blob: ed8aaea80325bdd8b5ddead237ff1744d6c8ae02 [file] [log] [blame]
Yaowu Xuc27fc142016-08-22 16:08:15 -07001/*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <math.h>
Yaowu Xuf883b422016-08-30 14:01:10 -070013#include "./aom_dsp_rtcd.h"
Yaowu Xuc27fc142016-08-22 16:08:15 -070014#include "aom_dsp/ssim.h"
15#include "aom_ports/mem.h"
16#include "aom_ports/system_state.h"
17
Yaowu Xuf883b422016-08-30 14:01:10 -070018void aom_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
Yaowu Xuc27fc142016-08-22 16:08:15 -070019 uint32_t *sum_s, uint32_t *sum_r,
20 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
21 uint32_t *sum_sxr) {
22 int i, j;
23 for (i = 0; i < 16; i++, s += sp, r += rp) {
24 for (j = 0; j < 16; j++) {
25 *sum_s += s[j];
26 *sum_r += r[j];
27 *sum_sq_s += s[j] * s[j];
28 *sum_sq_r += r[j] * r[j];
29 *sum_sxr += s[j] * r[j];
30 }
31 }
32}
Yaowu Xuf883b422016-08-30 14:01:10 -070033void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
Yaowu Xuc27fc142016-08-22 16:08:15 -070034 uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
35 uint32_t *sum_sq_r, uint32_t *sum_sxr) {
36 int i, j;
37 for (i = 0; i < 8; i++, s += sp, r += rp) {
38 for (j = 0; j < 8; j++) {
39 *sum_s += s[j];
40 *sum_r += r[j];
41 *sum_sq_s += s[j] * s[j];
42 *sum_sq_r += r[j] * r[j];
43 *sum_sxr += s[j] * r[j];
44 }
45 }
46}
47
Yaowu Xuf883b422016-08-30 14:01:10 -070048#if CONFIG_AOM_HIGHBITDEPTH
49void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
Yaowu Xuc27fc142016-08-22 16:08:15 -070050 int rp, uint32_t *sum_s, uint32_t *sum_r,
51 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
52 uint32_t *sum_sxr) {
53 int i, j;
54 for (i = 0; i < 8; i++, s += sp, r += rp) {
55 for (j = 0; j < 8; j++) {
56 *sum_s += s[j];
57 *sum_r += r[j];
58 *sum_sq_s += s[j] * s[j];
59 *sum_sq_r += r[j] * r[j];
60 *sum_sxr += s[j] * r[j];
61 }
62 }
63}
Yaowu Xuf883b422016-08-30 14:01:10 -070064#endif // CONFIG_AOM_HIGHBITDEPTH
Yaowu Xuc27fc142016-08-22 16:08:15 -070065
66static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
67static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
68static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2
69static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2
70static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2
71static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2
72
73static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
74 uint32_t sum_sq_r, uint32_t sum_sxr, int count,
75 uint32_t bd) {
76 int64_t ssim_n, ssim_d;
77 int64_t c1, c2;
78 if (bd == 8) {
79 // scale the constants by number of pixels
80 c1 = (cc1 * count * count) >> 12;
81 c2 = (cc2 * count * count) >> 12;
82 } else if (bd == 10) {
83 c1 = (cc1_10 * count * count) >> 12;
84 c2 = (cc2_10 * count * count) >> 12;
85 } else if (bd == 12) {
86 c1 = (cc1_12 * count * count) >> 12;
87 c2 = (cc2_12 * count * count) >> 12;
88 } else {
89 c1 = c2 = 0;
90 assert(0);
91 }
92
93 ssim_n = (2 * sum_s * sum_r + c1) *
94 ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
95
96 ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
97 ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
98 (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
99
100 return ssim_n * 1.0 / ssim_d;
101}
102
103static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
104 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
Yaowu Xuf883b422016-08-30 14:01:10 -0700105 aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700106 &sum_sxr);
107 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
108}
109
Yaowu Xuf883b422016-08-30 14:01:10 -0700110#if CONFIG_AOM_HIGHBITDEPTH
Yaowu Xuc27fc142016-08-22 16:08:15 -0700111static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
112 int rp, uint32_t bd, uint32_t shift) {
113 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
Yaowu Xuf883b422016-08-30 14:01:10 -0700114 aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700115 &sum_sxr);
116 return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
117 sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
118}
Yaowu Xuf883b422016-08-30 14:01:10 -0700119#endif // CONFIG_AOM_HIGHBITDEPTH
Yaowu Xuc27fc142016-08-22 16:08:15 -0700120
121// We are using a 8x8 moving window with starting location of each 8x8 window
122// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
123// block boundaries to penalize blocking artifacts.
Yaowu Xuf883b422016-08-30 14:01:10 -0700124static double aom_ssim2(const uint8_t *img1, const uint8_t *img2,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700125 int stride_img1, int stride_img2, int width,
126 int height) {
127 int i, j;
128 int samples = 0;
129 double ssim_total = 0;
130
131 // sample point start with each 4x4 location
132 for (i = 0; i <= height - 8;
133 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
134 for (j = 0; j <= width - 8; j += 4) {
135 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
136 ssim_total += v;
137 samples++;
138 }
139 }
140 ssim_total /= samples;
141 return ssim_total;
142}
143
Yaowu Xuf883b422016-08-30 14:01:10 -0700144#if CONFIG_AOM_HIGHBITDEPTH
145static double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700146 int stride_img1, int stride_img2, int width,
147 int height, uint32_t bd, uint32_t shift) {
148 int i, j;
149 int samples = 0;
150 double ssim_total = 0;
151
152 // sample point start with each 4x4 location
153 for (i = 0; i <= height - 8;
154 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
155 for (j = 0; j <= width - 8; j += 4) {
156 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
157 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
158 shift);
159 ssim_total += v;
160 samples++;
161 }
162 }
163 ssim_total /= samples;
164 return ssim_total;
165}
Yaowu Xuf883b422016-08-30 14:01:10 -0700166#endif // CONFIG_AOM_HIGHBITDEPTH
Yaowu Xuc27fc142016-08-22 16:08:15 -0700167
Yaowu Xuf883b422016-08-30 14:01:10 -0700168double aom_calc_ssim(const YV12_BUFFER_CONFIG *source,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700169 const YV12_BUFFER_CONFIG *dest, double *weight) {
170 double a, b, c;
171 double ssimv;
172
Yaowu Xuf883b422016-08-30 14:01:10 -0700173 a = aom_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700174 dest->y_stride, source->y_crop_width, source->y_crop_height);
175
Yaowu Xuf883b422016-08-30 14:01:10 -0700176 b = aom_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700177 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
178
Yaowu Xuf883b422016-08-30 14:01:10 -0700179 c = aom_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700180 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
181
182 ssimv = a * .8 + .1 * (b + c);
183
184 *weight = 1;
185
186 return ssimv;
187}
188
189// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
190//
191// Re working out the math ->
192//
193// ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
194// ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
195//
196// mean(x) = sum(x) / n
197//
198// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
199//
200// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
201//
202// ssim(x,y) =
203// (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
204// (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
205// ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
206// (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
207//
208// factoring out n*n
209//
210// ssim(x,y) =
211// (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
212// (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
213// (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
214//
215// Replace c1 with n*n * c1 for the final step that leads to this code:
216// The final step scales by 12 bits so we don't lose precision in the constants.
217
218static double ssimv_similarity(const Ssimv *sv, int64_t n) {
219 // Scale the constants by number of pixels.
220 const int64_t c1 = (cc1 * n * n) >> 12;
221 const int64_t c2 = (cc2 * n * n) >> 12;
222
223 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
224 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
225
226 // Since these variables are unsigned sums, convert to double so
227 // math is done in double arithmetic.
228 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
229 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
230 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
231
232 return l * v;
233}
234
235// The first term of the ssim metric is a luminance factor.
236//
237// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
238//
239// This luminance factor is super sensitive to the dark side of luminance
240// values and completely insensitive on the white side. check out 2 sets
241// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
242// 2*250*252/ (250^2+252^2) => .99999997
243//
244// As a result in this tweaked version of the calculation in which the
245// luminance is taken as percentage off from peak possible.
246//
247// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
248//
249static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
250 // Scale the constants by number of pixels.
251 const int64_t c1 = (cc1 * n * n) >> 12;
252 const int64_t c2 = (cc2 * n * n) >> 12;
253
254 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
255 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
256
257 // Since these variables are unsigned, sums convert to double so
258 // math is done in double arithmetic.
259 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
260 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
261 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
262
263 return l * v;
264}
265static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
266 int img2_pitch, Ssimv *sv) {
Yaowu Xuf883b422016-08-30 14:01:10 -0700267 aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700268 &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
269}
270
Yaowu Xuf883b422016-08-30 14:01:10 -0700271double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700272 int img2_pitch, int width, int height, Ssimv *sv2,
273 Metrics *m, int do_inconsistency) {
274 double dssim_total = 0;
275 double ssim_total = 0;
276 double ssim2_total = 0;
277 double inconsistency_total = 0;
278 int i, j;
279 int c = 0;
280 double norm;
281 double old_ssim_total = 0;
Yaowu Xuf883b422016-08-30 14:01:10 -0700282 aom_clear_system_state();
Yaowu Xuc27fc142016-08-22 16:08:15 -0700283 // We can sample points as frequently as we like start with 1 per 4x4.
284 for (i = 0; i < height;
285 i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
286 for (j = 0; j < width; j += 4, ++c) {
287 Ssimv sv = { 0 };
288 double ssim;
289 double ssim2;
290 double dssim;
291 uint32_t var_new;
292 uint32_t var_old;
293 uint32_t mean_new;
294 uint32_t mean_old;
295 double ssim_new;
296 double ssim_old;
297
298 // Not sure there's a great way to handle the edge pixels
299 // in ssim when using a window. Seems biased against edge pixels
300 // however you handle this. This uses only samples that are
301 // fully in the frame.
302 if (j + 8 <= width && i + 8 <= height) {
303 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
304 }
305
306 ssim = ssimv_similarity(&sv, 64);
307 ssim2 = ssimv_similarity2(&sv, 64);
308
309 sv.ssim = ssim2;
310
311 // dssim is calculated to use as an actual error metric and
312 // is scaled up to the same range as sum square error.
313 // Since we are subsampling every 16th point maybe this should be
314 // *16 ?
315 dssim = 255 * 255 * (1 - ssim2) / 2;
316
317 // Here I introduce a new error metric: consistency-weighted
318 // SSIM-inconsistency. This metric isolates frames where the
319 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
320 // sharper or blurrier than the others. Higher values indicate a
321 // temporally inconsistent SSIM. There are two ideas at work:
322 //
323 // 1) 'SSIM-inconsistency': the total inconsistency value
324 // reflects how much SSIM values are changing between this
325 // source / reference frame pair and the previous pair.
326 //
327 // 2) 'consistency-weighted': weights de-emphasize areas in the
328 // frame where the scene content has changed. Changes in scene
329 // content are detected via changes in local variance and local
330 // mean.
331 //
332 // Thus the overall measure reflects how inconsistent the SSIM
333 // values are, over consistent regions of the frame.
334 //
335 // The metric has three terms:
336 //
337 // term 1 -> uses change in scene Variance to weight error score
338 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
339 // larger changes from one frame to the next mean we care
340 // less about consistency.
341 //
342 // term 2 -> uses change in local scene luminance to weight error
343 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
344 // larger changes from one frame to the next mean we care
345 // less about consistency.
346 //
347 // term3 -> measures inconsistency in ssim scores between frames
348 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
349 //
350 // This term compares the ssim score for the same location in 2
351 // subsequent frames.
352 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
353 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
354 mean_new = sv.sum_s;
355 mean_old = sv2[c].sum_s;
356 ssim_new = sv.ssim;
357 ssim_old = sv2[c].ssim;
358
359 if (do_inconsistency) {
360 // We do the metric once for every 4x4 block in the image. Since
361 // we are scaling the error to SSE for use in a psnr calculation
362 // 1.0 = 4x4x255x255 the worst error we can possibly have.
363 static const double kScaling = 4. * 4 * 255 * 255;
364
365 // The constants have to be non 0 to avoid potential divide by 0
366 // issues other than that they affect kind of a weighting between
367 // the terms. No testing of what the right terms should be has been
368 // done.
369 static const double c1 = 1, c2 = 1, c3 = 1;
370
371 // This measures how much consistent variance is in two consecutive
372 // source frames. 1.0 means they have exactly the same variance.
373 const double variance_term =
374 (2.0 * var_old * var_new + c1) /
375 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
376
377 // This measures how consistent the local mean are between two
378 // consecutive frames. 1.0 means they have exactly the same mean.
379 const double mean_term =
380 (2.0 * mean_old * mean_new + c2) /
381 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
382
383 // This measures how consistent the ssims of two
384 // consecutive frames is. 1.0 means they are exactly the same.
385 double ssim_term =
386 pow((2.0 * ssim_old * ssim_new + c3) /
387 (ssim_old * ssim_old + ssim_new * ssim_new + c3),
388 5);
389
390 double this_inconsistency;
391
392 // Floating point math sometimes makes this > 1 by a tiny bit.
393 // We want the metric to scale between 0 and 1.0 so we can convert
394 // it to an snr scaled value.
395 if (ssim_term > 1) ssim_term = 1;
396
397 // This converts the consistency metric to an inconsistency metric
398 // ( so we can scale it like psnr to something like sum square error.
399 // The reason for the variance and mean terms is the assumption that
400 // if there are big changes in the source we shouldn't penalize
401 // inconsistency in ssim scores a bit less as it will be less visible
402 // to the user.
403 this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
404
405 this_inconsistency *= kScaling;
406 inconsistency_total += this_inconsistency;
407 }
408 sv2[c] = sv;
409 ssim_total += ssim;
410 ssim2_total += ssim2;
411 dssim_total += dssim;
412
413 old_ssim_total += ssim_old;
414 }
415 old_ssim_total += 0;
416 }
417
418 norm = 1. / (width / 4) / (height / 4);
419 ssim_total *= norm;
420 ssim2_total *= norm;
421 m->ssim2 = ssim2_total;
422 m->ssim = ssim_total;
423 if (old_ssim_total == 0) inconsistency_total = 0;
424
425 m->ssimc = inconsistency_total;
426
427 m->dssim = dssim_total;
428 return inconsistency_total;
429}
430
Yaowu Xuf883b422016-08-30 14:01:10 -0700431#if CONFIG_AOM_HIGHBITDEPTH
432double aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700433 const YV12_BUFFER_CONFIG *dest, double *weight,
434 uint32_t bd, uint32_t in_bd) {
435 double a, b, c;
436 double ssimv;
437 uint32_t shift = 0;
438
439 assert(bd >= in_bd);
440 shift = bd - in_bd;
441
Yaowu Xuf883b422016-08-30 14:01:10 -0700442 a = aom_highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700443 dest->y_stride, source->y_crop_width,
444 source->y_crop_height, in_bd, shift);
445
Yaowu Xuf883b422016-08-30 14:01:10 -0700446 b = aom_highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700447 dest->uv_stride, source->uv_crop_width,
448 source->uv_crop_height, in_bd, shift);
449
Yaowu Xuf883b422016-08-30 14:01:10 -0700450 c = aom_highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
Yaowu Xuc27fc142016-08-22 16:08:15 -0700451 dest->uv_stride, source->uv_crop_width,
452 source->uv_crop_height, in_bd, shift);
453
454 ssimv = a * .8 + .1 * (b + c);
455
456 *weight = 1;
457
458 return ssimv;
459}
460
Yaowu Xuf883b422016-08-30 14:01:10 -0700461#endif // CONFIG_AOM_HIGHBITDEPTH