Jingning Han | 3ee6db6 | 2015-08-05 19:00:31 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include <assert.h> |
| 12 | #include <limits.h> |
| 13 | #include <math.h> |
| 14 | #include <stdio.h> |
| 15 | #include <stdlib.h> |
| 16 | #include <string.h> |
| 17 | |
| 18 | #include "vpx_mem/vpx_mem.h" |
| 19 | #include "vpx_ports/mem.h" |
| 20 | |
| 21 | #include "vp10/common/vp9_alloccommon.h" |
| 22 | #include "vp10/encoder/vp9_aq_cyclicrefresh.h" |
| 23 | #include "vp10/common/vp9_common.h" |
| 24 | #include "vp10/common/vp9_entropymode.h" |
| 25 | #include "vp10/common/vp9_quant_common.h" |
| 26 | #include "vp10/common/vp9_seg_common.h" |
| 27 | #include "vp10/common/vp9_systemdependent.h" |
| 28 | |
| 29 | #include "vp10/encoder/vp9_encodemv.h" |
| 30 | #include "vp10/encoder/vp9_ratectrl.h" |
| 31 | |
| 32 | // Max rate target for 1080P and below encodes under normal circumstances |
| 33 | // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB |
| 34 | #define MAX_MB_RATE 250 |
| 35 | #define MAXRATE_1080P 2025000 |
| 36 | |
| 37 | #define DEFAULT_KF_BOOST 2000 |
| 38 | #define DEFAULT_GF_BOOST 2000 |
| 39 | |
| 40 | #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 |
| 41 | |
| 42 | #define MIN_BPB_FACTOR 0.005 |
| 43 | #define MAX_BPB_FACTOR 50 |
| 44 | |
| 45 | #define FRAME_OVERHEAD_BITS 200 |
| 46 | |
| 47 | #if CONFIG_VP9_HIGHBITDEPTH |
| 48 | #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
| 49 | do { \ |
| 50 | switch (bit_depth) { \ |
| 51 | case VPX_BITS_8: \ |
| 52 | name = name##_8; \ |
| 53 | break; \ |
| 54 | case VPX_BITS_10: \ |
| 55 | name = name##_10; \ |
| 56 | break; \ |
| 57 | case VPX_BITS_12: \ |
| 58 | name = name##_12; \ |
| 59 | break; \ |
| 60 | default: \ |
| 61 | assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \ |
| 62 | " or VPX_BITS_12"); \ |
| 63 | name = NULL; \ |
| 64 | } \ |
| 65 | } while (0) |
| 66 | #else |
| 67 | #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
| 68 | do { \ |
| 69 | (void) bit_depth; \ |
| 70 | name = name##_8; \ |
| 71 | } while (0) |
| 72 | #endif |
| 73 | |
| 74 | // Tables relating active max Q to active min Q |
| 75 | static int kf_low_motion_minq_8[QINDEX_RANGE]; |
| 76 | static int kf_high_motion_minq_8[QINDEX_RANGE]; |
| 77 | static int arfgf_low_motion_minq_8[QINDEX_RANGE]; |
| 78 | static int arfgf_high_motion_minq_8[QINDEX_RANGE]; |
| 79 | static int inter_minq_8[QINDEX_RANGE]; |
| 80 | static int rtc_minq_8[QINDEX_RANGE]; |
| 81 | |
| 82 | #if CONFIG_VP9_HIGHBITDEPTH |
| 83 | static int kf_low_motion_minq_10[QINDEX_RANGE]; |
| 84 | static int kf_high_motion_minq_10[QINDEX_RANGE]; |
| 85 | static int arfgf_low_motion_minq_10[QINDEX_RANGE]; |
| 86 | static int arfgf_high_motion_minq_10[QINDEX_RANGE]; |
| 87 | static int inter_minq_10[QINDEX_RANGE]; |
| 88 | static int rtc_minq_10[QINDEX_RANGE]; |
| 89 | static int kf_low_motion_minq_12[QINDEX_RANGE]; |
| 90 | static int kf_high_motion_minq_12[QINDEX_RANGE]; |
| 91 | static int arfgf_low_motion_minq_12[QINDEX_RANGE]; |
| 92 | static int arfgf_high_motion_minq_12[QINDEX_RANGE]; |
| 93 | static int inter_minq_12[QINDEX_RANGE]; |
| 94 | static int rtc_minq_12[QINDEX_RANGE]; |
| 95 | #endif |
| 96 | |
| 97 | static int gf_high = 2000; |
| 98 | static int gf_low = 400; |
| 99 | static int kf_high = 5000; |
| 100 | static int kf_low = 400; |
| 101 | |
| 102 | // Functions to compute the active minq lookup table entries based on a |
| 103 | // formulaic approach to facilitate easier adjustment of the Q tables. |
| 104 | // The formulae were derived from computing a 3rd order polynomial best |
| 105 | // fit to the original data (after plotting real maxq vs minq (not q index)) |
| 106 | static int get_minq_index(double maxq, double x3, double x2, double x1, |
| 107 | vpx_bit_depth_t bit_depth) { |
| 108 | int i; |
| 109 | const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq, |
| 110 | maxq); |
| 111 | |
| 112 | // Special case handling to deal with the step from q2.0 |
| 113 | // down to lossless mode represented by q 1.0. |
| 114 | if (minqtarget <= 2.0) |
| 115 | return 0; |
| 116 | |
| 117 | for (i = 0; i < QINDEX_RANGE; i++) { |
| 118 | if (minqtarget <= vp10_convert_qindex_to_q(i, bit_depth)) |
| 119 | return i; |
| 120 | } |
| 121 | |
| 122 | return QINDEX_RANGE - 1; |
| 123 | } |
| 124 | |
| 125 | static void init_minq_luts(int *kf_low_m, int *kf_high_m, |
| 126 | int *arfgf_low, int *arfgf_high, |
| 127 | int *inter, int *rtc, vpx_bit_depth_t bit_depth) { |
| 128 | int i; |
| 129 | for (i = 0; i < QINDEX_RANGE; i++) { |
| 130 | const double maxq = vp10_convert_qindex_to_q(i, bit_depth); |
| 131 | kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); |
| 132 | kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
| 133 | arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); |
| 134 | arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
| 135 | inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); |
| 136 | rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | void vp10_rc_init_minq_luts(void) { |
| 141 | init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, |
| 142 | arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, |
| 143 | inter_minq_8, rtc_minq_8, VPX_BITS_8); |
| 144 | #if CONFIG_VP9_HIGHBITDEPTH |
| 145 | init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, |
| 146 | arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, |
| 147 | inter_minq_10, rtc_minq_10, VPX_BITS_10); |
| 148 | init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, |
| 149 | arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, |
| 150 | inter_minq_12, rtc_minq_12, VPX_BITS_12); |
| 151 | #endif |
| 152 | } |
| 153 | |
| 154 | // These functions use formulaic calculations to make playing with the |
| 155 | // quantizer tables easier. If necessary they can be replaced by lookup |
| 156 | // tables if and when things settle down in the experimental bitstream |
| 157 | double vp10_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) { |
| 158 | // Convert the index to a real Q value (scaled down to match old Q values) |
| 159 | #if CONFIG_VP9_HIGHBITDEPTH |
| 160 | switch (bit_depth) { |
| 161 | case VPX_BITS_8: |
| 162 | return vp10_ac_quant(qindex, 0, bit_depth) / 4.0; |
| 163 | case VPX_BITS_10: |
| 164 | return vp10_ac_quant(qindex, 0, bit_depth) / 16.0; |
| 165 | case VPX_BITS_12: |
| 166 | return vp10_ac_quant(qindex, 0, bit_depth) / 64.0; |
| 167 | default: |
| 168 | assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); |
| 169 | return -1.0; |
| 170 | } |
| 171 | #else |
| 172 | return vp10_ac_quant(qindex, 0, bit_depth) / 4.0; |
| 173 | #endif |
| 174 | } |
| 175 | |
| 176 | int vp10_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
| 177 | double correction_factor, |
| 178 | vpx_bit_depth_t bit_depth) { |
| 179 | const double q = vp10_convert_qindex_to_q(qindex, bit_depth); |
| 180 | int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; |
| 181 | |
| 182 | assert(correction_factor <= MAX_BPB_FACTOR && |
| 183 | correction_factor >= MIN_BPB_FACTOR); |
| 184 | |
| 185 | // q based adjustment to baseline enumerator |
| 186 | enumerator += (int)(enumerator * q) >> 12; |
| 187 | return (int)(enumerator * correction_factor / q); |
| 188 | } |
| 189 | |
| 190 | int vp10_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, |
| 191 | double correction_factor, |
| 192 | vpx_bit_depth_t bit_depth) { |
| 193 | const int bpm = (int)(vp10_rc_bits_per_mb(frame_type, q, correction_factor, |
| 194 | bit_depth)); |
| 195 | return MAX(FRAME_OVERHEAD_BITS, |
| 196 | (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); |
| 197 | } |
| 198 | |
| 199 | int vp10_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { |
| 200 | const RATE_CONTROL *rc = &cpi->rc; |
| 201 | const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| 202 | const int min_frame_target = MAX(rc->min_frame_bandwidth, |
| 203 | rc->avg_frame_bandwidth >> 5); |
| 204 | if (target < min_frame_target) |
| 205 | target = min_frame_target; |
| 206 | if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { |
| 207 | // If there is an active ARF at this location use the minimum |
| 208 | // bits on this frame even if it is a constructed arf. |
| 209 | // The active maximum quantizer insures that an appropriate |
| 210 | // number of bits will be spent if needed for constructed ARFs. |
| 211 | target = min_frame_target; |
| 212 | } |
| 213 | // Clip the frame target to the maximum allowed value. |
| 214 | if (target > rc->max_frame_bandwidth) |
| 215 | target = rc->max_frame_bandwidth; |
| 216 | if (oxcf->rc_max_inter_bitrate_pct) { |
| 217 | const int max_rate = rc->avg_frame_bandwidth * |
| 218 | oxcf->rc_max_inter_bitrate_pct / 100; |
| 219 | target = MIN(target, max_rate); |
| 220 | } |
| 221 | return target; |
| 222 | } |
| 223 | |
| 224 | int vp10_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { |
| 225 | const RATE_CONTROL *rc = &cpi->rc; |
| 226 | const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| 227 | if (oxcf->rc_max_intra_bitrate_pct) { |
| 228 | const int max_rate = rc->avg_frame_bandwidth * |
| 229 | oxcf->rc_max_intra_bitrate_pct / 100; |
| 230 | target = MIN(target, max_rate); |
| 231 | } |
| 232 | if (target > rc->max_frame_bandwidth) |
| 233 | target = rc->max_frame_bandwidth; |
| 234 | return target; |
| 235 | } |
| 236 | |
| 237 | // Update the buffer level for higher temporal layers, given the encoded current |
| 238 | // temporal layer. |
| 239 | static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { |
| 240 | int i = 0; |
| 241 | int current_temporal_layer = svc->temporal_layer_id; |
| 242 | for (i = current_temporal_layer + 1; |
| 243 | i < svc->number_temporal_layers; ++i) { |
| 244 | const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, |
| 245 | svc->number_temporal_layers); |
| 246 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| 247 | RATE_CONTROL *lrc = &lc->rc; |
| 248 | int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - |
| 249 | encoded_frame_size); |
| 250 | lrc->bits_off_target += bits_off_for_this_layer; |
| 251 | |
| 252 | // Clip buffer level to maximum buffer size for the layer. |
| 253 | lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size); |
| 254 | lrc->buffer_level = lrc->bits_off_target; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | // Update the buffer level: leaky bucket model. |
| 259 | static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { |
| 260 | const VP9_COMMON *const cm = &cpi->common; |
| 261 | RATE_CONTROL *const rc = &cpi->rc; |
| 262 | |
| 263 | // Non-viewable frames are a special case and are treated as pure overhead. |
| 264 | if (!cm->show_frame) { |
| 265 | rc->bits_off_target -= encoded_frame_size; |
| 266 | } else { |
| 267 | rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; |
| 268 | } |
| 269 | |
| 270 | // Clip the buffer level to the maximum specified buffer size. |
| 271 | rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size); |
| 272 | rc->buffer_level = rc->bits_off_target; |
| 273 | |
| 274 | if (is_one_pass_cbr_svc(cpi)) { |
| 275 | update_layer_buffer_level(&cpi->svc, encoded_frame_size); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | int vp10_rc_get_default_min_gf_interval( |
| 280 | int width, int height, double framerate) { |
| 281 | // Assume we do not need any constraint lower than 4K 20 fps |
| 282 | static const double factor_safe = 3840 * 2160 * 20.0; |
| 283 | const double factor = width * height * framerate; |
| 284 | const int default_interval = |
| 285 | clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); |
| 286 | |
| 287 | if (factor <= factor_safe) |
| 288 | return default_interval; |
| 289 | else |
| 290 | return MAX(default_interval, |
| 291 | (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); |
| 292 | // Note this logic makes: |
| 293 | // 4K24: 5 |
| 294 | // 4K30: 6 |
| 295 | // 4K60: 12 |
| 296 | } |
| 297 | |
| 298 | int vp10_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { |
| 299 | int interval = MIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); |
| 300 | interval += (interval & 0x01); // Round to even value |
| 301 | return MAX(interval, min_gf_interval); |
| 302 | } |
| 303 | |
| 304 | void vp10_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { |
| 305 | int i; |
| 306 | |
| 307 | if (pass == 0 && oxcf->rc_mode == VPX_CBR) { |
| 308 | rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; |
| 309 | rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; |
| 310 | } else { |
| 311 | rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + |
| 312 | oxcf->best_allowed_q) / 2; |
| 313 | rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + |
| 314 | oxcf->best_allowed_q) / 2; |
| 315 | } |
| 316 | |
| 317 | rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; |
| 318 | rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; |
| 319 | |
| 320 | rc->buffer_level = rc->starting_buffer_level; |
| 321 | rc->bits_off_target = rc->starting_buffer_level; |
| 322 | |
| 323 | rc->rolling_target_bits = rc->avg_frame_bandwidth; |
| 324 | rc->rolling_actual_bits = rc->avg_frame_bandwidth; |
| 325 | rc->long_rolling_target_bits = rc->avg_frame_bandwidth; |
| 326 | rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; |
| 327 | |
| 328 | rc->total_actual_bits = 0; |
| 329 | rc->total_target_bits = 0; |
| 330 | rc->total_target_vs_actual = 0; |
| 331 | |
| 332 | rc->frames_since_key = 8; // Sensible default for first frame. |
| 333 | rc->this_key_frame_forced = 0; |
| 334 | rc->next_key_frame_forced = 0; |
| 335 | rc->source_alt_ref_pending = 0; |
| 336 | rc->source_alt_ref_active = 0; |
| 337 | |
| 338 | rc->frames_till_gf_update_due = 0; |
| 339 | rc->ni_av_qi = oxcf->worst_allowed_q; |
| 340 | rc->ni_tot_qi = 0; |
| 341 | rc->ni_frames = 0; |
| 342 | |
| 343 | rc->tot_q = 0.0; |
| 344 | rc->avg_q = vp10_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); |
| 345 | |
| 346 | for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { |
| 347 | rc->rate_correction_factors[i] = 1.0; |
| 348 | } |
| 349 | |
| 350 | rc->min_gf_interval = oxcf->min_gf_interval; |
| 351 | rc->max_gf_interval = oxcf->max_gf_interval; |
| 352 | if (rc->min_gf_interval == 0) |
| 353 | rc->min_gf_interval = vp10_rc_get_default_min_gf_interval( |
| 354 | oxcf->width, oxcf->height, oxcf->init_framerate); |
| 355 | if (rc->max_gf_interval == 0) |
| 356 | rc->max_gf_interval = vp10_rc_get_default_max_gf_interval( |
| 357 | oxcf->init_framerate, rc->min_gf_interval); |
| 358 | rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| 359 | } |
| 360 | |
| 361 | int vp10_rc_drop_frame(VP9_COMP *cpi) { |
| 362 | const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| 363 | RATE_CONTROL *const rc = &cpi->rc; |
| 364 | |
| 365 | if (!oxcf->drop_frames_water_mark) { |
| 366 | return 0; |
| 367 | } else { |
| 368 | if (rc->buffer_level < 0) { |
| 369 | // Always drop if buffer is below 0. |
| 370 | return 1; |
| 371 | } else { |
| 372 | // If buffer is below drop_mark, for now just drop every other frame |
| 373 | // (starting with the next frame) until it increases back over drop_mark. |
| 374 | int drop_mark = (int)(oxcf->drop_frames_water_mark * |
| 375 | rc->optimal_buffer_level / 100); |
| 376 | if ((rc->buffer_level > drop_mark) && |
| 377 | (rc->decimation_factor > 0)) { |
| 378 | --rc->decimation_factor; |
| 379 | } else if (rc->buffer_level <= drop_mark && |
| 380 | rc->decimation_factor == 0) { |
| 381 | rc->decimation_factor = 1; |
| 382 | } |
| 383 | if (rc->decimation_factor > 0) { |
| 384 | if (rc->decimation_count > 0) { |
| 385 | --rc->decimation_count; |
| 386 | return 1; |
| 387 | } else { |
| 388 | rc->decimation_count = rc->decimation_factor; |
| 389 | return 0; |
| 390 | } |
| 391 | } else { |
| 392 | rc->decimation_count = 0; |
| 393 | return 0; |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | static double get_rate_correction_factor(const VP9_COMP *cpi) { |
| 400 | const RATE_CONTROL *const rc = &cpi->rc; |
| 401 | double rcf; |
| 402 | |
| 403 | if (cpi->common.frame_type == KEY_FRAME) { |
| 404 | rcf = rc->rate_correction_factors[KF_STD]; |
| 405 | } else if (cpi->oxcf.pass == 2) { |
| 406 | RATE_FACTOR_LEVEL rf_lvl = |
| 407 | cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; |
| 408 | rcf = rc->rate_correction_factors[rf_lvl]; |
| 409 | } else { |
| 410 | if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| 411 | !rc->is_src_frame_alt_ref && !cpi->use_svc && |
| 412 | (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) |
| 413 | rcf = rc->rate_correction_factors[GF_ARF_STD]; |
| 414 | else |
| 415 | rcf = rc->rate_correction_factors[INTER_NORMAL]; |
| 416 | } |
| 417 | rcf *= rcf_mult[rc->frame_size_selector]; |
| 418 | return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| 419 | } |
| 420 | |
| 421 | static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { |
| 422 | RATE_CONTROL *const rc = &cpi->rc; |
| 423 | |
| 424 | // Normalize RCF to account for the size-dependent scaling factor. |
| 425 | factor /= rcf_mult[cpi->rc.frame_size_selector]; |
| 426 | |
| 427 | factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| 428 | |
| 429 | if (cpi->common.frame_type == KEY_FRAME) { |
| 430 | rc->rate_correction_factors[KF_STD] = factor; |
| 431 | } else if (cpi->oxcf.pass == 2) { |
| 432 | RATE_FACTOR_LEVEL rf_lvl = |
| 433 | cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; |
| 434 | rc->rate_correction_factors[rf_lvl] = factor; |
| 435 | } else { |
| 436 | if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| 437 | !rc->is_src_frame_alt_ref && !cpi->use_svc && |
| 438 | (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) |
| 439 | rc->rate_correction_factors[GF_ARF_STD] = factor; |
| 440 | else |
| 441 | rc->rate_correction_factors[INTER_NORMAL] = factor; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | void vp10_rc_update_rate_correction_factors(VP9_COMP *cpi) { |
| 446 | const VP9_COMMON *const cm = &cpi->common; |
| 447 | int correction_factor = 100; |
| 448 | double rate_correction_factor = get_rate_correction_factor(cpi); |
| 449 | double adjustment_limit; |
| 450 | |
| 451 | int projected_size_based_on_q = 0; |
| 452 | |
| 453 | // Do not update the rate factors for arf overlay frames. |
| 454 | if (cpi->rc.is_src_frame_alt_ref) |
| 455 | return; |
| 456 | |
| 457 | // Clear down mmx registers to allow floating point in what follows |
| 458 | vpx_clear_system_state(); |
| 459 | |
| 460 | // Work out how big we would have expected the frame to be at this Q given |
| 461 | // the current correction factor. |
| 462 | // Stay in double to avoid int overflow when values are large |
| 463 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { |
| 464 | projected_size_based_on_q = |
| 465 | vp10_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); |
| 466 | } else { |
| 467 | projected_size_based_on_q = vp10_estimate_bits_at_q(cpi->common.frame_type, |
| 468 | cm->base_qindex, |
| 469 | cm->MBs, |
| 470 | rate_correction_factor, |
| 471 | cm->bit_depth); |
| 472 | } |
| 473 | // Work out a size correction factor. |
| 474 | if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) |
| 475 | correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / |
| 476 | projected_size_based_on_q); |
| 477 | |
| 478 | // More heavily damped adjustment used if we have been oscillating either side |
| 479 | // of target. |
| 480 | adjustment_limit = 0.25 + |
| 481 | 0.5 * MIN(1, fabs(log10(0.01 * correction_factor))); |
| 482 | |
| 483 | cpi->rc.q_2_frame = cpi->rc.q_1_frame; |
| 484 | cpi->rc.q_1_frame = cm->base_qindex; |
| 485 | cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; |
| 486 | if (correction_factor > 110) |
| 487 | cpi->rc.rc_1_frame = -1; |
| 488 | else if (correction_factor < 90) |
| 489 | cpi->rc.rc_1_frame = 1; |
| 490 | else |
| 491 | cpi->rc.rc_1_frame = 0; |
| 492 | |
| 493 | if (correction_factor > 102) { |
| 494 | // We are not already at the worst allowable quality |
| 495 | correction_factor = (int)(100 + ((correction_factor - 100) * |
| 496 | adjustment_limit)); |
| 497 | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; |
| 498 | // Keep rate_correction_factor within limits |
| 499 | if (rate_correction_factor > MAX_BPB_FACTOR) |
| 500 | rate_correction_factor = MAX_BPB_FACTOR; |
| 501 | } else if (correction_factor < 99) { |
| 502 | // We are not already at the best allowable quality |
| 503 | correction_factor = (int)(100 - ((100 - correction_factor) * |
| 504 | adjustment_limit)); |
| 505 | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; |
| 506 | |
| 507 | // Keep rate_correction_factor within limits |
| 508 | if (rate_correction_factor < MIN_BPB_FACTOR) |
| 509 | rate_correction_factor = MIN_BPB_FACTOR; |
| 510 | } |
| 511 | |
| 512 | set_rate_correction_factor(cpi, rate_correction_factor); |
| 513 | } |
| 514 | |
| 515 | |
| 516 | int vp10_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, |
| 517 | int active_best_quality, int active_worst_quality) { |
| 518 | const VP9_COMMON *const cm = &cpi->common; |
| 519 | int q = active_worst_quality; |
| 520 | int last_error = INT_MAX; |
| 521 | int i, target_bits_per_mb, bits_per_mb_at_this_q; |
| 522 | const double correction_factor = get_rate_correction_factor(cpi); |
| 523 | |
| 524 | // Calculate required scaling factor based on target frame size and size of |
| 525 | // frame produced using previous Q. |
| 526 | target_bits_per_mb = |
| 527 | ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs; |
| 528 | |
| 529 | i = active_best_quality; |
| 530 | |
| 531 | do { |
| 532 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| 533 | cm->seg.enabled && |
| 534 | cpi->svc.temporal_layer_id == 0 && |
| 535 | cpi->svc.spatial_layer_id == 0) { |
| 536 | bits_per_mb_at_this_q = |
| 537 | (int)vp10_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); |
| 538 | } else { |
| 539 | bits_per_mb_at_this_q = (int)vp10_rc_bits_per_mb(cm->frame_type, i, |
| 540 | correction_factor, |
| 541 | cm->bit_depth); |
| 542 | } |
| 543 | |
| 544 | if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| 545 | if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| 546 | q = i; |
| 547 | else |
| 548 | q = i - 1; |
| 549 | |
| 550 | break; |
| 551 | } else { |
| 552 | last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| 553 | } |
| 554 | } while (++i <= active_worst_quality); |
| 555 | |
| 556 | // In CBR mode, this makes sure q is between oscillating Qs to prevent |
| 557 | // resonance. |
| 558 | if (cpi->oxcf.rc_mode == VPX_CBR && |
| 559 | (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && |
| 560 | cpi->rc.q_1_frame != cpi->rc.q_2_frame) { |
| 561 | q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), |
| 562 | MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); |
| 563 | } |
| 564 | return q; |
| 565 | } |
| 566 | |
| 567 | static int get_active_quality(int q, int gfu_boost, int low, int high, |
| 568 | int *low_motion_minq, int *high_motion_minq) { |
| 569 | if (gfu_boost > high) { |
| 570 | return low_motion_minq[q]; |
| 571 | } else if (gfu_boost < low) { |
| 572 | return high_motion_minq[q]; |
| 573 | } else { |
| 574 | const int gap = high - low; |
| 575 | const int offset = high - gfu_boost; |
| 576 | const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
| 577 | const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| 578 | return low_motion_minq[q] + adjustment; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, |
| 583 | vpx_bit_depth_t bit_depth) { |
| 584 | int *kf_low_motion_minq; |
| 585 | int *kf_high_motion_minq; |
| 586 | ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); |
| 587 | ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); |
| 588 | return get_active_quality(q, rc->kf_boost, kf_low, kf_high, |
| 589 | kf_low_motion_minq, kf_high_motion_minq); |
| 590 | } |
| 591 | |
| 592 | static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, |
| 593 | vpx_bit_depth_t bit_depth) { |
| 594 | int *arfgf_low_motion_minq; |
| 595 | int *arfgf_high_motion_minq; |
| 596 | ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); |
| 597 | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
| 598 | return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, |
| 599 | arfgf_low_motion_minq, arfgf_high_motion_minq); |
| 600 | } |
| 601 | |
| 602 | static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { |
| 603 | const RATE_CONTROL *const rc = &cpi->rc; |
| 604 | const unsigned int curr_frame = cpi->common.current_video_frame; |
| 605 | int active_worst_quality; |
| 606 | |
| 607 | if (cpi->common.frame_type == KEY_FRAME) { |
| 608 | active_worst_quality = curr_frame == 0 ? rc->worst_quality |
| 609 | : rc->last_q[KEY_FRAME] * 2; |
| 610 | } else { |
| 611 | if (!rc->is_src_frame_alt_ref && |
| 612 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| 613 | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 |
| 614 | : rc->last_q[INTER_FRAME]; |
| 615 | } else { |
| 616 | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 |
| 617 | : rc->last_q[INTER_FRAME] * 2; |
| 618 | } |
| 619 | } |
| 620 | return MIN(active_worst_quality, rc->worst_quality); |
| 621 | } |
| 622 | |
| 623 | // Adjust active_worst_quality level based on buffer level. |
| 624 | static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { |
| 625 | // Adjust active_worst_quality: If buffer is above the optimal/target level, |
| 626 | // bring active_worst_quality down depending on fullness of buffer. |
| 627 | // If buffer is below the optimal level, let the active_worst_quality go from |
| 628 | // ambient Q (at buffer = optimal level) to worst_quality level |
| 629 | // (at buffer = critical level). |
| 630 | const VP9_COMMON *const cm = &cpi->common; |
| 631 | const RATE_CONTROL *rc = &cpi->rc; |
| 632 | // Buffer level below which we push active_worst to worst_quality. |
| 633 | int64_t critical_level = rc->optimal_buffer_level >> 3; |
| 634 | int64_t buff_lvl_step = 0; |
| 635 | int adjustment = 0; |
| 636 | int active_worst_quality; |
| 637 | int ambient_qp; |
| 638 | if (cm->frame_type == KEY_FRAME) |
| 639 | return rc->worst_quality; |
| 640 | // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] |
| 641 | // for the first few frames following key frame. These are both initialized |
| 642 | // to worst_quality and updated with (3/4, 1/4) average in postencode_update. |
| 643 | // So for first few frames following key, the qp of that key frame is weighted |
| 644 | // into the active_worst_quality setting. |
| 645 | ambient_qp = (cm->current_video_frame < 5) ? |
| 646 | MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) : |
| 647 | rc->avg_frame_qindex[INTER_FRAME]; |
| 648 | active_worst_quality = MIN(rc->worst_quality, |
| 649 | ambient_qp * 5 / 4); |
| 650 | if (rc->buffer_level > rc->optimal_buffer_level) { |
| 651 | // Adjust down. |
| 652 | // Maximum limit for down adjustment, ~30%. |
| 653 | int max_adjustment_down = active_worst_quality / 3; |
| 654 | if (max_adjustment_down) { |
| 655 | buff_lvl_step = ((rc->maximum_buffer_size - |
| 656 | rc->optimal_buffer_level) / max_adjustment_down); |
| 657 | if (buff_lvl_step) |
| 658 | adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / |
| 659 | buff_lvl_step); |
| 660 | active_worst_quality -= adjustment; |
| 661 | } |
| 662 | } else if (rc->buffer_level > critical_level) { |
| 663 | // Adjust up from ambient Q. |
| 664 | if (critical_level) { |
| 665 | buff_lvl_step = (rc->optimal_buffer_level - critical_level); |
| 666 | if (buff_lvl_step) { |
| 667 | adjustment = (int)((rc->worst_quality - ambient_qp) * |
| 668 | (rc->optimal_buffer_level - rc->buffer_level) / |
| 669 | buff_lvl_step); |
| 670 | } |
| 671 | active_worst_quality = ambient_qp + adjustment; |
| 672 | } |
| 673 | } else { |
| 674 | // Set to worst_quality if buffer is below critical level. |
| 675 | active_worst_quality = rc->worst_quality; |
| 676 | } |
| 677 | return active_worst_quality; |
| 678 | } |
| 679 | |
| 680 | static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, |
| 681 | int *bottom_index, |
| 682 | int *top_index) { |
| 683 | const VP9_COMMON *const cm = &cpi->common; |
| 684 | const RATE_CONTROL *const rc = &cpi->rc; |
| 685 | int active_best_quality; |
| 686 | int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); |
| 687 | int q; |
| 688 | int *rtc_minq; |
| 689 | ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); |
| 690 | |
| 691 | if (frame_is_intra_only(cm)) { |
| 692 | active_best_quality = rc->best_quality; |
| 693 | // Handle the special case for key frames forced when we have reached |
| 694 | // the maximum key frame interval. Here force the Q to a range |
| 695 | // based on the ambient Q to reduce the risk of popping. |
| 696 | if (rc->this_key_frame_forced) { |
| 697 | int qindex = rc->last_boosted_qindex; |
| 698 | double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| 699 | int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| 700 | (last_boosted_q * 0.75), |
| 701 | cm->bit_depth); |
| 702 | active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| 703 | } else if (cm->current_video_frame > 0) { |
| 704 | // not first frame of one pass and kf_boost is set |
| 705 | double q_adj_factor = 1.0; |
| 706 | double q_val; |
| 707 | |
| 708 | active_best_quality = |
| 709 | get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], |
| 710 | cm->bit_depth); |
| 711 | |
| 712 | // Allow somewhat lower kf minq with small image formats. |
| 713 | if ((cm->width * cm->height) <= (352 * 288)) { |
| 714 | q_adj_factor -= 0.25; |
| 715 | } |
| 716 | |
| 717 | // Convert the adjustment factor to a qindex delta |
| 718 | // on active_best_quality. |
| 719 | q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| 720 | active_best_quality += vp10_compute_qdelta(rc, q_val, |
| 721 | q_val * q_adj_factor, |
| 722 | cm->bit_depth); |
| 723 | } |
| 724 | } else if (!rc->is_src_frame_alt_ref && |
| 725 | !cpi->use_svc && |
| 726 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| 727 | // Use the lower of active_worst_quality and recent |
| 728 | // average Q as basis for GF/ARF best Q limit unless last frame was |
| 729 | // a key frame. |
| 730 | if (rc->frames_since_key > 1 && |
| 731 | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| 732 | q = rc->avg_frame_qindex[INTER_FRAME]; |
| 733 | } else { |
| 734 | q = active_worst_quality; |
| 735 | } |
| 736 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 737 | } else { |
| 738 | // Use the lower of active_worst_quality and recent/average Q. |
| 739 | if (cm->current_video_frame > 1) { |
| 740 | if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
| 741 | active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| 742 | else |
| 743 | active_best_quality = rtc_minq[active_worst_quality]; |
| 744 | } else { |
| 745 | if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) |
| 746 | active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| 747 | else |
| 748 | active_best_quality = rtc_minq[active_worst_quality]; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | // Clip the active best and worst quality values to limits |
| 753 | active_best_quality = clamp(active_best_quality, |
| 754 | rc->best_quality, rc->worst_quality); |
| 755 | active_worst_quality = clamp(active_worst_quality, |
| 756 | active_best_quality, rc->worst_quality); |
| 757 | |
| 758 | *top_index = active_worst_quality; |
| 759 | *bottom_index = active_best_quality; |
| 760 | |
| 761 | #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| 762 | // Limit Q range for the adaptive loop. |
| 763 | if (cm->frame_type == KEY_FRAME && |
| 764 | !rc->this_key_frame_forced && |
| 765 | !(cm->current_video_frame == 0)) { |
| 766 | int qdelta = 0; |
| 767 | vpx_clear_system_state(); |
| 768 | qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| 769 | active_worst_quality, 2.0, |
| 770 | cm->bit_depth); |
| 771 | *top_index = active_worst_quality + qdelta; |
| 772 | *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; |
| 773 | } |
| 774 | #endif |
| 775 | |
| 776 | // Special case code to try and match quality with forced key frames |
| 777 | if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { |
| 778 | q = rc->last_boosted_qindex; |
| 779 | } else { |
| 780 | q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| 781 | active_best_quality, active_worst_quality); |
| 782 | if (q > *top_index) { |
| 783 | // Special case when we are targeting the max allowed rate |
| 784 | if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| 785 | *top_index = q; |
| 786 | else |
| 787 | q = *top_index; |
| 788 | } |
| 789 | } |
| 790 | assert(*top_index <= rc->worst_quality && |
| 791 | *top_index >= rc->best_quality); |
| 792 | assert(*bottom_index <= rc->worst_quality && |
| 793 | *bottom_index >= rc->best_quality); |
| 794 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
| 795 | return q; |
| 796 | } |
| 797 | |
| 798 | static int get_active_cq_level(const RATE_CONTROL *rc, |
| 799 | const VP9EncoderConfig *const oxcf) { |
| 800 | static const double cq_adjust_threshold = 0.1; |
| 801 | int active_cq_level = oxcf->cq_level; |
| 802 | if (oxcf->rc_mode == VPX_CQ && |
| 803 | rc->total_target_bits > 0) { |
| 804 | const double x = (double)rc->total_actual_bits / rc->total_target_bits; |
| 805 | if (x < cq_adjust_threshold) { |
| 806 | active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); |
| 807 | } |
| 808 | } |
| 809 | return active_cq_level; |
| 810 | } |
| 811 | |
| 812 | static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, |
| 813 | int *bottom_index, |
| 814 | int *top_index) { |
| 815 | const VP9_COMMON *const cm = &cpi->common; |
| 816 | const RATE_CONTROL *const rc = &cpi->rc; |
| 817 | const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| 818 | const int cq_level = get_active_cq_level(rc, oxcf); |
| 819 | int active_best_quality; |
| 820 | int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); |
| 821 | int q; |
| 822 | int *inter_minq; |
| 823 | ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); |
| 824 | |
| 825 | if (frame_is_intra_only(cm)) { |
| 826 | |
| 827 | // Handle the special case for key frames forced when we have reached |
| 828 | // the maximum key frame interval. Here force the Q to a range |
| 829 | // based on the ambient Q to reduce the risk of popping. |
| 830 | if (rc->this_key_frame_forced) { |
| 831 | int qindex = rc->last_boosted_qindex; |
| 832 | double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| 833 | int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| 834 | last_boosted_q * 0.75, |
| 835 | cm->bit_depth); |
| 836 | active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| 837 | } else { |
| 838 | // not first frame of one pass and kf_boost is set |
| 839 | double q_adj_factor = 1.0; |
| 840 | double q_val; |
| 841 | |
| 842 | active_best_quality = |
| 843 | get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], |
| 844 | cm->bit_depth); |
| 845 | |
| 846 | // Allow somewhat lower kf minq with small image formats. |
| 847 | if ((cm->width * cm->height) <= (352 * 288)) { |
| 848 | q_adj_factor -= 0.25; |
| 849 | } |
| 850 | |
| 851 | // Convert the adjustment factor to a qindex delta |
| 852 | // on active_best_quality. |
| 853 | q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| 854 | active_best_quality += vp10_compute_qdelta(rc, q_val, |
| 855 | q_val * q_adj_factor, |
| 856 | cm->bit_depth); |
| 857 | } |
| 858 | } else if (!rc->is_src_frame_alt_ref && |
| 859 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| 860 | // Use the lower of active_worst_quality and recent |
| 861 | // average Q as basis for GF/ARF best Q limit unless last frame was |
| 862 | // a key frame. |
| 863 | if (rc->frames_since_key > 1 && |
| 864 | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| 865 | q = rc->avg_frame_qindex[INTER_FRAME]; |
| 866 | } else { |
| 867 | q = rc->avg_frame_qindex[KEY_FRAME]; |
| 868 | } |
| 869 | // For constrained quality dont allow Q less than the cq level |
| 870 | if (oxcf->rc_mode == VPX_CQ) { |
| 871 | if (q < cq_level) |
| 872 | q = cq_level; |
| 873 | |
| 874 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 875 | |
| 876 | // Constrained quality use slightly lower active best. |
| 877 | active_best_quality = active_best_quality * 15 / 16; |
| 878 | |
| 879 | } else if (oxcf->rc_mode == VPX_Q) { |
| 880 | if (!cpi->refresh_alt_ref_frame) { |
| 881 | active_best_quality = cq_level; |
| 882 | } else { |
| 883 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 884 | } |
| 885 | } else { |
| 886 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 887 | } |
| 888 | } else { |
| 889 | if (oxcf->rc_mode == VPX_Q) { |
| 890 | active_best_quality = cq_level; |
| 891 | } else { |
| 892 | // Use the lower of active_worst_quality and recent/average Q. |
| 893 | if (cm->current_video_frame > 1) |
| 894 | active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| 895 | else |
| 896 | active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| 897 | // For the constrained quality mode we don't want |
| 898 | // q to fall below the cq level. |
| 899 | if ((oxcf->rc_mode == VPX_CQ) && |
| 900 | (active_best_quality < cq_level)) { |
| 901 | active_best_quality = cq_level; |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // Clip the active best and worst quality values to limits |
| 907 | active_best_quality = clamp(active_best_quality, |
| 908 | rc->best_quality, rc->worst_quality); |
| 909 | active_worst_quality = clamp(active_worst_quality, |
| 910 | active_best_quality, rc->worst_quality); |
| 911 | |
| 912 | *top_index = active_worst_quality; |
| 913 | *bottom_index = active_best_quality; |
| 914 | |
| 915 | #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| 916 | { |
| 917 | int qdelta = 0; |
| 918 | vpx_clear_system_state(); |
| 919 | |
| 920 | // Limit Q range for the adaptive loop. |
| 921 | if (cm->frame_type == KEY_FRAME && |
| 922 | !rc->this_key_frame_forced && |
| 923 | !(cm->current_video_frame == 0)) { |
| 924 | qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| 925 | active_worst_quality, 2.0, |
| 926 | cm->bit_depth); |
| 927 | } else if (!rc->is_src_frame_alt_ref && |
| 928 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| 929 | qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| 930 | active_worst_quality, 1.75, |
| 931 | cm->bit_depth); |
| 932 | } |
| 933 | *top_index = active_worst_quality + qdelta; |
| 934 | *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; |
| 935 | } |
| 936 | #endif |
| 937 | |
| 938 | if (oxcf->rc_mode == VPX_Q) { |
| 939 | q = active_best_quality; |
| 940 | // Special case code to try and match quality with forced key frames |
| 941 | } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { |
| 942 | q = rc->last_boosted_qindex; |
| 943 | } else { |
| 944 | q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| 945 | active_best_quality, active_worst_quality); |
| 946 | if (q > *top_index) { |
| 947 | // Special case when we are targeting the max allowed rate |
| 948 | if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| 949 | *top_index = q; |
| 950 | else |
| 951 | q = *top_index; |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | assert(*top_index <= rc->worst_quality && |
| 956 | *top_index >= rc->best_quality); |
| 957 | assert(*bottom_index <= rc->worst_quality && |
| 958 | *bottom_index >= rc->best_quality); |
| 959 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
| 960 | return q; |
| 961 | } |
| 962 | |
| 963 | int vp10_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) { |
| 964 | static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { |
| 965 | 1.00, // INTER_NORMAL |
| 966 | 1.00, // INTER_HIGH |
| 967 | 1.50, // GF_ARF_LOW |
| 968 | 1.75, // GF_ARF_STD |
| 969 | 2.00, // KF_STD |
| 970 | }; |
| 971 | static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = |
| 972 | {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME}; |
| 973 | const VP9_COMMON *const cm = &cpi->common; |
| 974 | int qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], |
| 975 | q, rate_factor_deltas[rf_level], |
| 976 | cm->bit_depth); |
| 977 | return qdelta; |
| 978 | } |
| 979 | |
| 980 | #define STATIC_MOTION_THRESH 95 |
| 981 | static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, |
| 982 | int *bottom_index, |
| 983 | int *top_index) { |
| 984 | const VP9_COMMON *const cm = &cpi->common; |
| 985 | const RATE_CONTROL *const rc = &cpi->rc; |
| 986 | const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| 987 | const GF_GROUP *gf_group = &cpi->twopass.gf_group; |
| 988 | const int cq_level = get_active_cq_level(rc, oxcf); |
| 989 | int active_best_quality; |
| 990 | int active_worst_quality = cpi->twopass.active_worst_quality; |
| 991 | int q; |
| 992 | int *inter_minq; |
| 993 | ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); |
| 994 | |
| 995 | if (frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) { |
| 996 | // Handle the special case for key frames forced when we have reached |
| 997 | // the maximum key frame interval. Here force the Q to a range |
| 998 | // based on the ambient Q to reduce the risk of popping. |
| 999 | if (rc->this_key_frame_forced) { |
| 1000 | double last_boosted_q; |
| 1001 | int delta_qindex; |
| 1002 | int qindex; |
| 1003 | |
| 1004 | if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| 1005 | qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); |
| 1006 | active_best_quality = qindex; |
| 1007 | last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| 1008 | delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| 1009 | last_boosted_q * 1.25, |
| 1010 | cm->bit_depth); |
| 1011 | active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality); |
| 1012 | |
| 1013 | } else { |
| 1014 | qindex = rc->last_boosted_qindex; |
| 1015 | last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| 1016 | delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| 1017 | last_boosted_q * 0.75, |
| 1018 | cm->bit_depth); |
| 1019 | active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| 1020 | } |
| 1021 | } else { |
| 1022 | // Not forced keyframe. |
| 1023 | double q_adj_factor = 1.0; |
| 1024 | double q_val; |
| 1025 | // Baseline value derived from cpi->active_worst_quality and kf boost. |
| 1026 | active_best_quality = get_kf_active_quality(rc, active_worst_quality, |
| 1027 | cm->bit_depth); |
| 1028 | |
| 1029 | // Allow somewhat lower kf minq with small image formats. |
| 1030 | if ((cm->width * cm->height) <= (352 * 288)) { |
| 1031 | q_adj_factor -= 0.25; |
| 1032 | } |
| 1033 | |
| 1034 | // Make a further adjustment based on the kf zero motion measure. |
| 1035 | q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); |
| 1036 | |
| 1037 | // Convert the adjustment factor to a qindex delta |
| 1038 | // on active_best_quality. |
| 1039 | q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| 1040 | active_best_quality += vp10_compute_qdelta(rc, q_val, |
| 1041 | q_val * q_adj_factor, |
| 1042 | cm->bit_depth); |
| 1043 | } |
| 1044 | } else if (!rc->is_src_frame_alt_ref && |
| 1045 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| 1046 | // Use the lower of active_worst_quality and recent |
| 1047 | // average Q as basis for GF/ARF best Q limit unless last frame was |
| 1048 | // a key frame. |
| 1049 | if (rc->frames_since_key > 1 && |
| 1050 | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| 1051 | q = rc->avg_frame_qindex[INTER_FRAME]; |
| 1052 | } else { |
| 1053 | q = active_worst_quality; |
| 1054 | } |
| 1055 | // For constrained quality dont allow Q less than the cq level |
| 1056 | if (oxcf->rc_mode == VPX_CQ) { |
| 1057 | if (q < cq_level) |
| 1058 | q = cq_level; |
| 1059 | |
| 1060 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 1061 | |
| 1062 | // Constrained quality use slightly lower active best. |
| 1063 | active_best_quality = active_best_quality * 15 / 16; |
| 1064 | |
| 1065 | } else if (oxcf->rc_mode == VPX_Q) { |
| 1066 | if (!cpi->refresh_alt_ref_frame) { |
| 1067 | active_best_quality = cq_level; |
| 1068 | } else { |
| 1069 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 1070 | |
| 1071 | // Modify best quality for second level arfs. For mode VPX_Q this |
| 1072 | // becomes the baseline frame q. |
| 1073 | if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) |
| 1074 | active_best_quality = (active_best_quality + cq_level + 1) / 2; |
| 1075 | } |
| 1076 | } else { |
| 1077 | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| 1078 | } |
| 1079 | } else { |
| 1080 | if (oxcf->rc_mode == VPX_Q) { |
| 1081 | active_best_quality = cq_level; |
| 1082 | } else { |
| 1083 | active_best_quality = inter_minq[active_worst_quality]; |
| 1084 | |
| 1085 | // For the constrained quality mode we don't want |
| 1086 | // q to fall below the cq level. |
| 1087 | if ((oxcf->rc_mode == VPX_CQ) && |
| 1088 | (active_best_quality < cq_level)) { |
| 1089 | active_best_quality = cq_level; |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | // Extension to max or min Q if undershoot or overshoot is outside |
| 1095 | // the permitted range. |
| 1096 | if ((cpi->oxcf.rc_mode != VPX_Q) && |
| 1097 | (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) { |
| 1098 | if (frame_is_intra_only(cm) || |
| 1099 | (!rc->is_src_frame_alt_ref && |
| 1100 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { |
| 1101 | active_best_quality -= |
| 1102 | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); |
| 1103 | active_worst_quality += (cpi->twopass.extend_maxq / 2); |
| 1104 | } else { |
| 1105 | active_best_quality -= |
| 1106 | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; |
| 1107 | active_worst_quality += cpi->twopass.extend_maxq; |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| 1112 | vpx_clear_system_state(); |
| 1113 | // Static forced key frames Q restrictions dealt with elsewhere. |
| 1114 | if (!((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi))) || |
| 1115 | !rc->this_key_frame_forced || |
| 1116 | (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { |
| 1117 | int qdelta = vp10_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], |
| 1118 | active_worst_quality); |
| 1119 | active_worst_quality = MAX(active_worst_quality + qdelta, |
| 1120 | active_best_quality); |
| 1121 | } |
| 1122 | #endif |
| 1123 | |
| 1124 | // Modify active_best_quality for downscaled normal frames. |
| 1125 | if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) { |
| 1126 | int qdelta = vp10_compute_qdelta_by_rate(rc, cm->frame_type, |
| 1127 | active_best_quality, 2.0, |
| 1128 | cm->bit_depth); |
| 1129 | active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality); |
| 1130 | } |
| 1131 | |
| 1132 | active_best_quality = clamp(active_best_quality, |
| 1133 | rc->best_quality, rc->worst_quality); |
| 1134 | active_worst_quality = clamp(active_worst_quality, |
| 1135 | active_best_quality, rc->worst_quality); |
| 1136 | |
| 1137 | if (oxcf->rc_mode == VPX_Q) { |
| 1138 | q = active_best_quality; |
| 1139 | // Special case code to try and match quality with forced key frames. |
| 1140 | } else if ((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) && |
| 1141 | rc->this_key_frame_forced) { |
| 1142 | // If static since last kf use better of last boosted and last kf q. |
| 1143 | if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| 1144 | q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); |
| 1145 | } else { |
| 1146 | q = rc->last_boosted_qindex; |
| 1147 | } |
| 1148 | } else { |
| 1149 | q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| 1150 | active_best_quality, active_worst_quality); |
| 1151 | if (q > active_worst_quality) { |
| 1152 | // Special case when we are targeting the max allowed rate. |
| 1153 | if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| 1154 | active_worst_quality = q; |
| 1155 | else |
| 1156 | q = active_worst_quality; |
| 1157 | } |
| 1158 | } |
| 1159 | clamp(q, active_best_quality, active_worst_quality); |
| 1160 | |
| 1161 | *top_index = active_worst_quality; |
| 1162 | *bottom_index = active_best_quality; |
| 1163 | |
| 1164 | assert(*top_index <= rc->worst_quality && |
| 1165 | *top_index >= rc->best_quality); |
| 1166 | assert(*bottom_index <= rc->worst_quality && |
| 1167 | *bottom_index >= rc->best_quality); |
| 1168 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
| 1169 | return q; |
| 1170 | } |
| 1171 | |
| 1172 | int vp10_rc_pick_q_and_bounds(const VP9_COMP *cpi, |
| 1173 | int *bottom_index, int *top_index) { |
| 1174 | int q; |
| 1175 | if (cpi->oxcf.pass == 0) { |
| 1176 | if (cpi->oxcf.rc_mode == VPX_CBR) |
| 1177 | q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); |
| 1178 | else |
| 1179 | q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); |
| 1180 | } else { |
| 1181 | q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); |
| 1182 | } |
| 1183 | if (cpi->sf.use_nonrd_pick_mode) { |
| 1184 | if (cpi->sf.force_frame_boost == 1) |
| 1185 | q -= cpi->sf.max_delta_qindex; |
| 1186 | |
| 1187 | if (q < *bottom_index) |
| 1188 | *bottom_index = q; |
| 1189 | else if (q > *top_index) |
| 1190 | *top_index = q; |
| 1191 | } |
| 1192 | return q; |
| 1193 | } |
| 1194 | |
| 1195 | void vp10_rc_compute_frame_size_bounds(const VP9_COMP *cpi, |
| 1196 | int frame_target, |
| 1197 | int *frame_under_shoot_limit, |
| 1198 | int *frame_over_shoot_limit) { |
| 1199 | if (cpi->oxcf.rc_mode == VPX_Q) { |
| 1200 | *frame_under_shoot_limit = 0; |
| 1201 | *frame_over_shoot_limit = INT_MAX; |
| 1202 | } else { |
| 1203 | // For very small rate targets where the fractional adjustment |
| 1204 | // may be tiny make sure there is at least a minimum range. |
| 1205 | const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; |
| 1206 | *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0); |
| 1207 | *frame_over_shoot_limit = MIN(frame_target + tolerance + 200, |
| 1208 | cpi->rc.max_frame_bandwidth); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | void vp10_rc_set_frame_target(VP9_COMP *cpi, int target) { |
| 1213 | const VP9_COMMON *const cm = &cpi->common; |
| 1214 | RATE_CONTROL *const rc = &cpi->rc; |
| 1215 | |
| 1216 | rc->this_frame_target = target; |
| 1217 | |
| 1218 | // Modify frame size target when down-scaling. |
| 1219 | if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && |
| 1220 | rc->frame_size_selector != UNSCALED) |
| 1221 | rc->this_frame_target = (int)(rc->this_frame_target |
| 1222 | * rate_thresh_mult[rc->frame_size_selector]); |
| 1223 | |
| 1224 | // Target rate per SB64 (including partial SB64s. |
| 1225 | rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) / |
| 1226 | (cm->width * cm->height); |
| 1227 | } |
| 1228 | |
| 1229 | static void update_alt_ref_frame_stats(VP9_COMP *cpi) { |
| 1230 | // this frame refreshes means next frames don't unless specified by user |
| 1231 | RATE_CONTROL *const rc = &cpi->rc; |
| 1232 | rc->frames_since_golden = 0; |
| 1233 | |
| 1234 | // Mark the alt ref as done (setting to 0 means no further alt refs pending). |
| 1235 | rc->source_alt_ref_pending = 0; |
| 1236 | |
| 1237 | // Set the alternate reference frame active flag |
| 1238 | rc->source_alt_ref_active = 1; |
| 1239 | } |
| 1240 | |
| 1241 | static void update_golden_frame_stats(VP9_COMP *cpi) { |
| 1242 | RATE_CONTROL *const rc = &cpi->rc; |
| 1243 | |
| 1244 | // Update the Golden frame usage counts. |
| 1245 | if (cpi->refresh_golden_frame) { |
| 1246 | // this frame refreshes means next frames don't unless specified by user |
| 1247 | rc->frames_since_golden = 0; |
| 1248 | |
| 1249 | // If we are not using alt ref in the up and coming group clear the arf |
| 1250 | // active flag. |
| 1251 | if (!rc->source_alt_ref_pending) { |
| 1252 | rc->source_alt_ref_active = 0; |
| 1253 | } |
| 1254 | |
| 1255 | // Decrement count down till next gf |
| 1256 | if (rc->frames_till_gf_update_due > 0) |
| 1257 | rc->frames_till_gf_update_due--; |
| 1258 | |
| 1259 | } else if (!cpi->refresh_alt_ref_frame) { |
| 1260 | // Decrement count down till next gf |
| 1261 | if (rc->frames_till_gf_update_due > 0) |
| 1262 | rc->frames_till_gf_update_due--; |
| 1263 | |
| 1264 | rc->frames_since_golden++; |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | void vp10_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { |
| 1269 | const VP9_COMMON *const cm = &cpi->common; |
| 1270 | const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| 1271 | RATE_CONTROL *const rc = &cpi->rc; |
| 1272 | const int qindex = cm->base_qindex; |
| 1273 | |
| 1274 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { |
| 1275 | vp10_cyclic_refresh_postencode(cpi); |
| 1276 | } |
| 1277 | |
| 1278 | // Update rate control heuristics |
| 1279 | rc->projected_frame_size = (int)(bytes_used << 3); |
| 1280 | |
| 1281 | // Post encode loop adjustment of Q prediction. |
| 1282 | vp10_rc_update_rate_correction_factors(cpi); |
| 1283 | |
| 1284 | // Keep a record of last Q and ambient average Q. |
| 1285 | if (cm->frame_type == KEY_FRAME) { |
| 1286 | rc->last_q[KEY_FRAME] = qindex; |
| 1287 | rc->avg_frame_qindex[KEY_FRAME] = |
| 1288 | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); |
| 1289 | } else { |
| 1290 | if (rc->is_src_frame_alt_ref || |
| 1291 | !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) || |
| 1292 | (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) { |
| 1293 | rc->last_q[INTER_FRAME] = qindex; |
| 1294 | rc->avg_frame_qindex[INTER_FRAME] = |
| 1295 | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); |
| 1296 | rc->ni_frames++; |
| 1297 | rc->tot_q += vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| 1298 | rc->avg_q = rc->tot_q / rc->ni_frames; |
| 1299 | // Calculate the average Q for normal inter frames (not key or GFU |
| 1300 | // frames). |
| 1301 | rc->ni_tot_qi += qindex; |
| 1302 | rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | // Keep record of last boosted (KF/KF/ARF) Q value. |
| 1307 | // If the current frame is coded at a lower Q then we also update it. |
| 1308 | // If all mbs in this group are skipped only update if the Q value is |
| 1309 | // better than that already stored. |
| 1310 | // This is used to help set quality in forced key frames to reduce popping |
| 1311 | if ((qindex < rc->last_boosted_qindex) || |
| 1312 | (cm->frame_type == KEY_FRAME) || |
| 1313 | (!rc->constrained_gf_group && |
| 1314 | (cpi->refresh_alt_ref_frame || |
| 1315 | (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { |
| 1316 | rc->last_boosted_qindex = qindex; |
| 1317 | } |
| 1318 | if (cm->frame_type == KEY_FRAME) |
| 1319 | rc->last_kf_qindex = qindex; |
| 1320 | |
| 1321 | update_buffer_level(cpi, rc->projected_frame_size); |
| 1322 | |
| 1323 | // Rolling monitors of whether we are over or underspending used to help |
| 1324 | // regulate min and Max Q in two pass. |
| 1325 | if (cm->frame_type != KEY_FRAME) { |
| 1326 | rc->rolling_target_bits = ROUND_POWER_OF_TWO( |
| 1327 | rc->rolling_target_bits * 3 + rc->this_frame_target, 2); |
| 1328 | rc->rolling_actual_bits = ROUND_POWER_OF_TWO( |
| 1329 | rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); |
| 1330 | rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( |
| 1331 | rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); |
| 1332 | rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( |
| 1333 | rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); |
| 1334 | } |
| 1335 | |
| 1336 | // Actual bits spent |
| 1337 | rc->total_actual_bits += rc->projected_frame_size; |
| 1338 | rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; |
| 1339 | |
| 1340 | rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; |
| 1341 | |
| 1342 | if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && |
| 1343 | (cm->frame_type != KEY_FRAME)) |
| 1344 | // Update the alternate reference frame stats as appropriate. |
| 1345 | update_alt_ref_frame_stats(cpi); |
| 1346 | else |
| 1347 | // Update the Golden frame stats as appropriate. |
| 1348 | update_golden_frame_stats(cpi); |
| 1349 | |
| 1350 | if (cm->frame_type == KEY_FRAME) |
| 1351 | rc->frames_since_key = 0; |
| 1352 | if (cm->show_frame) { |
| 1353 | rc->frames_since_key++; |
| 1354 | rc->frames_to_key--; |
| 1355 | } |
| 1356 | |
| 1357 | // Trigger the resizing of the next frame if it is scaled. |
| 1358 | if (oxcf->pass != 0) { |
| 1359 | cpi->resize_pending = |
| 1360 | rc->next_frame_size_selector != rc->frame_size_selector; |
| 1361 | rc->frame_size_selector = rc->next_frame_size_selector; |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | void vp10_rc_postencode_update_drop_frame(VP9_COMP *cpi) { |
| 1366 | // Update buffer level with zero size, update frame counters, and return. |
| 1367 | update_buffer_level(cpi, 0); |
| 1368 | cpi->rc.frames_since_key++; |
| 1369 | cpi->rc.frames_to_key--; |
| 1370 | cpi->rc.rc_2_frame = 0; |
| 1371 | cpi->rc.rc_1_frame = 0; |
| 1372 | } |
| 1373 | |
| 1374 | // Use this macro to turn on/off use of alt-refs in one-pass mode. |
| 1375 | #define USE_ALTREF_FOR_ONE_PASS 1 |
| 1376 | |
| 1377 | static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| 1378 | static const int af_ratio = 10; |
| 1379 | const RATE_CONTROL *const rc = &cpi->rc; |
| 1380 | int target; |
| 1381 | #if USE_ALTREF_FOR_ONE_PASS |
| 1382 | target = (!rc->is_src_frame_alt_ref && |
| 1383 | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ? |
| 1384 | (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / |
| 1385 | (rc->baseline_gf_interval + af_ratio - 1) : |
| 1386 | (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / |
| 1387 | (rc->baseline_gf_interval + af_ratio - 1); |
| 1388 | #else |
| 1389 | target = rc->avg_frame_bandwidth; |
| 1390 | #endif |
| 1391 | return vp10_rc_clamp_pframe_target_size(cpi, target); |
| 1392 | } |
| 1393 | |
| 1394 | static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| 1395 | static const int kf_ratio = 25; |
| 1396 | const RATE_CONTROL *rc = &cpi->rc; |
| 1397 | const int target = rc->avg_frame_bandwidth * kf_ratio; |
| 1398 | return vp10_rc_clamp_iframe_target_size(cpi, target); |
| 1399 | } |
| 1400 | |
| 1401 | void vp10_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { |
| 1402 | VP9_COMMON *const cm = &cpi->common; |
| 1403 | RATE_CONTROL *const rc = &cpi->rc; |
| 1404 | int target; |
| 1405 | // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. |
| 1406 | if (!cpi->refresh_alt_ref_frame && |
| 1407 | (cm->current_video_frame == 0 || |
| 1408 | (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| 1409 | rc->frames_to_key == 0 || |
| 1410 | (cpi->oxcf.auto_key && 0))) { |
| 1411 | cm->frame_type = KEY_FRAME; |
| 1412 | rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| 1413 | rc->frames_to_key == 0; |
| 1414 | rc->frames_to_key = cpi->oxcf.key_freq; |
| 1415 | rc->kf_boost = DEFAULT_KF_BOOST; |
| 1416 | rc->source_alt_ref_active = 0; |
| 1417 | } else { |
| 1418 | cm->frame_type = INTER_FRAME; |
| 1419 | } |
| 1420 | if (rc->frames_till_gf_update_due == 0) { |
| 1421 | rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| 1422 | rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| 1423 | // NOTE: frames_till_gf_update_due must be <= frames_to_key. |
| 1424 | if (rc->frames_till_gf_update_due > rc->frames_to_key) { |
| 1425 | rc->frames_till_gf_update_due = rc->frames_to_key; |
| 1426 | rc->constrained_gf_group = 1; |
| 1427 | } else { |
| 1428 | rc->constrained_gf_group = 0; |
| 1429 | } |
| 1430 | cpi->refresh_golden_frame = 1; |
| 1431 | rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; |
| 1432 | rc->gfu_boost = DEFAULT_GF_BOOST; |
| 1433 | } |
| 1434 | if (cm->frame_type == KEY_FRAME) |
| 1435 | target = calc_iframe_target_size_one_pass_vbr(cpi); |
| 1436 | else |
| 1437 | target = calc_pframe_target_size_one_pass_vbr(cpi); |
| 1438 | vp10_rc_set_frame_target(cpi, target); |
| 1439 | } |
| 1440 | |
| 1441 | static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| 1442 | const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| 1443 | const RATE_CONTROL *rc = &cpi->rc; |
| 1444 | const SVC *const svc = &cpi->svc; |
| 1445 | const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; |
| 1446 | const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; |
| 1447 | int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); |
| 1448 | int target; |
| 1449 | |
| 1450 | if (oxcf->gf_cbr_boost_pct) { |
| 1451 | const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; |
| 1452 | target = cpi->refresh_golden_frame ? |
| 1453 | (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) / |
| 1454 | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) : |
| 1455 | (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / |
| 1456 | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
| 1457 | } else { |
| 1458 | target = rc->avg_frame_bandwidth; |
| 1459 | } |
| 1460 | if (is_one_pass_cbr_svc(cpi)) { |
| 1461 | // Note that for layers, avg_frame_bandwidth is the cumulative |
| 1462 | // per-frame-bandwidth. For the target size of this frame, use the |
| 1463 | // layer average frame size (i.e., non-cumulative per-frame-bw). |
| 1464 | int layer = |
| 1465 | LAYER_IDS_TO_IDX(svc->spatial_layer_id, |
| 1466 | svc->temporal_layer_id, svc->number_temporal_layers); |
| 1467 | const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| 1468 | target = lc->avg_frame_size; |
| 1469 | min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); |
| 1470 | } |
| 1471 | if (diff > 0) { |
| 1472 | // Lower the target bandwidth for this frame. |
| 1473 | const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct); |
| 1474 | target -= (target * pct_low) / 200; |
| 1475 | } else if (diff < 0) { |
| 1476 | // Increase the target bandwidth for this frame. |
| 1477 | const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct); |
| 1478 | target += (target * pct_high) / 200; |
| 1479 | } |
| 1480 | if (oxcf->rc_max_inter_bitrate_pct) { |
| 1481 | const int max_rate = rc->avg_frame_bandwidth * |
| 1482 | oxcf->rc_max_inter_bitrate_pct / 100; |
| 1483 | target = MIN(target, max_rate); |
| 1484 | } |
| 1485 | return MAX(min_frame_target, target); |
| 1486 | } |
| 1487 | |
| 1488 | static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| 1489 | const RATE_CONTROL *rc = &cpi->rc; |
| 1490 | const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| 1491 | const SVC *const svc = &cpi->svc; |
| 1492 | int target; |
| 1493 | if (cpi->common.current_video_frame == 0) { |
| 1494 | target = ((rc->starting_buffer_level / 2) > INT_MAX) |
| 1495 | ? INT_MAX : (int)(rc->starting_buffer_level / 2); |
| 1496 | } else { |
| 1497 | int kf_boost = 32; |
| 1498 | double framerate = cpi->framerate; |
| 1499 | if (svc->number_temporal_layers > 1 && |
| 1500 | oxcf->rc_mode == VPX_CBR) { |
| 1501 | // Use the layer framerate for temporal layers CBR mode. |
| 1502 | const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, |
| 1503 | svc->temporal_layer_id, svc->number_temporal_layers); |
| 1504 | const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| 1505 | framerate = lc->framerate; |
| 1506 | } |
| 1507 | kf_boost = MAX(kf_boost, (int)(2 * framerate - 16)); |
| 1508 | if (rc->frames_since_key < framerate / 2) { |
| 1509 | kf_boost = (int)(kf_boost * rc->frames_since_key / |
| 1510 | (framerate / 2)); |
| 1511 | } |
| 1512 | target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; |
| 1513 | } |
| 1514 | return vp10_rc_clamp_iframe_target_size(cpi, target); |
| 1515 | } |
| 1516 | |
| 1517 | // Reset information needed to set proper reference frames and buffer updates |
| 1518 | // for temporal layering. This is called when a key frame is encoded. |
| 1519 | static void reset_temporal_layer_to_zero(VP9_COMP *cpi) { |
| 1520 | int sl; |
| 1521 | LAYER_CONTEXT *lc = NULL; |
| 1522 | cpi->svc.temporal_layer_id = 0; |
| 1523 | |
| 1524 | for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { |
| 1525 | lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers]; |
| 1526 | lc->current_video_frame_in_layer = 0; |
| 1527 | lc->frames_from_key_frame = 0; |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | void vp10_rc_get_svc_params(VP9_COMP *cpi) { |
| 1532 | VP9_COMMON *const cm = &cpi->common; |
| 1533 | RATE_CONTROL *const rc = &cpi->rc; |
| 1534 | int target = rc->avg_frame_bandwidth; |
| 1535 | const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, |
| 1536 | cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); |
| 1537 | |
| 1538 | if ((cm->current_video_frame == 0) || |
| 1539 | (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| 1540 | (cpi->oxcf.auto_key && (rc->frames_since_key % |
| 1541 | cpi->oxcf.key_freq == 0))) { |
| 1542 | cm->frame_type = KEY_FRAME; |
| 1543 | rc->source_alt_ref_active = 0; |
| 1544 | |
| 1545 | if (is_two_pass_svc(cpi)) { |
| 1546 | cpi->svc.layer_context[layer].is_key_frame = 1; |
| 1547 | cpi->ref_frame_flags &= |
| 1548 | (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); |
| 1549 | } else if (is_one_pass_cbr_svc(cpi)) { |
| 1550 | cpi->svc.layer_context[layer].is_key_frame = 1; |
| 1551 | reset_temporal_layer_to_zero(cpi); |
| 1552 | cpi->ref_frame_flags &= |
| 1553 | (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); |
| 1554 | // Assumption here is that LAST_FRAME is being updated for a keyframe. |
| 1555 | // Thus no change in update flags. |
| 1556 | target = calc_iframe_target_size_one_pass_cbr(cpi); |
| 1557 | } |
| 1558 | } else { |
| 1559 | cm->frame_type = INTER_FRAME; |
| 1560 | if (is_two_pass_svc(cpi)) { |
| 1561 | LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| 1562 | if (cpi->svc.spatial_layer_id == 0) { |
| 1563 | lc->is_key_frame = 0; |
| 1564 | } else { |
| 1565 | lc->is_key_frame = |
| 1566 | cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; |
| 1567 | if (lc->is_key_frame) |
| 1568 | cpi->ref_frame_flags &= (~VP9_LAST_FLAG); |
| 1569 | } |
| 1570 | cpi->ref_frame_flags &= (~VP9_ALT_FLAG); |
| 1571 | } else if (is_one_pass_cbr_svc(cpi)) { |
| 1572 | LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| 1573 | if (cpi->svc.spatial_layer_id == 0) { |
| 1574 | lc->is_key_frame = 0; |
| 1575 | } else { |
| 1576 | lc->is_key_frame = |
| 1577 | cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; |
| 1578 | } |
| 1579 | target = calc_pframe_target_size_one_pass_cbr(cpi); |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | // Any update/change of global cyclic refresh parameters (amount/delta-qp) |
| 1584 | // should be done here, before the frame qp is selected. |
| 1585 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| 1586 | vp10_cyclic_refresh_update_parameters(cpi); |
| 1587 | |
| 1588 | vp10_rc_set_frame_target(cpi, target); |
| 1589 | rc->frames_till_gf_update_due = INT_MAX; |
| 1590 | rc->baseline_gf_interval = INT_MAX; |
| 1591 | } |
| 1592 | |
| 1593 | void vp10_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { |
| 1594 | VP9_COMMON *const cm = &cpi->common; |
| 1595 | RATE_CONTROL *const rc = &cpi->rc; |
| 1596 | int target; |
| 1597 | // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. |
| 1598 | if ((cm->current_video_frame == 0 || |
| 1599 | (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| 1600 | rc->frames_to_key == 0 || |
| 1601 | (cpi->oxcf.auto_key && 0))) { |
| 1602 | cm->frame_type = KEY_FRAME; |
| 1603 | rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| 1604 | rc->frames_to_key == 0; |
| 1605 | rc->frames_to_key = cpi->oxcf.key_freq; |
| 1606 | rc->kf_boost = DEFAULT_KF_BOOST; |
| 1607 | rc->source_alt_ref_active = 0; |
| 1608 | } else { |
| 1609 | cm->frame_type = INTER_FRAME; |
| 1610 | } |
| 1611 | if (rc->frames_till_gf_update_due == 0) { |
| 1612 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| 1613 | vp10_cyclic_refresh_set_golden_update(cpi); |
| 1614 | else |
| 1615 | rc->baseline_gf_interval = |
| 1616 | (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| 1617 | rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| 1618 | // NOTE: frames_till_gf_update_due must be <= frames_to_key. |
| 1619 | if (rc->frames_till_gf_update_due > rc->frames_to_key) |
| 1620 | rc->frames_till_gf_update_due = rc->frames_to_key; |
| 1621 | cpi->refresh_golden_frame = 1; |
| 1622 | rc->gfu_boost = DEFAULT_GF_BOOST; |
| 1623 | } |
| 1624 | |
| 1625 | // Any update/change of global cyclic refresh parameters (amount/delta-qp) |
| 1626 | // should be done here, before the frame qp is selected. |
| 1627 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| 1628 | vp10_cyclic_refresh_update_parameters(cpi); |
| 1629 | |
| 1630 | if (cm->frame_type == KEY_FRAME) |
| 1631 | target = calc_iframe_target_size_one_pass_cbr(cpi); |
| 1632 | else |
| 1633 | target = calc_pframe_target_size_one_pass_cbr(cpi); |
| 1634 | |
| 1635 | vp10_rc_set_frame_target(cpi, target); |
| 1636 | if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC) |
| 1637 | cpi->resize_pending = vp10_resize_one_pass_cbr(cpi); |
| 1638 | else |
| 1639 | cpi->resize_pending = 0; |
| 1640 | } |
| 1641 | |
| 1642 | int vp10_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, |
| 1643 | vpx_bit_depth_t bit_depth) { |
| 1644 | int start_index = rc->worst_quality; |
| 1645 | int target_index = rc->worst_quality; |
| 1646 | int i; |
| 1647 | |
| 1648 | // Convert the average q value to an index. |
| 1649 | for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| 1650 | start_index = i; |
| 1651 | if (vp10_convert_qindex_to_q(i, bit_depth) >= qstart) |
| 1652 | break; |
| 1653 | } |
| 1654 | |
| 1655 | // Convert the q target to an index |
| 1656 | for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| 1657 | target_index = i; |
| 1658 | if (vp10_convert_qindex_to_q(i, bit_depth) >= qtarget) |
| 1659 | break; |
| 1660 | } |
| 1661 | |
| 1662 | return target_index - start_index; |
| 1663 | } |
| 1664 | |
| 1665 | int vp10_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, |
| 1666 | int qindex, double rate_target_ratio, |
| 1667 | vpx_bit_depth_t bit_depth) { |
| 1668 | int target_index = rc->worst_quality; |
| 1669 | int i; |
| 1670 | |
| 1671 | // Look up the current projected bits per block for the base index |
| 1672 | const int base_bits_per_mb = vp10_rc_bits_per_mb(frame_type, qindex, 1.0, |
| 1673 | bit_depth); |
| 1674 | |
| 1675 | // Find the target bits per mb based on the base value and given ratio. |
| 1676 | const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); |
| 1677 | |
| 1678 | // Convert the q target to an index |
| 1679 | for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| 1680 | if (vp10_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= |
| 1681 | target_bits_per_mb) { |
| 1682 | target_index = i; |
| 1683 | break; |
| 1684 | } |
| 1685 | } |
| 1686 | return target_index - qindex; |
| 1687 | } |
| 1688 | |
| 1689 | void vp10_rc_set_gf_interval_range(const VP9_COMP *const cpi, |
| 1690 | RATE_CONTROL *const rc) { |
| 1691 | const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| 1692 | |
| 1693 | // Set Maximum gf/arf interval |
| 1694 | rc->max_gf_interval = oxcf->max_gf_interval; |
| 1695 | rc->min_gf_interval = oxcf->min_gf_interval; |
| 1696 | if (rc->min_gf_interval == 0) |
| 1697 | rc->min_gf_interval = vp10_rc_get_default_min_gf_interval( |
| 1698 | oxcf->width, oxcf->height, cpi->framerate); |
| 1699 | if (rc->max_gf_interval == 0) |
| 1700 | rc->max_gf_interval = vp10_rc_get_default_max_gf_interval( |
| 1701 | cpi->framerate, rc->min_gf_interval); |
| 1702 | |
| 1703 | // Extended interval for genuinely static scenes |
| 1704 | rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; |
| 1705 | |
| 1706 | if (is_altref_enabled(cpi)) { |
| 1707 | if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) |
| 1708 | rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; |
| 1709 | } |
| 1710 | |
| 1711 | if (rc->max_gf_interval > rc->static_scene_max_gf_interval) |
| 1712 | rc->max_gf_interval = rc->static_scene_max_gf_interval; |
| 1713 | |
| 1714 | // Clamp min to max |
| 1715 | rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval); |
| 1716 | } |
| 1717 | |
| 1718 | void vp10_rc_update_framerate(VP9_COMP *cpi) { |
| 1719 | const VP9_COMMON *const cm = &cpi->common; |
| 1720 | const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| 1721 | RATE_CONTROL *const rc = &cpi->rc; |
| 1722 | int vbr_max_bits; |
| 1723 | |
| 1724 | rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); |
| 1725 | rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth * |
| 1726 | oxcf->two_pass_vbrmin_section / 100); |
| 1727 | |
| 1728 | rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); |
| 1729 | |
| 1730 | // A maximum bitrate for a frame is defined. |
| 1731 | // The baseline for this aligns with HW implementations that |
| 1732 | // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits |
| 1733 | // per 16x16 MB (averaged over a frame). However this limit is extended if |
| 1734 | // a very high rate is given on the command line or the the rate cannnot |
| 1735 | // be acheived because of a user specificed max q (e.g. when the user |
| 1736 | // specifies lossless encode. |
| 1737 | vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth * |
| 1738 | oxcf->two_pass_vbrmax_section) / 100); |
| 1739 | rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), |
| 1740 | vbr_max_bits); |
| 1741 | |
| 1742 | vp10_rc_set_gf_interval_range(cpi, rc); |
| 1743 | } |
| 1744 | |
| 1745 | #define VBR_PCT_ADJUSTMENT_LIMIT 50 |
| 1746 | // For VBR...adjustment to the frame target based on error from previous frames |
| 1747 | static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) { |
| 1748 | RATE_CONTROL *const rc = &cpi->rc; |
| 1749 | int64_t vbr_bits_off_target = rc->vbr_bits_off_target; |
| 1750 | int max_delta; |
| 1751 | double position_factor = 1.0; |
| 1752 | |
| 1753 | // How far through the clip are we. |
| 1754 | // This number is used to damp the per frame rate correction. |
| 1755 | // Range 0 - 1.0 |
| 1756 | if (cpi->twopass.total_stats.count) { |
| 1757 | position_factor = sqrt((double)cpi->common.current_video_frame / |
| 1758 | cpi->twopass.total_stats.count); |
| 1759 | } |
| 1760 | max_delta = (int)(position_factor * |
| 1761 | ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); |
| 1762 | |
| 1763 | // vbr_bits_off_target > 0 means we have extra bits to spend |
| 1764 | if (vbr_bits_off_target > 0) { |
| 1765 | *this_frame_target += |
| 1766 | (vbr_bits_off_target > max_delta) ? max_delta |
| 1767 | : (int)vbr_bits_off_target; |
| 1768 | } else { |
| 1769 | *this_frame_target -= |
| 1770 | (vbr_bits_off_target < -max_delta) ? max_delta |
| 1771 | : (int)-vbr_bits_off_target; |
| 1772 | } |
| 1773 | |
| 1774 | // Fast redistribution of bits arising from massive local undershoot. |
| 1775 | // Dont do it for kf,arf,gf or overlay frames. |
| 1776 | if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && |
| 1777 | rc->vbr_bits_off_target_fast) { |
| 1778 | int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target); |
| 1779 | int fast_extra_bits; |
| 1780 | fast_extra_bits = |
| 1781 | (int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits); |
| 1782 | fast_extra_bits = (int)MIN(fast_extra_bits, |
| 1783 | MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); |
| 1784 | *this_frame_target += (int)fast_extra_bits; |
| 1785 | rc->vbr_bits_off_target_fast -= fast_extra_bits; |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | void vp10_set_target_rate(VP9_COMP *cpi) { |
| 1790 | RATE_CONTROL *const rc = &cpi->rc; |
| 1791 | int target_rate = rc->base_frame_target; |
| 1792 | |
| 1793 | // Correction to rate target based on prior over or under shoot. |
| 1794 | if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ) |
| 1795 | vbr_rate_correction(cpi, &target_rate); |
| 1796 | vp10_rc_set_frame_target(cpi, target_rate); |
| 1797 | } |
| 1798 | |
| 1799 | // Check if we should resize, based on average QP from past x frames. |
| 1800 | // Only allow for resize at most one scale down for now, scaling factor is 2. |
| 1801 | int vp10_resize_one_pass_cbr(VP9_COMP *cpi) { |
| 1802 | const VP9_COMMON *const cm = &cpi->common; |
| 1803 | RATE_CONTROL *const rc = &cpi->rc; |
| 1804 | int resize_now = 0; |
| 1805 | cpi->resize_scale_num = 1; |
| 1806 | cpi->resize_scale_den = 1; |
| 1807 | // Don't resize on key frame; reset the counters on key frame. |
| 1808 | if (cm->frame_type == KEY_FRAME) { |
| 1809 | cpi->resize_avg_qp = 0; |
| 1810 | cpi->resize_count = 0; |
| 1811 | return 0; |
| 1812 | } |
| 1813 | // Resize based on average buffer underflow and QP over some window. |
| 1814 | // Ignore samples close to key frame, since QP is usually high after key. |
| 1815 | if (cpi->rc.frames_since_key > 2 * cpi->framerate) { |
| 1816 | const int window = (int)(5 * cpi->framerate); |
| 1817 | cpi->resize_avg_qp += cm->base_qindex; |
| 1818 | if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100)) |
| 1819 | ++cpi->resize_buffer_underflow; |
| 1820 | ++cpi->resize_count; |
| 1821 | // Check for resize action every "window" frames. |
| 1822 | if (cpi->resize_count >= window) { |
| 1823 | int avg_qp = cpi->resize_avg_qp / cpi->resize_count; |
| 1824 | // Resize down if buffer level has underflowed sufficent amount in past |
| 1825 | // window, and we are at original resolution. |
| 1826 | // Resize back up if average QP is low, and we are currently in a resized |
| 1827 | // down state. |
| 1828 | if (cpi->resize_state == 0 && |
| 1829 | cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) { |
| 1830 | resize_now = 1; |
| 1831 | cpi->resize_state = 1; |
| 1832 | } else if (cpi->resize_state == 1 && |
| 1833 | avg_qp < 40 * cpi->rc.worst_quality / 100) { |
| 1834 | resize_now = -1; |
| 1835 | cpi->resize_state = 0; |
| 1836 | } |
| 1837 | // Reset for next window measurement. |
| 1838 | cpi->resize_avg_qp = 0; |
| 1839 | cpi->resize_count = 0; |
| 1840 | cpi->resize_buffer_underflow = 0; |
| 1841 | } |
| 1842 | } |
| 1843 | // If decision is to resize, reset some quantities, and check is we should |
| 1844 | // reduce rate correction factor, |
| 1845 | if (resize_now != 0) { |
| 1846 | int target_bits_per_frame; |
| 1847 | int active_worst_quality; |
| 1848 | int qindex; |
| 1849 | int tot_scale_change; |
| 1850 | // For now, resize is by 1/2 x 1/2. |
| 1851 | cpi->resize_scale_num = 1; |
| 1852 | cpi->resize_scale_den = 2; |
| 1853 | tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) / |
| 1854 | (cpi->resize_scale_num * cpi->resize_scale_num); |
| 1855 | // Reset buffer level to optimal, update target size. |
| 1856 | rc->buffer_level = rc->optimal_buffer_level; |
| 1857 | rc->bits_off_target = rc->optimal_buffer_level; |
| 1858 | rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi); |
| 1859 | // Reset cyclic refresh parameters. |
| 1860 | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) |
| 1861 | vp10_cyclic_refresh_reset_resize(cpi); |
| 1862 | // Get the projected qindex, based on the scaled target frame size (scaled |
| 1863 | // so target_bits_per_mb in vp10_rc_regulate_q will be correct target). |
| 1864 | target_bits_per_frame = (resize_now == 1) ? |
| 1865 | rc->this_frame_target * tot_scale_change : |
| 1866 | rc->this_frame_target / tot_scale_change; |
| 1867 | active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); |
| 1868 | qindex = vp10_rc_regulate_q(cpi, |
| 1869 | target_bits_per_frame, |
| 1870 | rc->best_quality, |
| 1871 | active_worst_quality); |
| 1872 | // If resize is down, check if projected q index is close to worst_quality, |
| 1873 | // and if so, reduce the rate correction factor (since likely can afford |
| 1874 | // lower q for resized frame). |
| 1875 | if (resize_now == 1 && |
| 1876 | qindex > 90 * cpi->rc.worst_quality / 100) { |
| 1877 | rc->rate_correction_factors[INTER_NORMAL] *= 0.85; |
| 1878 | } |
| 1879 | // If resize is back up, check if projected q index is too much above the |
| 1880 | // current base_qindex, and if so, reduce the rate correction factor |
| 1881 | // (since prefer to keep q for resized frame at least close to previous q). |
| 1882 | if (resize_now == -1 && |
| 1883 | qindex > 130 * cm->base_qindex / 100) { |
| 1884 | rc->rate_correction_factors[INTER_NORMAL] *= 0.9; |
| 1885 | } |
| 1886 | } |
| 1887 | return resize_now; |
| 1888 | } |