Yaowu Xu | 253c001 | 2016-08-15 10:27:19 -0700 | [diff] [blame^] | 1 | /*Daala video codec |
| 2 | Copyright (c) 2014-2016 Daala project contributors. All rights reserved. |
| 3 | |
| 4 | Redistribution and use in source and binary forms, with or without |
| 5 | modification, are permitted provided that the following conditions are met: |
| 6 | |
| 7 | - Redistributions of source code must retain the above copyright notice, this |
| 8 | list of conditions and the following disclaimer. |
| 9 | |
| 10 | - Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | |
| 14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| 18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.*/ |
| 24 | |
| 25 | #ifdef HAVE_CONFIG_H |
| 26 | # include "config.h" |
| 27 | #endif |
| 28 | |
| 29 | #include <stdlib.h> |
| 30 | #include <math.h> |
| 31 | #include "dering.h" |
| 32 | |
| 33 | const od_dering_opt_vtbl OD_DERING_VTBL_C = { |
| 34 | {od_filter_dering_direction_4x4_c, od_filter_dering_direction_8x8_c}, |
| 35 | {od_filter_dering_orthogonal_4x4_c, od_filter_dering_orthogonal_8x8_c} |
| 36 | }; |
| 37 | |
| 38 | /* Generated from gen_filter_tables.c. */ |
| 39 | const int OD_DIRECTION_OFFSETS_TABLE[8][3] = { |
| 40 | {-1*OD_FILT_BSTRIDE + 1, -2*OD_FILT_BSTRIDE + 2, -3*OD_FILT_BSTRIDE + 3 }, |
| 41 | { 0*OD_FILT_BSTRIDE + 1, -1*OD_FILT_BSTRIDE + 2, -1*OD_FILT_BSTRIDE + 3 }, |
| 42 | { 0*OD_FILT_BSTRIDE + 1, 0*OD_FILT_BSTRIDE + 2, 0*OD_FILT_BSTRIDE + 3 }, |
| 43 | { 0*OD_FILT_BSTRIDE + 1, 1*OD_FILT_BSTRIDE + 2, 1*OD_FILT_BSTRIDE + 3 }, |
| 44 | { 1*OD_FILT_BSTRIDE + 1, 2*OD_FILT_BSTRIDE + 2, 3*OD_FILT_BSTRIDE + 3 }, |
| 45 | { 1*OD_FILT_BSTRIDE + 0, 2*OD_FILT_BSTRIDE + 1, 3*OD_FILT_BSTRIDE + 1 }, |
| 46 | { 1*OD_FILT_BSTRIDE + 0, 2*OD_FILT_BSTRIDE + 0, 3*OD_FILT_BSTRIDE + 0 }, |
| 47 | { 1*OD_FILT_BSTRIDE + 0, 2*OD_FILT_BSTRIDE - 1, 3*OD_FILT_BSTRIDE - 1 }, |
| 48 | }; |
| 49 | |
| 50 | const double OD_DERING_GAIN_TABLE[OD_DERING_LEVELS] = { |
| 51 | 0, 0.5, 0.707, 1, 1.41, 2 |
| 52 | }; |
| 53 | |
| 54 | /* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on. |
| 55 | The search minimizes the weighted variance along all the lines in a |
| 56 | particular direction, i.e. the squared error between the input and a |
| 57 | "predicted" block where each pixel is replaced by the average along a line |
| 58 | in a particular direction. Since each direction have the same sum(x^2) term, |
| 59 | that term is never computed. See Section 2, step 2, of: |
| 60 | http://jmvalin.ca/notes/intra_paint.pdf */ |
| 61 | static int od_dir_find8(const od_dering_in *img, int stride, int32_t *var, |
| 62 | int coeff_shift) { |
| 63 | int i; |
| 64 | int32_t cost[8] = {0}; |
| 65 | int partial[8][15] = {{0}}; |
| 66 | int32_t best_cost = 0; |
| 67 | int best_dir = 0; |
| 68 | /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n. |
| 69 | The output is then 840 times larger, but we don't care for finding |
| 70 | the max. */ |
| 71 | static const int div_table[] = {0, 840, 420, 280, 210, 168, 140, 120, 105}; |
| 72 | for (i = 0; i < 8; i++) { |
| 73 | int j; |
| 74 | for (j = 0; j < 8; j++) { |
| 75 | int x; |
| 76 | /* We subtract 128 here to reduce the maximum range of the squared |
| 77 | partial sums. */ |
| 78 | x = (img[i*stride + j] >> coeff_shift) - 128; |
| 79 | partial[0][i + j] += x; |
| 80 | partial[1][i + j/2] += x; |
| 81 | partial[2][i] += x; |
| 82 | partial[3][3 + i - j/2] += x; |
| 83 | partial[4][7 + i - j] += x; |
| 84 | partial[5][3 - i/2 + j] += x; |
| 85 | partial[6][j] += x; |
| 86 | partial[7][i/2 + j] += x; |
| 87 | } |
| 88 | } |
| 89 | for (i = 0; i < 8; i++) { |
| 90 | cost[2] += partial[2][i]*partial[2][i]; |
| 91 | cost[6] += partial[6][i]*partial[6][i]; |
| 92 | } |
| 93 | cost[2] *= div_table[8]; |
| 94 | cost[6] *= div_table[8]; |
| 95 | for (i = 0; i < 7; i++) { |
| 96 | cost[0] += (partial[0][i]*partial[0][i] |
| 97 | + partial[0][14 - i]*partial[0][14 - i])*div_table[i + 1]; |
| 98 | cost[4] += (partial[4][i]*partial[4][i] |
| 99 | + partial[4][14 - i]*partial[4][14 - i])*div_table[i + 1]; |
| 100 | } |
| 101 | cost[0] += partial[0][7]*partial[0][7]*div_table[8]; |
| 102 | cost[4] += partial[4][7]*partial[4][7]*div_table[8]; |
| 103 | for (i = 1; i < 8; i += 2) { |
| 104 | int j; |
| 105 | for (j = 0; j < 4 + 1; j++) { |
| 106 | cost[i] += partial[i][3 + j]*partial[i][3 + j]; |
| 107 | } |
| 108 | cost[i] *= div_table[8]; |
| 109 | for (j = 0; j < 4 - 1; j++) { |
| 110 | cost[i] += (partial[i][j]*partial[i][j] |
| 111 | + partial[i][10 - j]*partial[i][10 - j])*div_table[2*j + 2]; |
| 112 | } |
| 113 | } |
| 114 | for (i = 0; i < 8; i++) { |
| 115 | if (cost[i] > best_cost) { |
| 116 | best_cost = cost[i]; |
| 117 | best_dir = i; |
| 118 | } |
| 119 | } |
| 120 | /* Difference between the optimal variance and the variance along the |
| 121 | orthogonal direction. Again, the sum(x^2) terms cancel out. */ |
| 122 | *var = best_cost - cost[(best_dir + 4) & 7]; |
| 123 | /* We'd normally divide by 840, but dividing by 1024 is close enough |
| 124 | for what we're going to do with this. */ |
| 125 | *var >>= 10; |
| 126 | return best_dir; |
| 127 | } |
| 128 | |
| 129 | #define OD_DERING_VERY_LARGE (30000) |
| 130 | #define OD_DERING_INBUF_SIZE ((OD_BSIZE_MAX + 2*OD_FILT_BORDER)*\ |
| 131 | (OD_BSIZE_MAX + 2*OD_FILT_BORDER)) |
| 132 | |
| 133 | /* Smooth in the direction detected. */ |
| 134 | void od_filter_dering_direction_c(int16_t *y, int ystride, const int16_t *in, |
| 135 | int ln, int threshold, int dir) { |
| 136 | int i; |
| 137 | int j; |
| 138 | int k; |
| 139 | static const int taps[3] = {3, 2, 2}; |
| 140 | for (i = 0; i < 1 << ln; i++) { |
| 141 | for (j = 0; j < 1 << ln; j++) { |
| 142 | int16_t sum; |
| 143 | int16_t xx; |
| 144 | int16_t yy; |
| 145 | xx = in[i*OD_FILT_BSTRIDE + j]; |
| 146 | sum= 0; |
| 147 | for (k = 0; k < 3; k++) { |
| 148 | int16_t p0; |
| 149 | int16_t p1; |
| 150 | p0 = in[i*OD_FILT_BSTRIDE + j + OD_DIRECTION_OFFSETS_TABLE[dir][k]] |
| 151 | - xx; |
| 152 | p1 = in[i*OD_FILT_BSTRIDE + j - OD_DIRECTION_OFFSETS_TABLE[dir][k]] |
| 153 | - xx; |
| 154 | if (abs(p0) < threshold) sum += taps[k]*p0; |
| 155 | if (abs(p1) < threshold) sum += taps[k]*p1; |
| 156 | } |
| 157 | yy = xx + ((sum + 8) >> 4); |
| 158 | y[i*ystride + j] = yy; |
| 159 | } |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | void od_filter_dering_direction_4x4_c(int16_t *y, int ystride, |
| 164 | const int16_t *in, int threshold, int dir) { |
| 165 | od_filter_dering_direction_c(y, ystride, in, 2, threshold, dir); |
| 166 | } |
| 167 | |
| 168 | void od_filter_dering_direction_8x8_c(int16_t *y, int ystride, |
| 169 | const int16_t *in, int threshold, int dir) { |
| 170 | od_filter_dering_direction_c(y, ystride, in, 3, threshold, dir); |
| 171 | } |
| 172 | |
| 173 | /* Smooth in the direction orthogonal to what was detected. */ |
| 174 | void od_filter_dering_orthogonal_c(int16_t *y, int ystride, const int16_t *in, |
| 175 | const od_dering_in *x, int xstride, int ln, int threshold, int dir) { |
| 176 | int i; |
| 177 | int j; |
| 178 | int offset; |
| 179 | if (dir > 0 && dir < 4) offset = OD_FILT_BSTRIDE; |
| 180 | else offset = 1; |
| 181 | for (i = 0; i < 1 << ln; i++) { |
| 182 | for (j = 0; j < 1 << ln; j++) { |
| 183 | int16_t athresh; |
| 184 | int16_t yy; |
| 185 | int16_t sum; |
| 186 | int16_t p; |
| 187 | /* Deringing orthogonal to the direction uses a tighter threshold |
| 188 | because we want to be conservative. We've presumably already |
| 189 | achieved some deringing, so the amount of change is expected |
| 190 | to be low. Also, since we might be filtering across an edge, we |
| 191 | want to make sure not to blur it. That being said, we might want |
| 192 | to be a little bit more aggressive on pure horizontal/vertical |
| 193 | since the ringing there tends to be directional, so it doesn't |
| 194 | get removed by the directional filtering. */ |
| 195 | athresh = OD_MINI(threshold, threshold/3 |
| 196 | + abs(in[i*OD_FILT_BSTRIDE + j] - x[i*xstride + j])); |
| 197 | yy = in[i*OD_FILT_BSTRIDE + j]; |
| 198 | sum = 0; |
| 199 | p = in[i*OD_FILT_BSTRIDE + j + offset] - yy; |
| 200 | if (abs(p) < athresh) sum += p; |
| 201 | p = in[i*OD_FILT_BSTRIDE + j - offset] - yy; |
| 202 | if (abs(p) < athresh) sum += p; |
| 203 | p = in[i*OD_FILT_BSTRIDE + j + 2*offset] - yy; |
| 204 | if (abs(p) < athresh) sum += p; |
| 205 | p = in[i*OD_FILT_BSTRIDE + j - 2*offset] - yy; |
| 206 | if (abs(p) < athresh) sum += p; |
| 207 | y[i*ystride + j] = yy + ((3*sum + 8) >> 4); |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | void od_filter_dering_orthogonal_4x4_c(int16_t *y, int ystride, |
| 213 | const int16_t *in, const od_dering_in *x, int xstride, int threshold, |
| 214 | int dir) { |
| 215 | od_filter_dering_orthogonal_c(y, ystride, in, x, xstride, 2, threshold, dir); |
| 216 | } |
| 217 | |
| 218 | void od_filter_dering_orthogonal_8x8_c(int16_t *y, int ystride, |
| 219 | const int16_t *in, const od_dering_in *x, int xstride, int threshold, |
| 220 | int dir) { |
| 221 | od_filter_dering_orthogonal_c(y, ystride, in, x, xstride, 3, threshold, dir); |
| 222 | } |
| 223 | |
| 224 | /* This table approximates x^0.16 with the index being log2(x). It is clamped |
| 225 | to [-.5, 3]. The table is computed as: |
| 226 | round(256*min(3, max(.5, 1.08*(sqrt(2)*2.^([0:17]+8)/256/256).^.16))) */ |
| 227 | static const int16_t OD_THRESH_TABLE_Q8[18] = { |
| 228 | 128, 134, 150, 168, 188, 210, 234, 262, |
| 229 | 292, 327, 365, 408, 455, 509, 569, 635, |
| 230 | 710, 768, |
| 231 | }; |
| 232 | |
| 233 | /* Compute deringing filter threshold for each 8x8 block based on the |
| 234 | directional variance difference. A high variance difference means that we |
| 235 | have a highly directional pattern (e.g. a high contrast edge), so we can |
| 236 | apply more deringing. A low variance means that we either have a low |
| 237 | contrast edge, or a non-directional texture, so we want to be careful not |
| 238 | to blur. */ |
| 239 | static void od_compute_thresh(int thresh[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS], |
| 240 | int threshold, int32_t var[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS], |
| 241 | int nhb, int nvb) { |
| 242 | int bx; |
| 243 | int by; |
| 244 | for (by = 0; by < nvb; by++) { |
| 245 | for (bx = 0; bx < nhb; bx++) { |
| 246 | int v1; |
| 247 | /* We use the variance of 8x8 blocks to adjust the threshold. */ |
| 248 | v1 = OD_MINI(32767, var[by][bx] >> 6); |
| 249 | thresh[by][bx] = (threshold*OD_THRESH_TABLE_Q8[OD_ILOG(v1)] + 128) >> 8; |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | void od_dering(const od_dering_opt_vtbl *vtbl, int16_t *y, int ystride, |
| 255 | const od_dering_in *x, int xstride, int nhb, int nvb, int sbx, int sby, |
| 256 | int nhsb, int nvsb, int xdec, int dir[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS], |
| 257 | int pli, unsigned char *bskip, int skip_stride, int threshold, int overlap, |
| 258 | int coeff_shift) { |
| 259 | int i; |
| 260 | int j; |
| 261 | int bx; |
| 262 | int by; |
| 263 | int16_t inbuf[OD_DERING_INBUF_SIZE]; |
| 264 | int16_t *in; |
| 265 | int bsize; |
| 266 | int32_t var[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS]; |
| 267 | int thresh[OD_DERING_NBLOCKS][OD_DERING_NBLOCKS]; |
| 268 | bsize = 3 - xdec; |
| 269 | in = inbuf + OD_FILT_BORDER*OD_FILT_BSTRIDE + OD_FILT_BORDER; |
| 270 | /* We avoid filtering the pixels for which some of the pixels to average |
| 271 | are outside the frame. We could change the filter instead, but it would |
| 272 | add special cases for any future vectorization. */ |
| 273 | for (i = 0; i < OD_DERING_INBUF_SIZE; i++) inbuf[i] = OD_DERING_VERY_LARGE; |
| 274 | for (i = -OD_FILT_BORDER*(sby != 0); i < (nvb << bsize) |
| 275 | + OD_FILT_BORDER*(sby != nvsb - 1); i++) { |
| 276 | for (j = -OD_FILT_BORDER*(sbx != 0); j < (nhb << bsize) |
| 277 | + OD_FILT_BORDER*(sbx != nhsb - 1); j++) { |
| 278 | in[i*OD_FILT_BSTRIDE + j] = x[i*xstride + j]; |
| 279 | } |
| 280 | } |
| 281 | if (pli == 0) { |
| 282 | for (by = 0; by < nvb; by++) { |
| 283 | for (bx = 0; bx < nhb; bx++) { |
| 284 | dir[by][bx] = od_dir_find8(&x[8*by*xstride + 8*bx], xstride, |
| 285 | &var[by][bx], coeff_shift); |
| 286 | } |
| 287 | } |
| 288 | od_compute_thresh(thresh, threshold, var, nhb, nvb); |
| 289 | } |
| 290 | else { |
| 291 | for (by = 0; by < nvb; by++) { |
| 292 | for (bx = 0; bx < nhb; bx++) { |
| 293 | thresh[by][bx] = threshold; |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | for (by = 0; by < nvb; by++) { |
| 298 | for (bx = 0; bx < nhb; bx++) { |
| 299 | int skip; |
| 300 | # if defined(DAALA_ODINTRIN) |
| 301 | int xstart; |
| 302 | int ystart; |
| 303 | int xend; |
| 304 | int yend; |
| 305 | xstart = ystart = 0; |
| 306 | xend = yend = (2 >> xdec); |
| 307 | if (overlap) { |
| 308 | xstart -= (sbx != 0); |
| 309 | ystart -= (sby != 0); |
| 310 | xend += (sbx != nhsb - 1); |
| 311 | yend += (sby != nvsb - 1); |
| 312 | } |
| 313 | skip = 1; |
| 314 | /* We look at whether the current block and its 4x4 surrounding (due to |
| 315 | lapping) are skipped to avoid filtering the same content multiple |
| 316 | times. */ |
| 317 | for (i = ystart; i < yend; i++) { |
| 318 | for (j = xstart; j < xend; j++) { |
| 319 | skip = skip && bskip[((by << 1 >> xdec) + i)*skip_stride |
| 320 | + (bx << 1 >> xdec) + j]; |
| 321 | } |
| 322 | } |
| 323 | #else |
| 324 | (void)overlap; |
| 325 | skip = bskip[by*skip_stride + bx]; |
| 326 | #endif |
| 327 | if (skip) thresh[by][bx] = 0; |
| 328 | } |
| 329 | } |
| 330 | for (by = 0; by < nvb; by++) { |
| 331 | for (bx = 0; bx < nhb; bx++) { |
| 332 | (vtbl->filter_dering_direction[bsize - OD_LOG_BSIZE0])( |
| 333 | &y[(by*ystride << bsize) + (bx << bsize)], ystride, |
| 334 | &in[(by*OD_FILT_BSTRIDE << bsize) + (bx << bsize)], |
| 335 | thresh[by][bx], dir[by][bx]); |
| 336 | } |
| 337 | } |
| 338 | for (i = 0; i < nvb << bsize; i++) { |
| 339 | for (j = 0; j < nhb << bsize; j++) { |
| 340 | in[i*OD_FILT_BSTRIDE + j] = y[i*ystride + j]; |
| 341 | } |
| 342 | } |
| 343 | for (by = 0; by < nvb; by++) { |
| 344 | for (bx = 0; bx < nhb; bx++) { |
| 345 | (vtbl->filter_dering_orthogonal[bsize - OD_LOG_BSIZE0])( |
| 346 | &y[(by*ystride << bsize) + (bx << bsize)], ystride, |
| 347 | &in[(by*OD_FILT_BSTRIDE << bsize) + (bx << bsize)], |
| 348 | &x[(by*xstride << bsize) + (bx << bsize)], xstride, |
| 349 | thresh[by][bx], dir[by][bx]); |
| 350 | } |
| 351 | } |
| 352 | } |