blob: d21def43a847baed3d624d35f6d3671da7242d09 [file] [log] [blame]
Hui Su8e154702018-03-23 16:10:57 -07001/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#include <assert.h>
Alexander Bokov9b5fb2c2018-08-27 14:37:21 -070013#include <math.h>
Hui Su8e154702018-03-23 16:10:57 -070014
Alexander Bokov9b5fb2c2018-08-27 14:37:21 -070015#include "aom_dsp/aom_dsp_common.h"
Hui Su8e154702018-03-23 16:10:57 -070016#include "av1/encoder/ml.h"
17
18void av1_nn_predict(const float *features, const NN_CONFIG *nn_config,
19 float *output) {
20 int num_input_nodes = nn_config->num_inputs;
21 int buf_index = 0;
22 float buf[2][NN_MAX_NODES_PER_LAYER];
23 const float *input_nodes = features;
24
25 // Propagate hidden layers.
26 const int num_layers = nn_config->num_hidden_layers;
27 assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
28 for (int layer = 0; layer < num_layers; ++layer) {
29 const float *weights = nn_config->weights[layer];
30 const float *bias = nn_config->bias[layer];
31 float *output_nodes = buf[buf_index];
32 const int num_output_nodes = nn_config->num_hidden_nodes[layer];
33 assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
34 for (int node = 0; node < num_output_nodes; ++node) {
35 float val = 0.0f;
36 for (int i = 0; i < num_input_nodes; ++i)
37 val += weights[i] * input_nodes[i];
38 val += bias[node];
39 // ReLU as activation function.
40 val = val > 0.0f ? val : 0.0f; // Could use AOMMAX().
41 output_nodes[node] = val;
42 weights += num_input_nodes;
43 }
44 num_input_nodes = num_output_nodes;
45 input_nodes = output_nodes;
46 buf_index = 1 - buf_index;
47 }
48
49 // Final output layer.
50 const float *weights = nn_config->weights[num_layers];
51 for (int node = 0; node < nn_config->num_outputs; ++node) {
52 const float *bias = nn_config->bias[num_layers];
53 float val = 0.0f;
54 for (int i = 0; i < num_input_nodes; ++i)
55 val += weights[i] * input_nodes[i];
56 output[node] = val + bias[node];
57 weights += num_input_nodes;
58 }
59}
Alexander Bokov9b5fb2c2018-08-27 14:37:21 -070060
61void av1_nn_softmax(const float *input, float *output, int n) {
62 // Softmax function is invariant to adding the same constant
63 // to all input values, so we subtract the maximum input to avoid
64 // possible overflow.
65 float max_inp = input[0];
66 for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]);
67 float sum_out = 0.0f;
68 for (int i = 0; i < n; i++) {
69 output[i] = (float)exp(input[i] - max_inp);
70 sum_out += output[i];
71 }
72 for (int i = 0; i < n; i++) output[i] /= sum_out;
73}