Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| 3 | * |
| 4 | * This source code is subject to the terms of the BSD 2 Clause License and |
| 5 | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| 6 | * was not distributed with this source code in the LICENSE file, you can |
| 7 | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| 8 | * Media Patent License 1.0 was not distributed with this source code in the |
| 9 | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| 10 | */ |
| 11 | |
| 12 | #include <immintrin.h> |
| 13 | |
| 14 | #include "./aom_config.h" |
| 15 | #include "./av1_rtcd.h" |
| 16 | #include "av1/common/restoration.h" |
| 17 | #include "aom_dsp/x86/synonyms.h" |
| 18 | #include "aom_dsp/x86/synonyms_avx2.h" |
| 19 | |
| 20 | // Load 8 bytes from the possibly-misaligned pointer p, extend each byte to |
| 21 | // 32-bit precision and return them in an AVX2 register. |
| 22 | static __m256i yy256_load_extend_8_32(const void *p) { |
| 23 | return _mm256_cvtepu8_epi32(xx_loadl_64(p)); |
| 24 | } |
| 25 | |
| 26 | // Load 8 halfwords from the possibly-misaligned pointer p, extend each |
| 27 | // halfword to 32-bit precision and return them in an AVX2 register. |
| 28 | static __m256i yy256_load_extend_16_32(const void *p) { |
| 29 | return _mm256_cvtepu16_epi32(xx_loadu_128(p)); |
| 30 | } |
| 31 | |
| 32 | // Compute the scan of an AVX2 register holding 8 32-bit integers. If the |
| 33 | // register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., |
| 34 | // x0+x1+...+x7 |
| 35 | // |
| 36 | // Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers |
| 37 | // (assumed small enough to be able to add them without overflow). |
| 38 | // |
| 39 | // Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. |
| 40 | // |
| 41 | // x = [h g f e][d c b a] |
| 42 | // x01 = [g f e 0][c b a 0] |
| 43 | // x02 = [g+h f+g e+f e][c+d b+c a+b a] |
| 44 | // x03 = [e+f e 0 0][a+b a 0 0] |
| 45 | // x04 = [e->h e->g e->f e][a->d a->c a->b a] |
| 46 | // s = a->d |
| 47 | // s01 = [a->d a->d a->d a->d] |
| 48 | // s02 = [a->d a->d a->d a->d][0 0 0 0] |
| 49 | // ret = [a->h a->g a->f a->e][a->d a->c a->b a] |
| 50 | static __m256i scan_32(__m256i x) { |
| 51 | const __m256i x01 = _mm256_slli_si256(x, 4); |
| 52 | const __m256i x02 = _mm256_add_epi32(x, x01); |
| 53 | const __m256i x03 = _mm256_slli_si256(x02, 8); |
| 54 | const __m256i x04 = _mm256_add_epi32(x02, x03); |
| 55 | const int32_t s = _mm256_extract_epi32(x04, 3); |
| 56 | const __m128i s01 = _mm_set1_epi32(s); |
| 57 | const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1); |
| 58 | return _mm256_add_epi32(x04, s02); |
| 59 | } |
| 60 | |
| 61 | // Compute two integral images from src. B sums elements; A sums their |
| 62 | // squares. The images are offset by one pixel, so will have width and height |
| 63 | // equal to width + 1, height + 1 and the first row and column will be zero. |
| 64 | // |
| 65 | // A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple |
| 66 | // of 8. |
| 67 | static void integral_images(const uint8_t *src, int src_stride, int width, |
| 68 | int height, int32_t *A, int32_t *B, |
| 69 | int buf_stride) { |
| 70 | // Write out the zero top row |
| 71 | memset(A, 0, sizeof(*A) * (width + 1)); |
| 72 | memset(B, 0, sizeof(*B) * (width + 1)); |
| 73 | |
| 74 | const __m256i zero = _mm256_setzero_si256(); |
| 75 | for (int i = 0; i < height; ++i) { |
| 76 | // Zero the left column. |
| 77 | A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; |
| 78 | |
| 79 | // ldiff is the difference H - D where H is the output sample immediately |
| 80 | // to the left and D is the output sample above it. These are scalars, |
| 81 | // replicated across the eight lanes. |
| 82 | __m256i ldiff1 = zero, ldiff2 = zero; |
| 83 | for (int j = 0; j < width; j += 8) { |
| 84 | const int ABj = 1 + j; |
| 85 | |
| 86 | const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); |
| 87 | const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); |
| 88 | |
| 89 | const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride); |
| 90 | const __m256i x2 = _mm256_madd_epi16(x1, x1); |
| 91 | |
| 92 | const __m256i sc1 = scan_32(x1); |
| 93 | const __m256i sc2 = scan_32(x2); |
| 94 | |
| 95 | const __m256i row1 = |
| 96 | _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); |
| 97 | const __m256i row2 = |
| 98 | _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); |
| 99 | |
| 100 | yy_store_256(B + ABj + (i + 1) * buf_stride, row1); |
| 101 | yy_store_256(A + ABj + (i + 1) * buf_stride, row2); |
| 102 | |
| 103 | // Calculate the new H - D. |
| 104 | ldiff1 = _mm256_set1_epi32( |
| 105 | _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); |
| 106 | ldiff2 = _mm256_set1_epi32( |
| 107 | _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | // Compute two integral images from src. B sums elements; A sums their squares |
| 113 | // |
| 114 | // A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8. |
| 115 | static void integral_images_highbd(const uint16_t *src, int src_stride, |
| 116 | int width, int height, int32_t *A, |
| 117 | int32_t *B, int buf_stride) { |
| 118 | // Write out the zero top row |
| 119 | memset(A, 0, sizeof(*A) * (width + 1)); |
| 120 | memset(B, 0, sizeof(*B) * (width + 1)); |
| 121 | |
| 122 | const __m256i zero = _mm256_setzero_si256(); |
| 123 | for (int i = 0; i < height; ++i) { |
| 124 | // Zero the left column. |
| 125 | A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; |
| 126 | |
| 127 | // ldiff is the difference H - D where H is the output sample immediately |
| 128 | // to the left and D is the output sample above it. These are scalars, |
| 129 | // replicated across the eight lanes. |
| 130 | __m256i ldiff1 = zero, ldiff2 = zero; |
| 131 | for (int j = 0; j < width; j += 8) { |
| 132 | const int ABj = 1 + j; |
| 133 | |
| 134 | const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); |
| 135 | const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); |
| 136 | |
| 137 | const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride); |
| 138 | const __m256i x2 = _mm256_madd_epi16(x1, x1); |
| 139 | |
| 140 | const __m256i sc1 = scan_32(x1); |
| 141 | const __m256i sc2 = scan_32(x2); |
| 142 | |
| 143 | const __m256i row1 = |
| 144 | _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); |
| 145 | const __m256i row2 = |
| 146 | _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); |
| 147 | |
| 148 | yy_store_256(B + ABj + (i + 1) * buf_stride, row1); |
| 149 | yy_store_256(A + ABj + (i + 1) * buf_stride, row2); |
| 150 | |
| 151 | // Calculate the new H - D. |
| 152 | ldiff1 = _mm256_set1_epi32( |
| 153 | _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); |
| 154 | ldiff2 = _mm256_set1_epi32( |
| 155 | _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // Compute four values of boxsum from the given integral image. ii should point |
| 161 | // at the middle of the box (for the first value). r is the box radius |
| 162 | static __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) { |
| 163 | const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride); |
| 164 | const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride); |
| 165 | const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride); |
| 166 | const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride); |
| 167 | const __m256i u = _mm256_sub_epi32(tr, tl); |
| 168 | const __m256i v = _mm256_sub_epi32(br, bl); |
| 169 | return _mm256_sub_epi32(v, u); |
| 170 | } |
| 171 | |
| 172 | static __m256i round_for_shift(unsigned shift) { |
| 173 | return _mm256_set1_epi32((1 << shift) >> 1); |
| 174 | } |
| 175 | |
| 176 | static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) { |
| 177 | __m256i an, bb; |
| 178 | if (bit_depth > 8) { |
| 179 | const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8)); |
| 180 | const __m256i rounding_b = round_for_shift(bit_depth - 8); |
| 181 | const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8)); |
| 182 | const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8); |
| 183 | const __m256i a = |
| 184 | _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a); |
| 185 | const __m256i b = |
| 186 | _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b); |
| 187 | // b < 2^14, so we can use a 16-bit madd rather than a 32-bit |
| 188 | // mullo to square it |
| 189 | bb = _mm256_madd_epi16(b, b); |
| 190 | an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb); |
| 191 | } else { |
| 192 | bb = _mm256_madd_epi16(sum1, sum1); |
| 193 | an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n)); |
| 194 | } |
| 195 | return _mm256_sub_epi32(an, bb); |
| 196 | } |
| 197 | |
| 198 | // Assumes that C, D are integral images for the original buffer which has been |
| 199 | // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels |
| 200 | // on the sides. A, B, C, D point at logical position (0, 0). |
| 201 | static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D, |
| 202 | int width, int height, int buf_stride, int eps, |
| 203 | int bit_depth, int r) { |
| 204 | const int n = (2 * r + 1) * (2 * r + 1); |
| 205 | const __m256i s = _mm256_set1_epi32(sgrproj_mtable[eps - 1][n - 1]); |
| 206 | // one_over_n[n-1] is 2^12/n, so easily fits in an int16 |
| 207 | const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); |
| 208 | |
| 209 | const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); |
| 210 | const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); |
| 211 | |
Imdad Sardharwalla | f32dabd | 2018-01-17 13:55:37 +0000 | [diff] [blame] | 212 | // Set up masks |
| 213 | const __m128i ones32 = _mm_set_epi64x(0, 0xffffffffffffffffULL); |
| 214 | __m256i mask[8]; |
| 215 | for (int idx = 0; idx < 8; idx++) { |
| 216 | const __m128i shift = _mm_set_epi64x(0, 8 * (8 - idx)); |
| 217 | mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); |
| 218 | } |
| 219 | |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 220 | for (int i = -1; i < height + 1; ++i) { |
| 221 | for (int j = -1; j < width + 1; j += 8) { |
| 222 | const int32_t *Cij = C + i * buf_stride + j; |
| 223 | const int32_t *Dij = D + i * buf_stride + j; |
| 224 | |
Imdad Sardharwalla | f32dabd | 2018-01-17 13:55:37 +0000 | [diff] [blame] | 225 | __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); |
| 226 | __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 227 | |
Imdad Sardharwalla | f32dabd | 2018-01-17 13:55:37 +0000 | [diff] [blame] | 228 | // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain |
| 229 | // some uninitialised data in their upper words. We use a mask to |
| 230 | // ensure that these bits are set to 0. |
| 231 | int idx = AOMMIN(8, width + 1 - j); |
| 232 | assert(idx >= 1); |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 233 | |
Imdad Sardharwalla | f32dabd | 2018-01-17 13:55:37 +0000 | [diff] [blame] | 234 | if (idx < 8) { |
| 235 | sum1 = _mm256_and_si256(mask[idx], sum1); |
| 236 | sum2 = _mm256_and_si256(mask[idx], sum2); |
| 237 | } |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 238 | |
| 239 | const __m256i p = compute_p(sum1, sum2, bit_depth, n); |
| 240 | |
| 241 | const __m256i z = _mm256_min_epi32( |
| 242 | _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), |
| 243 | SGRPROJ_MTABLE_BITS), |
| 244 | _mm256_set1_epi32(255)); |
| 245 | |
| 246 | const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); |
| 247 | |
| 248 | yy_storeu_256(A + i * buf_stride + j, a_res); |
| 249 | |
| 250 | const __m256i a_complement = |
| 251 | _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); |
| 252 | |
| 253 | // sum1 might have lanes greater than 2^15, so we can't use madd to do |
| 254 | // multiplication involving sum1. However, a_complement and one_over_n |
| 255 | // are both less than 256, so we can multiply them first. |
| 256 | const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); |
| 257 | const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); |
| 258 | const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), |
| 259 | SGRPROJ_RECIP_BITS); |
| 260 | |
| 261 | yy_storeu_256(B + i * buf_stride + j, b_res); |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | // Calculate 4 values of the "cross sum" starting at buf. This is a 3x3 filter |
| 267 | // where the outer four corners have weight 3 and all other pixels have weight |
| 268 | // 4. |
| 269 | // |
| 270 | // Pixels are indexed as follows: |
| 271 | // xtl xt xtr |
| 272 | // xl x xr |
| 273 | // xbl xb xbr |
| 274 | // |
| 275 | // buf points to x |
| 276 | // |
| 277 | // fours = xl + xt + xr + xb + x |
| 278 | // threes = xtl + xtr + xbr + xbl |
| 279 | // cross_sum = 4 * fours + 3 * threes |
| 280 | // = 4 * (fours + threes) - threes |
| 281 | // = (fours + threes) << 2 - threes |
| 282 | static __m256i cross_sum(const int32_t *buf, int stride) { |
| 283 | const __m256i xtl = yy_loadu_256(buf - 1 - stride); |
| 284 | const __m256i xt = yy_loadu_256(buf - stride); |
| 285 | const __m256i xtr = yy_loadu_256(buf + 1 - stride); |
| 286 | const __m256i xl = yy_loadu_256(buf - 1); |
| 287 | const __m256i x = yy_loadu_256(buf); |
| 288 | const __m256i xr = yy_loadu_256(buf + 1); |
| 289 | const __m256i xbl = yy_loadu_256(buf - 1 + stride); |
| 290 | const __m256i xb = yy_loadu_256(buf + stride); |
| 291 | const __m256i xbr = yy_loadu_256(buf + 1 + stride); |
| 292 | |
| 293 | const __m256i fours = _mm256_add_epi32( |
| 294 | xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x)))); |
| 295 | const __m256i threes = |
| 296 | _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); |
| 297 | |
| 298 | return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2), |
| 299 | threes); |
| 300 | } |
| 301 | |
| 302 | // The final filter for self-guided restoration. Computes a weighted average |
| 303 | // across A, B with "cross sums" (see cross_sum implementation above) |
| 304 | static void final_filter(int32_t *dst, int dst_stride, const int32_t *A, |
| 305 | const int32_t *B, int buf_stride, const void *dgd8, |
| 306 | int dgd_stride, int width, int height, int highbd) { |
| 307 | const int nb = 5; |
| 308 | const __m256i rounding = |
| 309 | round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); |
| 310 | const uint8_t *dgd_real = |
| 311 | highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; |
| 312 | |
| 313 | for (int i = 0; i < height; ++i) { |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 314 | for (int j = 0; j < width; j += 8) { |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 315 | const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride); |
| 316 | const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride); |
| 317 | |
| 318 | const __m128i raw = |
| 319 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 320 | const __m256i src = |
| 321 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 322 | |
| 323 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 324 | __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding), |
| 325 | SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); |
| 326 | |
| 327 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 332 | #if CONFIG_FAST_SGR |
| 333 | // Assumes that C, D are integral images for the original buffer which has been |
| 334 | // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels |
| 335 | // on the sides. A, B, C, D point at logical position (0, 0). |
| 336 | static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C, |
| 337 | const int32_t *D, int width, int height, |
| 338 | int buf_stride, int eps, int bit_depth, int r) { |
| 339 | const int n = (2 * r + 1) * (2 * r + 1); |
| 340 | const __m256i s = _mm256_set1_epi32(sgrproj_mtable[eps - 1][n - 1]); |
| 341 | // one_over_n[n-1] is 2^12/n, so easily fits in an int16 |
| 342 | const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); |
| 343 | |
| 344 | const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); |
| 345 | const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); |
| 346 | |
| 347 | // Set up masks |
| 348 | const __m128i ones32 = _mm_set_epi64x(0, 0xffffffffffffffffULL); |
| 349 | __m256i mask[8]; |
| 350 | for (int idx = 0; idx < 8; idx++) { |
| 351 | const __m128i shift = _mm_set_epi64x(0, 8 * (8 - idx)); |
| 352 | mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); |
| 353 | } |
| 354 | |
| 355 | for (int i = -1; i < height + 1; i += 2) { |
| 356 | for (int j = -1; j < width + 1; j += 8) { |
| 357 | const int32_t *Cij = C + i * buf_stride + j; |
| 358 | const int32_t *Dij = D + i * buf_stride + j; |
| 359 | |
| 360 | __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); |
| 361 | __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); |
| 362 | |
| 363 | // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain |
| 364 | // some uninitialised data in their upper words. We use a mask to |
| 365 | // ensure that these bits are set to 0. |
| 366 | int idx = AOMMIN(8, width + 1 - j); |
| 367 | assert(idx >= 1); |
| 368 | |
| 369 | if (idx < 8) { |
| 370 | sum1 = _mm256_and_si256(mask[idx], sum1); |
| 371 | sum2 = _mm256_and_si256(mask[idx], sum2); |
| 372 | } |
| 373 | |
| 374 | const __m256i p = compute_p(sum1, sum2, bit_depth, n); |
| 375 | |
| 376 | const __m256i z = _mm256_min_epi32( |
| 377 | _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), |
| 378 | SGRPROJ_MTABLE_BITS), |
| 379 | _mm256_set1_epi32(255)); |
| 380 | |
| 381 | const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); |
| 382 | |
| 383 | yy_storeu_256(A + i * buf_stride + j, a_res); |
| 384 | |
| 385 | const __m256i a_complement = |
| 386 | _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); |
| 387 | |
| 388 | // sum1 might have lanes greater than 2^15, so we can't use madd to do |
| 389 | // multiplication involving sum1. However, a_complement and one_over_n |
| 390 | // are both less than 256, so we can multiply them first. |
| 391 | const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); |
| 392 | const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); |
| 393 | const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), |
| 394 | SGRPROJ_RECIP_BITS); |
| 395 | |
| 396 | yy_storeu_256(B + i * buf_stride + j, b_res); |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 401 | // Calculate 8 values of the "cross sum" starting at buf. |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 402 | // |
| 403 | // Pixels are indexed like this: |
| 404 | // xtl xt xtr |
| 405 | // - buf - |
| 406 | // xbl xb xbr |
| 407 | // |
| 408 | // Pixels are weighted like this: |
| 409 | // 5 6 5 |
| 410 | // 0 0 0 |
| 411 | // 5 6 5 |
| 412 | // |
| 413 | // fives = xtl + xtr + xbl + xbr |
| 414 | // sixes = xt + xb |
| 415 | // cross_sum = 6 * sixes + 5 * fives |
| 416 | // = 5 * (fives + sixes) - sixes |
| 417 | // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| 418 | static __m256i cross_sum_fast_even(const int32_t *buf, int stride) { |
| 419 | const __m256i xtl = yy_loadu_256(buf - 1 - stride); |
| 420 | const __m256i xt = yy_loadu_256(buf - stride); |
| 421 | const __m256i xtr = yy_loadu_256(buf + 1 - stride); |
| 422 | const __m256i xbl = yy_loadu_256(buf - 1 + stride); |
| 423 | const __m256i xb = yy_loadu_256(buf + stride); |
| 424 | const __m256i xbr = yy_loadu_256(buf + 1 + stride); |
| 425 | |
| 426 | const __m256i fives = |
| 427 | _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); |
| 428 | const __m256i sixes = _mm256_add_epi32(xt, xb); |
| 429 | const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); |
| 430 | |
| 431 | return _mm256_add_epi32( |
| 432 | _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), |
| 433 | fives_plus_sixes), |
| 434 | sixes); |
| 435 | } |
| 436 | |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 437 | // Calculate 8 values of the "cross sum" starting at buf. |
| 438 | // |
| 439 | // Pixels are indexed like this: |
| 440 | // xl x xr |
| 441 | // |
| 442 | // Pixels are weighted like this: |
| 443 | // 5 6 5 |
| 444 | // |
| 445 | // buf points to x |
| 446 | // |
| 447 | // fives = xl + xr |
| 448 | // sixes = x |
| 449 | // cross_sum = 5 * fives + 6 * sixes |
| 450 | // = 4 * (fives + sixes) + (fives + sixes) + sixes |
| 451 | // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| 452 | static __m256i cross_sum_fast_odd(const int32_t *buf) { |
| 453 | const __m256i xl = yy_loadu_256(buf - 1); |
| 454 | const __m256i x = yy_loadu_256(buf); |
| 455 | const __m256i xr = yy_loadu_256(buf + 1); |
| 456 | |
| 457 | const __m256i fives = _mm256_add_epi32(xl, xr); |
| 458 | const __m256i sixes = x; |
| 459 | |
| 460 | const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); |
| 461 | |
| 462 | return _mm256_add_epi32( |
| 463 | _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), |
| 464 | fives_plus_sixes), |
| 465 | sixes); |
| 466 | } |
| 467 | |
| 468 | // Calculate 8 values of the "cross sum" starting at buf. |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 469 | // |
| 470 | // Pixels are indexed like this: |
| 471 | // xtl xt xtr |
| 472 | // - - - |
| 473 | // xl x xr |
| 474 | // - - - |
| 475 | // xbl xb xbr |
| 476 | // |
| 477 | // Pixels are weighted like this: |
| 478 | // 3 4 3 |
| 479 | // 0 0 0 |
| 480 | // 14 16 14 |
| 481 | // 0 0 0 |
| 482 | // 3 4 3 |
| 483 | // |
| 484 | // buf points to x |
| 485 | // |
| 486 | // threes = xtl + xtr + xbr + xbl |
| 487 | // fours = xt + xb |
| 488 | // fourteens = xl + xr |
| 489 | // sixteens = x |
| 490 | // cross_sum = 4 * fours + 3 * threes + 14 * fourteens + 16 * sixteens |
| 491 | // = 4 * (fours + threes) + 16 * (sixteens + fourteens) |
| 492 | // - (threes + fourteens) - fourteens |
| 493 | // = (fours + threes) << 2 + (sixteens + fourteens) << 4 |
| 494 | // - (threes + fourteens) - fourteens |
| 495 | static __m256i cross_sum_fast_odd_not_last(const int32_t *buf, int stride) { |
| 496 | const int two_stride = 2 * stride; |
| 497 | const __m256i xtl = yy_loadu_256(buf - 1 - two_stride); |
| 498 | const __m256i xt = yy_loadu_256(buf - two_stride); |
| 499 | const __m256i xtr = yy_loadu_256(buf + 1 - two_stride); |
| 500 | const __m256i xl = yy_loadu_256(buf - 1); |
| 501 | const __m256i x = yy_loadu_256(buf); |
| 502 | const __m256i xr = yy_loadu_256(buf + 1); |
| 503 | const __m256i xbl = yy_loadu_256(buf - 1 + two_stride); |
| 504 | const __m256i xb = yy_loadu_256(buf + two_stride); |
| 505 | const __m256i xbr = yy_loadu_256(buf + 1 + two_stride); |
| 506 | |
| 507 | const __m256i threes = |
| 508 | _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); |
| 509 | const __m256i fours = _mm256_add_epi32(xt, xb); |
| 510 | const __m256i fourteens = _mm256_add_epi32(xl, xr); |
| 511 | const __m256i sixteens = x; |
| 512 | |
| 513 | const __m256i fours_plus_threes = _mm256_add_epi32(fours, threes); |
| 514 | const __m256i sixteens_plus_fourteens = _mm256_add_epi32(sixteens, fourteens); |
| 515 | const __m256i threes_plus_fourteens = _mm256_add_epi32(threes, fourteens); |
| 516 | |
| 517 | return _mm256_sub_epi32( |
| 518 | _mm256_sub_epi32( |
| 519 | _mm256_add_epi32(_mm256_slli_epi32(fours_plus_threes, 2), |
| 520 | _mm256_slli_epi32(sixteens_plus_fourteens, 4)), |
| 521 | threes_plus_fourteens), |
| 522 | fourteens); |
| 523 | } |
| 524 | |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 525 | // Calculate 8 values of the "cross sum" starting at buf. |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 526 | // |
| 527 | // Pixels are indexed like this: |
| 528 | // xtl xt xtr |
| 529 | // - - - |
| 530 | // xl x xr |
| 531 | // |
| 532 | // Pixels are weighted like this: |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 533 | // 4 6 4 |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 534 | // 0 0 0 |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 535 | // 16 18 16 |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 536 | // |
| 537 | // buf points to x |
| 538 | // |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 539 | // fours = xtl + xtr |
| 540 | // sixes = xt |
| 541 | // sixteens = xl + xr |
| 542 | // eighteens = x |
| 543 | // cross_sum = 4 * fours + 6 * sixes + 16 * sixteens + 18 * eighteens |
| 544 | // = 4 * (fours + sixes) + 16 * (sixteens + eighteens) |
| 545 | // + 2 * (sixes + eighteens) |
| 546 | // = (fours + sixes) << 2 + (sixteens + eighteens) << 4 |
| 547 | // + (sixes + eighteens) << 1 |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 548 | static __m256i cross_sum_fast_odd_last(const int32_t *buf, int stride) { |
| 549 | const int two_stride = 2 * stride; |
| 550 | const __m256i xtl = yy_loadu_256(buf - 1 - two_stride); |
| 551 | const __m256i xt = yy_loadu_256(buf - two_stride); |
| 552 | const __m256i xtr = yy_loadu_256(buf + 1 - two_stride); |
| 553 | const __m256i xl = yy_loadu_256(buf - 1); |
| 554 | const __m256i x = yy_loadu_256(buf); |
| 555 | const __m256i xr = yy_loadu_256(buf + 1); |
| 556 | |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 557 | const __m256i fours = _mm256_add_epi32(xtl, xtr); |
| 558 | const __m256i sixes = xt; |
| 559 | const __m256i sixteens = _mm256_add_epi32(xl, xr); |
| 560 | const __m256i eighteens = x; |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 561 | |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 562 | const __m256i fours_plus_sixes = _mm256_add_epi32(fours, sixes); |
| 563 | const __m256i sixteens_plus_eighteens = _mm256_add_epi32(sixteens, eighteens); |
| 564 | const __m256i sixes_plus_eighteens = _mm256_add_epi32(sixes, eighteens); |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 565 | |
Debargha Mukherjee | 127b562 | 2018-01-25 13:35:44 -0800 | [diff] [blame] | 566 | return _mm256_add_epi32( |
| 567 | _mm256_add_epi32(_mm256_slli_epi32(fours_plus_sixes, 2), |
| 568 | _mm256_slli_epi32(sixteens_plus_eighteens, 4)), |
| 569 | _mm256_slli_epi32(sixes_plus_eighteens, 1)); |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 570 | } |
| 571 | |
| 572 | // The final filter for selfguided restoration. Computes a weighted average |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 573 | // across A, B with "cross sums" (see cross_sum_... implementations above). |
| 574 | // Designed for the first vertical sub-sampling version of FAST_SGR. |
| 575 | static void final_filter_fast1(int32_t *dst, int dst_stride, const int32_t *A, |
| 576 | const int32_t *B, int buf_stride, |
| 577 | const void *dgd8, int dgd_stride, int width, |
| 578 | int height, int highbd) { |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 579 | const int nb0 = 5; |
| 580 | const int nb1 = 6; |
| 581 | |
| 582 | const __m256i rounding0 = |
| 583 | round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| 584 | const __m256i rounding1 = |
| 585 | round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| 586 | |
| 587 | const uint8_t *dgd_real = |
| 588 | highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; |
| 589 | |
| 590 | for (int i = 0; i < height; ++i) { |
| 591 | if (!(i & 1)) { // even row |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 592 | for (int j = 0; j < width; j += 8) { |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 593 | const __m256i a = |
| 594 | cross_sum_fast_even(A + i * buf_stride + j, buf_stride); |
| 595 | const __m256i b = |
| 596 | cross_sum_fast_even(B + i * buf_stride + j, buf_stride); |
| 597 | |
| 598 | const __m128i raw = |
| 599 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 600 | const __m256i src = |
| 601 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 602 | |
| 603 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 604 | __m256i w = |
| 605 | _mm256_srai_epi32(_mm256_add_epi32(v, rounding0), |
| 606 | SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| 607 | |
| 608 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 609 | } |
| 610 | } else if (i != height - 1) { // odd row and not last |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 611 | for (int j = 0; j < width; j += 8) { |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 612 | const __m256i a = |
| 613 | cross_sum_fast_odd_not_last(A + i * buf_stride + j, buf_stride); |
| 614 | const __m256i b = |
| 615 | cross_sum_fast_odd_not_last(B + i * buf_stride + j, buf_stride); |
| 616 | |
| 617 | const __m128i raw = |
| 618 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 619 | const __m256i src = |
| 620 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 621 | |
| 622 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 623 | __m256i w = |
| 624 | _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), |
| 625 | SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| 626 | |
| 627 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 628 | } |
| 629 | } else { // odd row and last |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 630 | for (int j = 0; j < width; j += 8) { |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 631 | const __m256i a = |
| 632 | cross_sum_fast_odd_last(A + i * buf_stride + j, buf_stride); |
| 633 | const __m256i b = |
| 634 | cross_sum_fast_odd_last(B + i * buf_stride + j, buf_stride); |
| 635 | |
| 636 | const __m128i raw = |
| 637 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 638 | const __m256i src = |
| 639 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 640 | |
| 641 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 642 | __m256i w = |
| 643 | _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), |
| 644 | SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| 645 | |
| 646 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | } |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 651 | |
| 652 | // The final filter for selfguided restoration. Computes a weighted average |
| 653 | // across A, B with "cross sums" (see cross_sum_... implementations above). |
| 654 | // Designed for the second vertical sub-sampling version of FAST_SGR. |
| 655 | static void final_filter_fast2(int32_t *dst, int dst_stride, const int32_t *A, |
| 656 | const int32_t *B, int buf_stride, |
| 657 | const void *dgd8, int dgd_stride, int width, |
| 658 | int height, int highbd) { |
| 659 | const int nb0 = 5; |
| 660 | const int nb1 = 4; |
| 661 | |
| 662 | const __m256i rounding0 = |
| 663 | round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| 664 | const __m256i rounding1 = |
| 665 | round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| 666 | |
| 667 | const uint8_t *dgd_real = |
| 668 | highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; |
| 669 | |
| 670 | for (int i = 0; i < height; ++i) { |
| 671 | if (!(i & 1)) { // even row |
| 672 | for (int j = 0; j < width; j += 8) { |
| 673 | const __m256i a = |
| 674 | cross_sum_fast_even(A + i * buf_stride + j, buf_stride); |
| 675 | const __m256i b = |
| 676 | cross_sum_fast_even(B + i * buf_stride + j, buf_stride); |
| 677 | |
| 678 | const __m128i raw = |
| 679 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 680 | const __m256i src = |
| 681 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 682 | |
| 683 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 684 | __m256i w = |
| 685 | _mm256_srai_epi32(_mm256_add_epi32(v, rounding0), |
| 686 | SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| 687 | |
| 688 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 689 | } |
| 690 | } else { // odd row |
| 691 | for (int j = 0; j < width; j += 8) { |
| 692 | const __m256i a = cross_sum_fast_odd(A + i * buf_stride + j); |
| 693 | const __m256i b = cross_sum_fast_odd(B + i * buf_stride + j); |
| 694 | |
| 695 | const __m128i raw = |
| 696 | xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| 697 | const __m256i src = |
| 698 | highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| 699 | |
| 700 | __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| 701 | __m256i w = |
| 702 | _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), |
| 703 | SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| 704 | |
| 705 | yy_storeu_256(dst + i * dst_stride + j, w); |
| 706 | } |
| 707 | } |
| 708 | } |
| 709 | } |
Imdad Sardharwalla | 9d23457 | 2018-01-24 13:39:00 +0000 | [diff] [blame] | 710 | #endif |
| 711 | |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 712 | void av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height, |
| 713 | int dgd_stride, int32_t *flt1, |
| 714 | int32_t *flt2, int flt_stride, |
| 715 | const sgr_params_type *params, |
| 716 | int bit_depth, int highbd) { |
| 717 | // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, |
| 718 | // Ctl and Dtl is 32-byte aligned. |
| 719 | const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3); |
| 720 | |
| 721 | DECLARE_ALIGNED(32, int32_t, |
| 722 | buf[4 * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)]); |
| 723 | memset(buf, 0, sizeof(buf)); |
| 724 | |
| 725 | const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; |
| 726 | const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; |
| 727 | |
| 728 | // Adjusting the stride of A and B here appears to avoid bad cache effects, |
| 729 | // leading to a significant speed improvement. |
| 730 | // We also align the stride to a multiple of 32 bytes for efficiency. |
| 731 | int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3); |
| 732 | |
| 733 | // The "tl" pointers point at the top-left of the initialised data for the |
| 734 | // array. |
| 735 | int32_t *Atl = buf + 0 * buf_elts + 7; |
| 736 | int32_t *Btl = buf + 1 * buf_elts + 7; |
| 737 | int32_t *Ctl = buf + 2 * buf_elts + 7; |
| 738 | int32_t *Dtl = buf + 3 * buf_elts + 7; |
| 739 | |
| 740 | // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note |
| 741 | // there's a zero row and column in A, B (integral images), so we move down |
| 742 | // and right one for them. |
| 743 | const int buf_diag_border = |
| 744 | SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; |
| 745 | |
| 746 | int32_t *A0 = Atl + 1 + buf_stride; |
| 747 | int32_t *B0 = Btl + 1 + buf_stride; |
| 748 | int32_t *C0 = Ctl + 1 + buf_stride; |
| 749 | int32_t *D0 = Dtl + 1 + buf_stride; |
| 750 | |
| 751 | // Finally, A, B, C, D point at position (0, 0). |
| 752 | int32_t *A = A0 + buf_diag_border; |
| 753 | int32_t *B = B0 + buf_diag_border; |
| 754 | int32_t *C = C0 + buf_diag_border; |
| 755 | int32_t *D = D0 + buf_diag_border; |
| 756 | |
| 757 | const int dgd_diag_border = |
| 758 | SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; |
| 759 | const uint8_t *dgd0 = dgd8 - dgd_diag_border; |
| 760 | |
| 761 | // Generate integral images from the input. C will contain sums of squares; D |
| 762 | // will contain just sums |
| 763 | if (highbd) |
| 764 | integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, |
| 765 | height_ext, Ctl, Dtl, buf_stride); |
| 766 | else |
| 767 | integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, |
| 768 | buf_stride); |
| 769 | |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 770 | // Write to flt1 and flt2 |
| 771 | #if CONFIG_FAST_SGR |
| 772 | assert(params->r1 < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
| 773 | |
| 774 | // r == 2 filter |
| 775 | assert(params->r1 == 2); |
| 776 | calc_ab_fast(A, B, C, D, width, height, buf_stride, params->e1, bit_depth, |
| 777 | params->r1); |
| 778 | final_filter_fast2(flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, |
| 779 | width, height, highbd); |
| 780 | |
| 781 | // r == 1 filter |
| 782 | assert(params->r2 == 1); |
| 783 | calc_ab(A, B, C, D, width, height, buf_stride, params->e2, bit_depth, |
| 784 | params->r2); |
| 785 | final_filter(flt2, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, |
| 786 | height, highbd); |
| 787 | #else |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 788 | for (int i = 0; i < 2; ++i) { |
| 789 | int r = i ? params->r2 : params->r1; |
| 790 | int e = i ? params->e2 : params->e1; |
| 791 | int32_t *flt = i ? flt2 : flt1; |
| 792 | |
| 793 | assert(r + 1 <= AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 794 | |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 795 | calc_ab(A, B, C, D, width, height, buf_stride, e, bit_depth, r); |
| 796 | final_filter(flt, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, |
| 797 | height, highbd); |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 798 | } |
Imdad Sardharwalla | d051e56 | 2018-02-02 09:42:07 +0000 | [diff] [blame^] | 799 | #endif |
Imdad Sardharwalla | c6acc53 | 2018-01-03 15:18:24 +0000 | [diff] [blame] | 800 | } |
| 801 | |
| 802 | void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width, |
| 803 | int height, int stride, int eps, |
| 804 | const int *xqd, uint8_t *dst8, |
| 805 | int dst_stride, int32_t *tmpbuf, |
| 806 | int bit_depth, int highbd) { |
| 807 | int32_t *flt1 = tmpbuf; |
| 808 | int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; |
| 809 | assert(width * height <= RESTORATION_TILEPELS_MAX); |
| 810 | av1_selfguided_restoration_avx2(dat8, width, height, stride, flt1, flt2, |
| 811 | width, &sgr_params[eps], bit_depth, highbd); |
| 812 | |
| 813 | int xq[2]; |
| 814 | decode_xq(xqd, xq); |
| 815 | |
| 816 | __m256i xq0 = _mm256_set1_epi32(xq[0]); |
| 817 | __m256i xq1 = _mm256_set1_epi32(xq[1]); |
| 818 | |
| 819 | for (int i = 0; i < height; ++i) { |
| 820 | // Calculate output in batches of 16 pixels |
| 821 | for (int j = 0; j < width; j += 16) { |
| 822 | const int k = i * width + j; |
| 823 | const int m = i * dst_stride + j; |
| 824 | |
| 825 | const uint8_t *dat8ij = dat8 + i * stride + j; |
| 826 | __m256i ep_0, ep_1; |
| 827 | __m128i src_0, src_1; |
| 828 | if (highbd) { |
| 829 | src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij)); |
| 830 | src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8)); |
| 831 | ep_0 = _mm256_cvtepu16_epi32(src_0); |
| 832 | ep_1 = _mm256_cvtepu16_epi32(src_1); |
| 833 | } else { |
| 834 | src_0 = xx_loadu_128(dat8ij); |
| 835 | ep_0 = _mm256_cvtepu8_epi32(src_0); |
| 836 | ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8)); |
| 837 | } |
| 838 | |
| 839 | const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS); |
| 840 | const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS); |
| 841 | |
| 842 | const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0); |
| 843 | const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1); |
| 844 | |
| 845 | const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt2[k]), u_0); |
| 846 | const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt2[k + 8]), u_1); |
| 847 | |
| 848 | const __m256i v_0 = |
| 849 | _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_0), |
| 850 | _mm256_mullo_epi32(xq1, f2_0)), |
| 851 | _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS)); |
| 852 | const __m256i v_1 = |
| 853 | _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_1), |
| 854 | _mm256_mullo_epi32(xq1, f2_1)), |
| 855 | _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS)); |
| 856 | |
| 857 | const __m256i rounding = |
| 858 | round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| 859 | const __m256i w_0 = _mm256_srai_epi32( |
| 860 | _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| 861 | const __m256i w_1 = _mm256_srai_epi32( |
| 862 | _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| 863 | |
| 864 | if (highbd) { |
| 865 | // Pack into 16 bits and clamp to [0, 2^bit_depth) |
| 866 | // Note that packing into 16 bits messes up the order of the bits, |
| 867 | // so we use a permute function to correct this |
| 868 | const __m256i tmp = _mm256_packus_epi32(w_0, w_1); |
| 869 | const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); |
| 870 | const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1); |
| 871 | const __m256i res = _mm256_min_epi16(tmp2, max); |
| 872 | yy_store_256(CONVERT_TO_SHORTPTR(dst8 + m), res); |
| 873 | } else { |
| 874 | // Pack into 8 bits and clamp to [0, 256) |
| 875 | // Note that each pack messes up the order of the bits, |
| 876 | // so we use a permute function to correct this |
| 877 | const __m256i tmp = _mm256_packs_epi32(w_0, w_1); |
| 878 | const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); |
| 879 | const __m256i res = |
| 880 | _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */); |
| 881 | const __m128i res2 = |
| 882 | _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8)); |
| 883 | xx_store_128(dst8 + m, res2); |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | } |