter_center_mv, bestmv, hstep,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
// Check diagonal sub-pixel position
if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) {
second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv,
mv_limits, var_params, mv_cost_params, &besterr,
sse1, distortion);
}
hstep >>= 1;
}
return besterr;
}
// Note(yunqingwang): The following 2 functions are only used in the motion
// vector unit test, which return extreme motion vectors allowed by the MV
// limits.
// Returns the maximum MV.
int av1_return_max_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv, MV *bestmv, int *distortion,
unsigned int *sse1,
int_mv *last_mv_search_list) {
(void)xd;
(void)cm;
(void)start_mv;
(void)sse1;
(void)distortion;
(void)last_mv_search_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
bestmv->row = mv_limits->row_max;
bestmv->col = mv_limits->col_max;
unsigned int besterr = 0;
return besterr;
}
// Returns the minimum MV.
int av1_return_min_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv, MV *bestmv, int *distortion,
unsigned int *sse1,
int_mv *last_mv_search_list) {
(void)xd;
(void)cm;
(void)start_mv;
(void)sse1;
(void)distortion;
(void)last_mv_search_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
bestmv->row = mv_limits->row_min;
bestmv->col = mv_limits->col_min;
return 0;
}
// Computes the cost of the current predictor by going through the whole
// av1_enc_build_inter_predictor pipeline. This is mainly used by warped mv
// during motion_mode_rd. We are going through the whole
// av1_enc_build_inter_predictor because we might have changed the interpolation
// filter, etc before motion_mode_rd is called.
static INLINE unsigned int compute_motion_cost(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, BLOCK_SIZE bsize,
const MV *this_mv) {
unsigned int mse;
unsigned int sse;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint16_t *const src = ms_buffers->src->buf;
const int src_stride = ms_buffers->src->stride;
const uint16_t *const dst = xd->plane[0].dst.buf;
const int dst_stride = xd->plane[0].dst.stride;
const aom_variance_fn_ptr_t *vfp = ms_params->var_params.vfp;
mse = vfp->vf(dst, dst_stride, src, src_stride, &sse);
mse += mv_err_cost(*this_mv, &ms_params->mv_cost_params);
return mse;
}
// Macros to build bitmasks which help us avoid redundant computations
// during warp refinement (av1_refine_warped_mv and
// av1_refine_mv_for_warp_extend)
//
// To explain the idea here, imagine that on the first iteration of the
// loop below, we step rightwards. Then, on the second iteration, the neighbors
// to consider are:
// . . .
// 0 1 .
// . . .
// Where 0 is the initial search point, 1 is the best candidate found in the
// first iteration, and the dots are the other neighbors of point 1.
//
// Naively, we would now need to scan all 8 neighbors of point 1 (point 0 and
// the seven points marked with dots), and compare them to see where to move
// next. However, we already evaluated 5 of those 8 neighbors in the last
// iteration, and decided that they are worse than point 1. So we don't need
// to re-consider these points. We only really need to consider the three
// points which are adjacent to point 1 but *not* to point 0.
//
// As the algorithm goes on, there are other ways that redundant evaluations
// can happen, if the search path curls back around on itself.
//
// To avoid all possible redundancies, we'd have to build a set containing
// every point we have already checked, and this be quite expensive.
//
// So instead, we apply a 95%-effective solution with a much lower overhead:
// we prune out the points which were considered during the previous
// iteration, but we don't worry about any prior iteration. This can be done
// as follows:
//
// We build a static table, called neighbor_mask, which answers the question
// "if we moved in direction X last time, which neighbors are new, and which
// were scanned last iteration?"
// Then we can query this table to quickly determine which points we need to
// evaluate, and which we can skip.
//
// To query the table, the logic is simply:
// neighbor_mask[i] & (1 << j) == "if we moved in direction i last iteration,
// do we need to scan neighbor j this iteration?"
#define NEIGHBOR_MASK4(a, b, c, d) (a | (b << 1) | (c << 2) | (d << 3))
#define NEIGHBOR_MASK8(a, b, c, d, e, f, g, h) \
(a | (b << 1) | (c << 2) | (d << 3) | (e << 4) | (f << 5) | (g << 6) | \
(h << 7))
static const warp_search_config warp_search_info[WARP_SEARCH_METHODS] = {
// WARP_SEARCH_DIAMOND
{
.num_neighbors = 4,
.neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } },
.neighbor_mask = {
// If we stepped left last time, consider all points except right
NEIGHBOR_MASK4(1, 1, 0, 1),
// If we stepped down last time, consider all points except up
NEIGHBOR_MASK4(1, 1, 1, 0),
// Stepped right last time
NEIGHBOR_MASK4(0, 1, 1, 1),
// Stepped up last time
NEIGHBOR_MASK4(1, 0, 1, 1),
},
},
// WARP_SEARCH_SQUARE
{
.num_neighbors = 8,
.neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } },
.neighbor_mask = {
// If we stepped left last time, then we only need to consider 3 points:
// left, up+left, down+left
NEIGHBOR_MASK8(1, 0, 0, 0, 1, 0, 1, 0),
// If we stepped down last time, then we only need to consider 3 points:
// down, down+left, down+right
NEIGHBOR_MASK8(0, 1, 0, 0, 1, 1, 0, 0),
// Stepped right last time
NEIGHBOR_MASK8(0, 0, 1, 0, 0, 1, 0, 1),
// Stepped up last time
NEIGHBOR_MASK8(0, 0, 0, 1, 0, 0, 1, 1),
// If we stepped down+left last time, then we need to consider 5 points:
// down+left, left, up+left, down, down+right
NEIGHBOR_MASK8(1, 1, 0, 0, 1, 1, 1, 0),
// Stepped down+right last time
NEIGHBOR_MASK8(0, 1, 1, 0, 1, 1, 0, 1),
// Stepped up+left last time
NEIGHBOR_MASK8(1, 0, 0, 1, 1, 0, 1, 1),
// Stepped up+right last time
NEIGHBOR_MASK8(0, 0, 1, 1, 0, 1, 1, 1),
},
},
};
// Refines MV in a small range
unsigned int av1_refine_warped_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
BLOCK_SIZE bsize, const int *pts0,
const int *pts_inref0, int total_samples,
#if CONFIG_COMPOUND_WARP_CAUSAL
int8_t ref,
#endif // CONFIG_COMPOUND_WARP_CAUSAL
WARP_SEARCH_METHOD search_method,
int num_iterations) {
MB_MODE_INFO *mbmi = xd->mi[0];
const MV *neighbors = warp_search_info[search_method].neighbors;
const int num_neighbors = warp_search_info[search_method].num_neighbors;
const uint8_t *neighbor_mask = warp_search_info[search_method].neighbor_mask;
#if CONFIG_COMPOUND_WARP_CAUSAL
MV *best_mv = &mbmi->mv[ref].as_mv;
WarpedMotionParams best_wm_params = mbmi->wm_params[ref];
int best_num_proj_ref = mbmi->num_proj_ref[ref];
#else // CONFIG_COMPOUND_WARP_CAUSAL
MV *best_mv = &mbmi->mv[0].as_mv;
#if CONFIG_EXTENDED_WARP_PREDICTION
WarpedMotionParams best_wm_params = mbmi->wm_params[0];
#else
WarpedMotionParams best_wm_params = mbmi->wm_params;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
int best_num_proj_ref = mbmi->num_proj_ref;
#endif // CONFIG_COMPOUND_WARP_CAUSAL
unsigned int bestmse;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const int mv_shift =
(MV_PRECISION_ONE_EIGHTH_PEL - ms_params->mv_cost_params.pb_mv_precision);
// Calculate the center position's error
assert(av1_is_subpelmv_in_range(mv_limits, *best_mv));
bestmse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
// MV search
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// First iteration always scans all neighbors
uint8_t valid_neighbors = UINT8_MAX;
for (int ite = 0; ite < num_iterations; ++ite) {
int best_idx = -1;
for (int idx = 0; idx < num_neighbors; ++idx) {
if ((valid_neighbors & (1 << idx)) == 0) {
continue;
}
unsigned int thismse;
MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift),
best_mv->col + neighbors[idx].col * (1 << mv_shift) };
if (av1_is_subpelmv_in_range(mv_limits, this_mv)) {
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
if (total_samples > 1)
#if CONFIG_COMPOUND_WARP_CAUSAL
mbmi->num_proj_ref[ref] =
#else
mbmi->num_proj_ref =
#endif // CONFIG_COMPOUND_WARP_CAUSAL
av1_selectSamples(&this_mv, pts, pts_inref, total_samples, bsize);
#if CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_COMPOUND_WARP_CAUSAL
if (!av1_find_projection(mbmi->num_proj_ref[ref], pts, pts_inref, bsize,
this_mv, &mbmi->wm_params[ref], mi_row,
#else
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
this_mv, &mbmi->wm_params[0], mi_row,
#endif // CONFIG_COMPOUND_WARP_CAUSAL
mi_col)) {
#else
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
this_mv, &mbmi->wm_params, mi_row, mi_col)) {
#endif // CONFIG_EXTENDED_WARP_PREDICTION
thismse = compute_motion_cost(xd, cm, ms_params, bsize, &this_mv);
if (thismse < bestmse) {
best_idx = idx;
#if CONFIG_COMPOUND_WARP_CAUSAL
best_wm_params = mbmi->wm_params[ref];
best_num_proj_ref = mbmi->num_proj_ref[ref];
#else
#if CONFIG_EXTENDED_WARP_PREDICTION
best_wm_params = mbmi->wm_params[0];
#else
best_wm_params = mbmi->wm_params;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
best_num_proj_ref = mbmi->num_proj_ref;
#endif
bestmse = thismse;
}
}
}
}
if (best_idx == -1) break;
if (best_idx >= 0) {
best_mv->row += neighbors[best_idx].row * (1 << mv_shift);
best_mv->col += neighbors[best_idx].col * (1 << mv_shift);
valid_neighbors = neighbor_mask[best_idx];
}
}
#if CONFIG_COMPOUND_WARP_CAUSAL
mbmi->wm_params[ref] = best_wm_params;
mbmi->num_proj_ref[ref] = best_num_proj_ref;
#else
#if CONFIG_EXTENDED_WARP_PREDICTION
mbmi->wm_params[0] = best_wm_params;
#else
mbmi->wm_params = best_wm_params;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
mbmi->num_proj_ref = best_num_proj_ref;
#endif
return bestmse;
}
#if CONFIG_EXTENDED_WARP_PREDICTION
#define MAX_WARP_DELTA_ITERS 8
// Returns 1 if able to select a good model, 0 if not
// TODO(rachelbarker):
// This function cannot use the same neighbor pruning used in the other warp
// search functions, due to the way that it alternates MV and warp parameter
// refinement. Need to revisit this function in phase 2 and revisit whether
// there is a good way to do something similar.
int av1_pick_warp_delta(const AV1_COMMON *const cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
const ModeCosts *mode_costs,
WARP_CANDIDATE *warp_param_stack) {
WarpedMotionParams *params = &mbmi->wm_params[0];
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
int mi_row = xd->mi_row;
int mi_col = xd->mi_col;
// Note(rachelbarker): Technically we can refine MVs for the AMVDNEWMV mode
// too, but it requires more complex logic for less payoff compared to
// refinement for NEWMV. So we don't do that currently.
bool can_refine_mv = (mbmi->mode == NEWMV);
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
WarpedMotionParams base_params;
// Motion vector to use at the center of the block.
// This is the MV which should be passed into av1_set_warp_translation()
// to determine the translational part of the model, and may differ from
// `best_mv`, which is the signaled MV (mbmi->mv[0]) and is passed into
// compute_motion_cost() to calculate the motion vector cost.
//
// For (AMVD)NEWMV, this will be the same as mbmi->mv[0], and will need to
// be updated if we refine that motion vector.
// For NEARMV and GLOBALMV, this will be derived from the base warp model,
// and may differ from mbmi->mv[0]. But in these cases it won't be refined.
int_mv center_mv;
av1_get_warp_base_params(cm, mbmi, &base_params, &center_mv,
warp_param_stack);
MV *best_mv = &mbmi->mv[0].as_mv;
WarpedMotionParams best_wm_params;
int rate, sse;
int delta;
uint64_t best_rd, inc_rd, dec_rd;
int valid;
static const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } };
static const int num_neighbors = 8;
const int mv_shift =
(MV_PRECISION_ONE_EIGHTH_PEL - ms_params->mv_cost_params.pb_mv_precision);
const int error_per_bit = ms_params->mv_cost_params.mv_costs->errorperbit;
// Set up initial model by copying global motion model
// and adjusting for the chosen motion vector
params->wmtype = ROTZOOM;
params->wmmat[2] = base_params.wmmat[2];
params->wmmat[3] = base_params.wmmat[3];
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
av1_reduce_warp_model(params);
#if CONFIG_EXT_WARP_FILTER
av1_get_shear_params(params);
params->invalid = 0;
#else
valid = av1_get_shear_params(params);
params->invalid = !valid;
if (!valid) {
// Don't try to refine from a broken starting point
return 0;
}
#endif // CONFIG_EXT_WARP_FILTER
av1_set_warp_translation(mi_row, mi_col, bsize, center_mv.as_mv, params);
// Calculate initial error
best_wm_params = *params;
rate = av1_cost_warp_delta(cm, xd, mbmi, mbmi_ext, mode_costs);
sse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
best_rd = sse + (int)ROUND_POWER_OF_TWO_64((int64_t)rate * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT -
RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
// Refine model, by making a few passes through the available
// parameters and trying to increase/decrease them
const int step_size = (1 << WARP_DELTA_STEP_BITS);
for (int iter = 0; iter < MAX_WARP_DELTA_ITERS; iter++) {
int center_best_so_far = 1;
if (can_refine_mv) {
int best_idx = -1;
// Load non-translational part of the warp model
// This part will not be changed in the following loop,
// and the shear part has already been calculated (and is known to
// be valid), which saves us a lot of recalculation.
*params = best_wm_params;
// Cost up the non-translational part of the model. Again, this will
// not change between iterations of the following loop
rate = av1_cost_warp_delta(cm, xd, mbmi, mbmi_ext, mode_costs);
for (int idx = 0; idx < num_neighbors; ++idx) {
MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift),
best_mv->col + neighbors[idx].col * (1 << mv_shift) };
if (av1_is_subpelmv_in_range(mv_limits, this_mv)) {
// Update model and costs according to the motion vector which
// is being tried out this iteration
av1_set_warp_translation(mi_row, mi_col, bsize, this_mv, params);
unsigned int this_sse =
compute_motion_cost(xd, cm, ms_params, bsize, &this_mv);
uint64_t this_rd =
this_sse + (int)ROUND_POWER_OF_TWO_64(
(int64_t)rate * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
if (this_rd < best_rd) {
best_idx = idx;
best_wm_params = *params;
best_rd = this_rd;
}
}
}
if (best_idx >= 0) {
// Commit to this motion vector
best_mv->row += neighbors[best_idx].row * (1 << mv_shift);
best_mv->col += neighbors[best_idx].col * (1 << mv_shift);
center_mv.as_mv = *best_mv;
}
}
for (int param_index = 2; param_index < 4; param_index++) {
// Try increasing the parameter
*params = best_wm_params;
params->wmmat[param_index] += step_size;
delta = params->wmmat[param_index] - base_params.wmmat[param_index];
if (abs(delta) > WARP_DELTA_MAX) {
inc_rd = UINT64_MAX;
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
#if CONFIG_EXT_WARP_FILTER
valid =
av1_is_warp_model_reduced(params) && av1_get_shear_params(params);
#else
av1_reduce_warp_model(params);
valid = av1_get_shear_params(params);
params->invalid = !valid;
#endif // CONFIG_EXT_WARP_FILTER
if (valid) {
av1_set_warp_translation(mi_row, mi_col, bsize, center_mv.as_mv,
params);
rate = av1_cost_warp_delta(cm, xd, mbmi, mbmi_ext, mode_costs);
sse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
inc_rd = sse + (int)ROUND_POWER_OF_TWO_64(
(int64_t)rate * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
} else {
inc_rd = UINT64_MAX;
}
}
WarpedMotionParams inc_params = *params;
// Try decreasing the parameter
*params = best_wm_params;
params->wmmat[param_index] -= step_size;
delta = params->wmmat[param_index] - base_params.wmmat[param_index];
if (abs(delta) > WARP_DELTA_MAX) {
dec_rd = UINT64_MAX;
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
#if CONFIG_EXT_WARP_FILTER
valid =
av1_is_warp_model_reduced(params) && av1_get_shear_params(params);
#else
av1_reduce_warp_model(params);
valid = av1_get_shear_params(params);
params->invalid = !valid;
#endif // CONFIG_EXT_WARP_FILTER
if (valid) {
av1_set_warp_translation(mi_row, mi_col, bsize, center_mv.as_mv,
params);
rate = av1_cost_warp_delta(cm, xd, mbmi, mbmi_ext, mode_costs);
sse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
dec_rd = sse + (int)ROUND_POWER_OF_TWO_64(
(int64_t)rate * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
} else {
dec_rd = UINT64_MAX;
}
}
WarpedMotionParams dec_params = *params;
// Pick the best parameter value at this level
if (inc_rd < best_rd) {
if (dec_rd < inc_rd) {
// Decreasing is best
best_wm_params = dec_params;
best_rd = dec_rd;
center_best_so_far = 0;
} else {
// Increasing is best
best_wm_params = inc_params;
best_rd = inc_rd;
center_best_so_far = 0;
}
} else if (dec_rd < best_rd) {
// Decreasing is best
best_wm_params = dec_params;
best_rd = dec_rd;
center_best_so_far = 0;
} else {
// Current is best
// No need to change anything
}
}
if (center_best_so_far) {
break;
}
}
mbmi->wm_params[0] = best_wm_params;
return 1;
}
// Returns 1 if able to select a good model, 0 if not
int av1_refine_mv_for_base_param_warp_model(
const AV1_COMMON *const cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
WARP_SEARCH_METHOD search_method, int num_iterations) {
WarpedMotionParams *params = &mbmi->wm_params[0];
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
int mi_row = xd->mi_row;
int mi_col = xd->mi_col;
assert(IMPLIES(mbmi->warpmv_with_mvd_flag, mbmi->mode == WARPMV));
bool can_refine_mv = (mbmi->mode == NEWMV ||
(mbmi->mode == WARPMV && mbmi->warpmv_with_mvd_flag));
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
// get the base parameters
WarpedMotionParams base_params;
int_mv center_mv;
av1_get_warp_base_params(
cm, mbmi, &base_params, &center_mv,
mbmi_ext->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)]);
*params = base_params;
av1_set_warp_translation(mi_row, mi_col, bsize, center_mv.as_mv, params);
int valid = av1_get_shear_params(params);
params->invalid = !valid;
if (!valid) {
// Don't try to refine from a broken starting point
return 0;
}
// parameters are valid however, mv refinement is not supported
if (!can_refine_mv) return 1; // returning 1 means valid model is found
WarpedMotionParams best_wm_params;
int sse;
uint64_t best_rd;
MV *best_mv = &mbmi->mv[0].as_mv;
const MV *neighbors = warp_search_info[search_method].neighbors;
const int num_neighbors = warp_search_info[search_method].num_neighbors;
const uint8_t *neighbor_mask = warp_search_info[search_method].neighbor_mask;
const int mv_shift =
(MV_PRECISION_ONE_EIGHTH_PEL - ms_params->mv_cost_params.pb_mv_precision);
// Calculate initial error
best_wm_params = *params;
sse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
best_rd = sse;
// First iteration always scans all neighbors
uint8_t valid_neighbors = UINT8_MAX;
for (int ite = 0; ite < num_iterations; ++ite) {
int best_idx = -1;
*params = base_params; // best_wm_params;
for (int idx = 0; idx < num_neighbors; ++idx) {
if ((valid_neighbors & (1 << idx)) == 0) {
continue;
}
MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift),
best_mv->col + neighbors[idx].col * (1 << mv_shift) };
if (av1_is_subpelmv_in_range(mv_limits, this_mv)) {
// Update model and costs according to the motion vector which
// is being tried out this iteration
av1_set_warp_translation(mi_row, mi_col, bsize, this_mv, params);
if (!av1_get_shear_params(params)) continue;
unsigned int this_sse =
compute_motion_cost(xd, cm, ms_params, bsize, &this_mv);
uint64_t this_rd = this_sse;
if (this_rd < best_rd) {
best_idx = idx;
best_wm_params = *params;
best_rd = this_rd;
}
}
}
if (best_idx == -1) break;
if (best_idx >= 0) {
// Commit to this motion vector
best_mv->row += neighbors[best_idx].row * (1 << mv_shift);
best_mv->col += neighbors[best_idx].col * (1 << mv_shift);
center_mv.as_mv = *best_mv;
valid_neighbors = neighbor_mask[best_idx];
}
}
mbmi->wm_params[0] = best_wm_params;
return 1;
}
// Try to improve the motion vector over the one determined by NEWMV search,
// by running the full WARP_EXTEND prediction pipeline.
// For now, this uses the same method as av1_refine_warped_mv()
// TODO(rachelbarker): See if we can improve this and av1_refine_warped_mv().
void av1_refine_mv_for_warp_extend(const AV1_COMMON *cm, MACROBLOCKD *xd,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
bool neighbor_is_above, BLOCK_SIZE bsize,
const WarpedMotionParams *neighbor_params,
WARP_SEARCH_METHOD search_method,
int num_iterations) {
MB_MODE_INFO *mbmi = xd->mi[0];
const MV *neighbors = warp_search_info[search_method].neighbors;
const int num_neighbors = warp_search_info[search_method].num_neighbors;
const uint8_t *neighbor_mask = warp_search_info[search_method].neighbor_mask;
const int mv_shift =
(MV_PRECISION_ONE_EIGHTH_PEL - ms_params->mv_cost_params.pb_mv_precision);
MV *best_mv = &mbmi->mv[0].as_mv;
WarpedMotionParams best_wm_params = mbmi->wm_params[0];
unsigned int bestmse;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
// Before this function is called, motion_mode_rd will have selected a valid
// warp model, and stored it into mbmi->wm_params, but we have not yet
// actually built and evaluated the resulting prediction
assert(av1_is_subpelmv_in_range(mv_limits, *best_mv));
bestmse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// First iteration always scans all neighbors
uint8_t valid_neighbors = UINT8_MAX;
for (int ite = 0; ite < num_iterations; ++ite) {
int best_idx = -1;
for (int idx = 0; idx < num_neighbors; ++idx) {
if ((valid_neighbors & (1 << idx)) == 0) {
continue;
}
unsigned int thismse;
MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift),
best_mv->col + neighbors[idx].col * (1 << mv_shift) };
if (av1_is_subpelmv_in_range(mv_limits, this_mv)) {
if (!av1_extend_warp_model(neighbor_is_above, bsize, &this_mv, mi_row,
mi_col, neighbor_params,
&mbmi->wm_params[0])) {
thismse = compute_motion_cost(xd, cm, ms_params, bsize, &this_mv);
if (thismse < bestmse) {
best_idx = idx;
best_wm_params = mbmi->wm_params[0];
bestmse = thismse;
}
}
}
}
if (best_idx == -1) break;
if (best_idx >= 0) {
best_mv->row += neighbors[best_idx].row * (1 << mv_shift);
best_mv->col += neighbors[best_idx].col * (1 << mv_shift);
valid_neighbors = neighbor_mask[best_idx];
}
}
mbmi->wm_params[0] = best_wm_params;
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// Calculates the variance of prediction residue
static int upsampled_obmc_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm,
const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type;
const int w = var_params->w;
const int h = var_params->h;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const uint16_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int ref_stride = ms_buffers->ref->stride;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
unsigned int besterr;
DECLARE_ALIGNED(16, uint16_t, pred[MAX_SB_SQUARE]);
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd,
subpel_search_type, 0);
besterr = vfp->ovf(pred, w, wsrc, mask, sse);
return besterr;
}
static unsigned int upsampled_setup_obmc_center_error(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
unsigned int besterr =
upsampled_obmc_pref_error(xd, cm, this_mv, var_params, sse1);
*distortion = besterr;
besterr += mv_err_cost(*this_mv, mv_cost_params);
return besterr;
}
// Estimates whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account.
static INLINE unsigned int obmc_check_better(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *has_better_mv) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
const int thismse =
upsampled_obmc_pref_error(xd, cm, this_mv, var_params, &sse);
cost = mv_err_cost(*this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*has_better_mv |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
static AOM_FORCE_INLINE MV obmc_first_level_check(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV *best_mv,
const int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
int dummy = 0;
const MV left_mv = { this_mv.row, this_mv.col - hstep };
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
const unsigned int left =
obmc_check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int right =
obmc_check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int up =
obmc_check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int down =
obmc_check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
obmc_check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
return diag_step;
}
// A newer version of second level check for obmc that gives better quality.
static AOM_FORCE_INLINE void obmc_second_level_check_v2(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step,
MV *best_mv, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
assert(best_mv->row == this_mv.row + diag_step.row ||
best_mv->col == this_mv.col + diag_step.col);
if (CHECK_MV_EQUAL(this_mv, *best_mv)) {
return;
} else if (this_mv.row == best_mv->row) {
// Search away from diagonal step since diagonal search did not provide any
// improvement
diag_step.row *= -1;
} else if (this_mv.col == best_mv->col) {
diag_step.col *= -1;
}
const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col };
const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col };
const MV diag_bias_mv = { best_mv->row + diag_step.row,
best_mv->col + diag_step.col };
int has_better_mv = 0;
obmc_check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
obmc_check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
obmc_check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
}
}
int av1_find_best_obmc_sub_pixel_tree_up(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, MV *bestmv,
int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) {
(void)last_mv_search_list;
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
int hstep = INIT_SUBPEL_STEP_SIZE;
const int round =
(mv_cost_params->pb_mv_precision >= MV_PRECISION_ONE_PEL)
? AOMMIN(FULL_PEL - forced_stop,
mv_cost_params->pb_mv_precision - MV_PRECISION_ONE_PEL)
: 0;
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
besterr = upsampled_setup_obmc_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
for (int iter = 0; iter < round; ++iter) {
MV iter_center_mv = *bestmv;
MV diag_step = obmc_first_level_check(xd, cm, iter_center_mv, bestmv, hstep,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) {
obmc_second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
}
hstep >>= 1;
}
return besterr;
}
// =============================================================================
// Public cost function: mv_cost + pred error
// =============================================================================
int av1_get_mvpred_sse(const MV_COST_PARAMS *mv_cost_params,
const FULLPEL_MV best_mv,
const aom_variance_fn_ptr_t *vfp,
const struct buf_2d *src, const struct buf_2d *pre) {
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV mv = get_mv_from_fullmv(&best_mv);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*mv_cost_params->ref_mv, &sub_mv_offset,
mv_cost_params->pb_mv_precision);
if (mv_cost_params->pb_mv_precision >= MV_PRECISION_HALF_PEL) {
mv.col += sub_mv_offset.col;
mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
unsigned int sse, var;
var = vfp->vf(src->buf, src->stride, get_buf_from_fullmv(pre, &best_mv),
pre->stride, &sse);
(void)var;
return sse + mv_err_cost(mv, mv_cost_params);
}
static INLINE int get_mvpred_av_var(const MV_COST_PARAMS *mv_cost_params,
const FULLPEL_MV best_mv,
const uint16_t *second_pred,
const aom_variance_fn_ptr_t *vfp,
const struct buf_2d *src,
const struct buf_2d *pre) {
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV mv = get_mv_from_fullmv(&best_mv);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*mv_cost_params->ref_mv, &sub_mv_offset,
mv_cost_params->pb_mv_precision);
if (mv_cost_params->pb_mv_precision >= MV_PRECISION_HALF_PEL) {
mv.col += sub_mv_offset.col;
mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
unsigned int unused;
return vfp->svaf(get_buf_from_fullmv(pre, &best_mv), pre->stride, 0, 0,
src->buf, src->stride, &unused, second_pred) +
mv_err_cost(mv, mv_cost_params);
}
static INLINE int get_mvpred_mask_var(
const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv,
const uint16_t *second_pred, const uint8_t *mask, int mask_stride,
int invert_mask, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src,
const struct buf_2d *pre) {
#if !CONFIG_C071_SUBBLK_WARPMV
const
#endif // !CONFIG_C071_SUBBLK_WARPMV
MV mv = get_mv_from_fullmv(&best_mv);
#if CONFIG_C071_SUBBLK_WARPMV
MV sub_mv_offset = { 0, 0 };
get_phase_from_mv(*mv_cost_params->ref_mv, &sub_mv_offset,
mv_cost_params->pb_mv_precision);
if (mv_cost_params->pb_mv_precision >= MV_PRECISION_HALF_PEL) {
mv.col += sub_mv_offset.col;
mv.row += sub_mv_offset.row;
}
#endif // CONFIG_C071_SUBBLK_WARPMV
unsigned int unused;
return vfp->msvf(get_buf_from_fullmv(pre, &best_mv), pre->stride, 0, 0,
src->buf, src->stride, second_pred, mask, mask_stride,
invert_mask, &unused) +
mv_err_cost(mv, mv_cost_params);
}
int av1_get_mvpred_compound_var(
const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv,
const uint16_t *second_pred, const uint8_t *mask, int mask_stride,
int invert_mask, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src,
const struct buf_2d *pre) {
if (mask) {
return get_mvpred_mask_var(mv_cost_params, best_mv, second_pred, mask,
mask_stride, invert_mask, vfp, src, pre);
} else {
return get_mvpred_av_var(mv_cost_params, best_mv, second_pred, vfp, src,
pre);
}
}