blob: 8ab1ea076cfe913df211fdf1c2c4c528c5f36c23 [file] [log] [blame]
Yaowu Xuc27fc142016-08-22 16:08:15 -07001/*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Usee of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <immintrin.h> // AVX2
12
Yaowu Xuf883b422016-08-30 14:01:10 -070013#include "./av1_rtcd.h"
14#include "aom/aom_integer.h"
Yaowu Xuc27fc142016-08-22 16:08:15 -070015
Yaowu Xuf883b422016-08-30 14:01:10 -070016int64_t av1_block_error_avx2(const int16_t *coeff, const int16_t *dqcoeff,
17 intptr_t block_size, int64_t *ssz) {
Yaowu Xuc27fc142016-08-22 16:08:15 -070018 __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
19 __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
20 __m256i sse_reg_64hi, ssz_reg_64hi;
21 __m128i sse_reg128, ssz_reg128;
22 int64_t sse;
23 int i;
24 const __m256i zero_reg = _mm256_set1_epi16(0);
25
26 // init sse and ssz registerd to zero
27 sse_reg = _mm256_set1_epi16(0);
28 ssz_reg = _mm256_set1_epi16(0);
29
30 for (i = 0; i < block_size; i += 16) {
31 // load 32 bytes from coeff and dqcoeff
32 coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
33 dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
34 // dqcoeff - coeff
35 dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
36 // madd (dqcoeff - coeff)
37 dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
38 // madd coeff
39 coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
40 // expand each double word of madd (dqcoeff - coeff) to quad word
41 exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
42 exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
43 // expand each double word of madd (coeff) to quad word
44 exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
45 exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
46 // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
47 sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
48 ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
49 sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
50 ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
51 }
52 // save the higher 64 bit of each 128 bit lane
53 sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
54 ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
55 // add the higher 64 bit to the low 64 bit
56 sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
57 ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
58
59 // add each 64 bit from each of the 128 bit lane of the 256 bit
60 sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
61 _mm256_extractf128_si256(sse_reg, 1));
62
63 ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
64 _mm256_extractf128_si256(ssz_reg, 1));
65
66 // store the results
67 _mm_storel_epi64((__m128i *)(&sse), sse_reg128);
68
69 _mm_storel_epi64((__m128i *)(ssz), ssz_reg128);
70 return sse;
71}