blob: f61c23dbbd1863557a99f7d9016efad0cd3fbd50 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_RD_H_
#define AOM_AV1_ENCODER_RD_H_
#include <limits.h>
#include "av1/common/blockd.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/cost.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RDDIV_BITS 7
#define RD_EPB_SHIFT 6
#define RDCOST(RM, R, D) \
(ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT) + \
((D) * (1 << RDDIV_BITS)))
#define RDCOST_DBL(RM, R, D) \
(((((double)(R)) * (RM)) / (double)(1 << AV1_PROB_COST_SHIFT)) + \
((double)(D) * (1 << RDDIV_BITS)))
#define QIDX_SKIP_THRESH 115
#define MV_COST_WEIGHT 108
#define MV_COST_WEIGHT_SUB 120
#define RD_THRESH_MAX_FACT 64
#define RD_THRESH_INC 1
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
// This enumerator type needs to be kept aligned with the mode order in
// const MODE_DEFINITION av1_mode_order[MAX_MODES] used in the rd code.
enum {
THR_NEARESTMV,
THR_NEARESTL2,
THR_NEARESTL3,
THR_NEARESTB,
THR_NEARESTA2,
THR_NEARESTA,
THR_NEARESTG,
THR_NEWMV,
THR_NEWL2,
THR_NEWL3,
THR_NEWB,
THR_NEWA2,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARL2,
THR_NEARL3,
THR_NEARB,
THR_NEARA2,
THR_NEARA,
THR_NEARG,
THR_GLOBALMV,
THR_GLOBALL2,
THR_GLOBALL3,
THR_GLOBALB,
THR_GLOBALA2,
THR_GLOBALA,
THR_GLOBALG,
THR_COMP_NEAREST_NEARESTLA,
THR_COMP_NEAREST_NEARESTL2A,
THR_COMP_NEAREST_NEARESTL3A,
THR_COMP_NEAREST_NEARESTGA,
THR_COMP_NEAREST_NEARESTLB,
THR_COMP_NEAREST_NEARESTL2B,
THR_COMP_NEAREST_NEARESTL3B,
THR_COMP_NEAREST_NEARESTGB,
THR_COMP_NEAREST_NEARESTLA2,
THR_COMP_NEAREST_NEARESTL2A2,
THR_COMP_NEAREST_NEARESTL3A2,
THR_COMP_NEAREST_NEARESTGA2,
THR_COMP_NEAREST_NEARESTLL2,
THR_COMP_NEAREST_NEARESTLL3,
THR_COMP_NEAREST_NEARESTLG,
THR_COMP_NEAREST_NEARESTBA,
THR_COMP_NEAR_NEARLA,
THR_COMP_NEW_NEARESTLA,
THR_COMP_NEAREST_NEWLA,
THR_COMP_NEW_NEARLA,
THR_COMP_NEAR_NEWLA,
THR_COMP_NEW_NEWLA,
THR_COMP_GLOBAL_GLOBALLA,
THR_COMP_NEAR_NEARL2A,
THR_COMP_NEW_NEARESTL2A,
THR_COMP_NEAREST_NEWL2A,
THR_COMP_NEW_NEARL2A,
THR_COMP_NEAR_NEWL2A,
THR_COMP_NEW_NEWL2A,
THR_COMP_GLOBAL_GLOBALL2A,
THR_COMP_NEAR_NEARL3A,
THR_COMP_NEW_NEARESTL3A,
THR_COMP_NEAREST_NEWL3A,
THR_COMP_NEW_NEARL3A,
THR_COMP_NEAR_NEWL3A,
THR_COMP_NEW_NEWL3A,
THR_COMP_GLOBAL_GLOBALL3A,
THR_COMP_NEAR_NEARGA,
THR_COMP_NEW_NEARESTGA,
THR_COMP_NEAREST_NEWGA,
THR_COMP_NEW_NEARGA,
THR_COMP_NEAR_NEWGA,
THR_COMP_NEW_NEWGA,
THR_COMP_GLOBAL_GLOBALGA,
THR_COMP_NEAR_NEARLB,
THR_COMP_NEW_NEARESTLB,
THR_COMP_NEAREST_NEWLB,
THR_COMP_NEW_NEARLB,
THR_COMP_NEAR_NEWLB,
THR_COMP_NEW_NEWLB,
THR_COMP_GLOBAL_GLOBALLB,
THR_COMP_NEAR_NEARL2B,
THR_COMP_NEW_NEARESTL2B,
THR_COMP_NEAREST_NEWL2B,
THR_COMP_NEW_NEARL2B,
THR_COMP_NEAR_NEWL2B,
THR_COMP_NEW_NEWL2B,
THR_COMP_GLOBAL_GLOBALL2B,
THR_COMP_NEAR_NEARL3B,
THR_COMP_NEW_NEARESTL3B,
THR_COMP_NEAREST_NEWL3B,
THR_COMP_NEW_NEARL3B,
THR_COMP_NEAR_NEWL3B,
THR_COMP_NEW_NEWL3B,
THR_COMP_GLOBAL_GLOBALL3B,
THR_COMP_NEAR_NEARGB,
THR_COMP_NEW_NEARESTGB,
THR_COMP_NEAREST_NEWGB,
THR_COMP_NEW_NEARGB,
THR_COMP_NEAR_NEWGB,
THR_COMP_NEW_NEWGB,
THR_COMP_GLOBAL_GLOBALGB,
THR_COMP_NEAR_NEARLA2,
THR_COMP_NEW_NEARESTLA2,
THR_COMP_NEAREST_NEWLA2,
THR_COMP_NEW_NEARLA2,
THR_COMP_NEAR_NEWLA2,
THR_COMP_NEW_NEWLA2,
THR_COMP_GLOBAL_GLOBALLA2,
THR_COMP_NEAR_NEARL2A2,
THR_COMP_NEW_NEARESTL2A2,
THR_COMP_NEAREST_NEWL2A2,
THR_COMP_NEW_NEARL2A2,
THR_COMP_NEAR_NEWL2A2,
THR_COMP_NEW_NEWL2A2,
THR_COMP_GLOBAL_GLOBALL2A2,
THR_COMP_NEAR_NEARL3A2,
THR_COMP_NEW_NEARESTL3A2,
THR_COMP_NEAREST_NEWL3A2,
THR_COMP_NEW_NEARL3A2,
THR_COMP_NEAR_NEWL3A2,
THR_COMP_NEW_NEWL3A2,
THR_COMP_GLOBAL_GLOBALL3A2,
THR_COMP_NEAR_NEARGA2,
THR_COMP_NEW_NEARESTGA2,
THR_COMP_NEAREST_NEWGA2,
THR_COMP_NEW_NEARGA2,
THR_COMP_NEAR_NEWGA2,
THR_COMP_NEW_NEWGA2,
THR_COMP_GLOBAL_GLOBALGA2,
THR_COMP_NEAR_NEARLL2,
THR_COMP_NEW_NEARESTLL2,
THR_COMP_NEAREST_NEWLL2,
THR_COMP_NEW_NEARLL2,
THR_COMP_NEAR_NEWLL2,
THR_COMP_NEW_NEWLL2,
THR_COMP_GLOBAL_GLOBALLL2,
THR_COMP_NEAR_NEARLL3,
THR_COMP_NEW_NEARESTLL3,
THR_COMP_NEAREST_NEWLL3,
THR_COMP_NEW_NEARLL3,
THR_COMP_NEAR_NEWLL3,
THR_COMP_NEW_NEWLL3,
THR_COMP_GLOBAL_GLOBALLL3,
THR_COMP_NEAR_NEARLG,
THR_COMP_NEW_NEARESTLG,
THR_COMP_NEAREST_NEWLG,
THR_COMP_NEW_NEARLG,
THR_COMP_NEAR_NEWLG,
THR_COMP_NEW_NEWLG,
THR_COMP_GLOBAL_GLOBALLG,
THR_COMP_NEAR_NEARBA,
THR_COMP_NEW_NEARESTBA,
THR_COMP_NEAREST_NEWBA,
THR_COMP_NEW_NEARBA,
THR_COMP_NEAR_NEWBA,
THR_COMP_NEW_NEWBA,
THR_COMP_GLOBAL_GLOBALBA,
THR_DC,
THR_PAETH,
THR_SMOOTH,
THR_SMOOTH_V,
THR_SMOOTH_H,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D203_PRED,
THR_D157_PRED,
THR_D67_PRED,
THR_D113_PRED,
THR_D45_PRED,
MAX_MODES,
LAST_SINGLE_REF_MODES = THR_GLOBALG,
MAX_SINGLE_REF_MODES = LAST_SINGLE_REF_MODES + 1,
LAST_COMP_REF_MODES = THR_COMP_GLOBAL_GLOBALBA,
MAX_COMP_REF_MODES = LAST_COMP_REF_MODES + 1
} UENUM1BYTE(THR_MODES);
enum {
THR_LAST,
THR_LAST2,
THR_LAST3,
THR_BWDR,
THR_ALTR2,
THR_GOLD,
THR_ALTR,
THR_COMP_LA,
THR_COMP_L2A,
THR_COMP_L3A,
THR_COMP_GA,
THR_COMP_LB,
THR_COMP_L2B,
THR_COMP_L3B,
THR_COMP_GB,
THR_COMP_LA2,
THR_COMP_L2A2,
THR_COMP_L3A2,
THR_COMP_GA2,
THR_INTRA,
MAX_REFS
} UENUM1BYTE(THR_MODES_SUB8X8);
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int thresh_mult_sub8x8[MAX_REFS];
int threshes[MAX_SEGMENTS][BLOCK_SIZES_ALL][MAX_MODES];
int64_t prediction_type_threshes[REF_FRAMES][REFERENCE_MODES];
int RDMULT;
double r0;
} RD_OPT;
static INLINE void av1_init_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = 0;
rd_stats->dist = 0;
rd_stats->rdcost = 0;
rd_stats->sse = 0;
rd_stats->skip = 1;
rd_stats->zero_rate = 0;
rd_stats->invalid_rate = 0;
rd_stats->ref_rdcost = INT64_MAX;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = 0;
{
int r, c;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c)
rd_stats->txb_coeff_cost_map[plane][r][c] = 0;
}
}
#endif
#if CONFIG_ONE_PASS_SVM
rd_stats->eob = 0;
rd_stats->eob_0 = 0;
rd_stats->eob_1 = 0;
rd_stats->eob_2 = 0;
rd_stats->eob_3 = 0;
rd_stats->rd = 0;
rd_stats->rd_0 = 0;
rd_stats->rd_1 = 0;
rd_stats->rd_2 = 0;
rd_stats->rd_3 = 0;
rd_stats->y_sse = 0;
rd_stats->sse_0 = 0;
rd_stats->sse_1 = 0;
rd_stats->sse_2 = 0;
rd_stats->sse_3 = 0;
#endif
}
static INLINE void av1_invalid_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = INT_MAX;
rd_stats->dist = INT64_MAX;
rd_stats->rdcost = INT64_MAX;
rd_stats->sse = INT64_MAX;
rd_stats->skip = 0;
rd_stats->zero_rate = 0;
rd_stats->invalid_rate = 1;
rd_stats->ref_rdcost = INT64_MAX;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = INT_MAX;
{
int r, c;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c)
rd_stats->txb_coeff_cost_map[plane][r][c] = INT_MAX;
}
}
#endif
#if CONFIG_ONE_PASS_SVM
// TODO(chiyotsai@google.com): Change invalid values to INT_MAX and
// INT64_MAX. Currently there are some code paths where rd_stats's properties
// are set directly without calling av1_init_rd_stats, so changing it now will
// break this speed feature. Need to hunt down all places where rd_stats is
// used without initialized.
rd_stats->eob = 0;
rd_stats->eob_0 = 0;
rd_stats->eob_1 = 0;
rd_stats->eob_2 = 0;
rd_stats->eob_3 = 0;
rd_stats->rd = 0;
rd_stats->rd_0 = 0;
rd_stats->rd_1 = 0;
rd_stats->rd_2 = 0;
rd_stats->rd_3 = 0;
rd_stats->y_sse = 0;
rd_stats->sse_0 = 0;
rd_stats->sse_1 = 0;
rd_stats->sse_2 = 0;
rd_stats->sse_3 = 0;
#endif
}
static INLINE void av1_merge_rd_stats(RD_STATS *rd_stats_dst,
const RD_STATS *rd_stats_src) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats_dst->rate += rd_stats_src->rate;
if (!rd_stats_dst->zero_rate)
rd_stats_dst->zero_rate = rd_stats_src->zero_rate;
rd_stats_dst->dist += rd_stats_src->dist;
rd_stats_dst->sse += rd_stats_src->sse;
rd_stats_dst->skip &= rd_stats_src->skip;
rd_stats_dst->invalid_rate &= rd_stats_src->invalid_rate;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats_dst->txb_coeff_cost[plane] += rd_stats_src->txb_coeff_cost[plane];
{
// TODO(angiebird): optimize this part
int r, c;
int ref_txb_coeff_cost = 0;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
rd_stats_dst->txb_coeff_cost_map[plane][r][c] +=
rd_stats_src->txb_coeff_cost_map[plane][r][c];
ref_txb_coeff_cost += rd_stats_dst->txb_coeff_cost_map[plane][r][c];
}
assert(ref_txb_coeff_cost == rd_stats_dst->txb_coeff_cost[plane]);
}
}
#endif
#if CONFIG_ONE_PASS_SVM
rd_stats_dst->eob += rd_stats_src->eob;
rd_stats_dst->eob_0 += rd_stats_src->eob_0;
rd_stats_dst->eob_1 += rd_stats_src->eob_1;
rd_stats_dst->eob_2 += rd_stats_src->eob_2;
rd_stats_dst->eob_3 += rd_stats_src->eob_3;
rd_stats_dst->rd += rd_stats_src->rd;
rd_stats_dst->rd_0 += rd_stats_src->rd_0;
rd_stats_dst->rd_1 += rd_stats_src->rd_1;
rd_stats_dst->rd_2 += rd_stats_src->rd_2;
rd_stats_dst->rd_3 += rd_stats_src->rd_3;
rd_stats_dst->y_sse += rd_stats_src->y_sse;
rd_stats_dst->sse_0 += rd_stats_src->sse_0;
rd_stats_dst->sse_1 += rd_stats_src->sse_1;
rd_stats_dst->sse_2 += rd_stats_src->sse_2;
rd_stats_dst->sse_3 += rd_stats_src->sse_3;
#endif
}
#if CONFIG_ONE_PASS_SVM
static INLINE void av1_add_reg_stat(RD_STATS *rd_stats, int eob, int64_t rd,
int64_t sse, int blk_row, int blk_col,
BLOCK_SIZE bsize, BLOCK_SIZE crop_bsize) {
// NOTE: Currently the calculation of regional features works by assuming
// bsize is square so that each transform block of size crop_bsize either
// 1. locates completely within a quadrant or
// 2. is exactly half of bsize or
// 3. is the entire prediction block
// Size of TX block and SB
const int block_width_mi = mi_size_wide[bsize];
const int block_height_mi = mi_size_high[bsize];
const int crop_width_mi = mi_size_wide[crop_bsize];
const int crop_height_mi = mi_size_high[crop_bsize];
// Increment the eob proportionally to how much the tx_block overlaps with
// each quadrant. We will scale it by MAX_MIB_SIZE * MAX_MIB_SIZE to avoid
// being truncated.
const int max_scaling_factor = MAX_MIB_SIZE * MAX_MIB_SIZE;
// Update the stats
rd_stats->eob = eob;
rd_stats->rd = rd;
rd_stats->y_sse = sse;
if (crop_width_mi <= block_width_mi / 2 &&
crop_height_mi <= block_width_mi / 2) {
// The transform block lies completely in a quadrant.
const int scaling_factor = max_scaling_factor;
const int r_eob = eob * scaling_factor, r_rd = rd * scaling_factor,
r_sse = sse * scaling_factor;
if (blk_row < block_height_mi / 2 && blk_col < block_width_mi / 2) {
rd_stats->eob_0 = r_eob;
rd_stats->rd_0 = r_rd;
rd_stats->sse_0 = r_sse;
} else if (blk_row < block_height_mi / 2 && blk_col >= block_width_mi / 2) {
rd_stats->eob_1 = r_eob;
rd_stats->rd_1 = r_rd;
rd_stats->sse_1 = r_sse;
} else if (blk_row >= block_height_mi / 2 && blk_col < block_width_mi / 2) {
rd_stats->eob_2 = r_eob;
rd_stats->rd_2 = r_rd;
rd_stats->sse_2 = r_sse;
} else {
rd_stats->eob_3 = r_eob;
rd_stats->rd_3 = r_rd;
rd_stats->sse_3 = r_sse;
}
} else if (crop_height_mi == block_height_mi &&
crop_width_mi == block_width_mi) {
// The transform block is the whole prediction block
const int scaling_factor = max_scaling_factor;
const int r_eob = eob * scaling_factor, r_rd = rd * scaling_factor,
r_sse = sse * scaling_factor;
rd_stats->eob_0 = r_eob;
rd_stats->rd_0 = r_rd;
rd_stats->sse_0 = r_sse;
rd_stats->eob_1 = r_eob;
rd_stats->rd_1 = r_rd;
rd_stats->sse_1 = r_sse;
rd_stats->eob_2 = r_eob;
rd_stats->rd_2 = r_rd;
rd_stats->sse_2 = r_sse;
rd_stats->eob_3 = r_eob;
rd_stats->rd_3 = r_rd;
rd_stats->sse_3 = r_sse;
} else if (crop_height_mi == block_height_mi) {
// The tranform block is a vertical block
const int scaling_factor = max_scaling_factor / 2;
const int r_eob = eob * scaling_factor, r_rd = rd * scaling_factor,
r_sse = sse * scaling_factor;
if (blk_col < block_width_mi / 2) {
rd_stats->eob_0 = r_eob;
rd_stats->rd_0 = r_rd;
rd_stats->sse_0 = r_sse;
rd_stats->eob_2 = r_eob;
rd_stats->rd_2 = r_rd;
rd_stats->sse_2 = r_sse;
} else {
rd_stats->eob_1 = r_eob;
rd_stats->rd_1 = r_rd;
rd_stats->sse_1 = r_sse;
rd_stats->eob_3 = r_eob;
rd_stats->rd_3 = r_rd;
rd_stats->sse_3 = r_sse;
}
} else if (crop_width_mi == block_width_mi) {
// The tranform block is a horizontal block half the size of predition block
const int scaling_factor = max_scaling_factor / 2;
const int r_eob = eob * scaling_factor, r_rd = rd * scaling_factor,
r_sse = sse * scaling_factor;
if (blk_row < block_height_mi / 2) {
rd_stats->eob_0 = r_eob;
rd_stats->rd_0 = r_rd;
rd_stats->sse_0 = r_sse;
rd_stats->eob_1 = r_eob;
rd_stats->rd_1 = r_rd;
rd_stats->sse_1 = r_sse;
} else {
rd_stats->eob_2 = r_eob;
rd_stats->rd_2 = r_rd;
rd_stats->sse_2 = r_sse;
rd_stats->eob_3 = r_eob;
rd_stats->rd_3 = r_rd;
rd_stats->sse_3 = r_sse;
}
} else {
assert(0 && "Unexpected transform size");
}
}
static INLINE void av1_reg_stat_skipmode_update(RD_STATS *rd_stats,
int rdmult) {
// Update the stats
rd_stats->eob = 0;
rd_stats->eob_0 = 0;
rd_stats->eob_1 = 0;
rd_stats->eob_2 = 0;
rd_stats->eob_3 = 0;
rd_stats->rd = RDCOST(rdmult, 0, rd_stats->sse);
rd_stats->rd_0 = RDCOST(rdmult, 0, rd_stats->sse_0);
rd_stats->rd_1 = RDCOST(rdmult, 0, rd_stats->sse_1);
rd_stats->rd_2 = RDCOST(rdmult, 0, rd_stats->sse_2);
rd_stats->rd_3 = RDCOST(rdmult, 0, rd_stats->sse_3);
}
static INLINE void av1_copy_reg_stat(RD_STATS *rd_stats_dst,
RD_STATS *rd_stats_src) {
rd_stats_dst->eob = rd_stats_src->eob;
rd_stats_dst->eob_0 = rd_stats_src->eob_0;
rd_stats_dst->eob_1 = rd_stats_src->eob_1;
rd_stats_dst->eob_2 = rd_stats_src->eob_2;
rd_stats_dst->eob_3 = rd_stats_src->eob_3;
rd_stats_dst->rd = rd_stats_src->rd;
rd_stats_dst->rd_0 = rd_stats_src->rd_0;
rd_stats_dst->rd_1 = rd_stats_src->rd_1;
rd_stats_dst->rd_2 = rd_stats_src->rd_2;
rd_stats_dst->rd_3 = rd_stats_src->rd_3;
rd_stats_dst->y_sse = rd_stats_src->y_sse;
rd_stats_dst->sse_0 = rd_stats_src->sse_0;
rd_stats_dst->sse_1 = rd_stats_src->sse_1;
rd_stats_dst->sse_2 = rd_stats_src->sse_2;
rd_stats_dst->sse_3 = rd_stats_src->sse_3;
}
static INLINE void av1_unpack_reg_stat(RD_STATS *rd_stats, int *eob, int *eob_0,
int *eob_1, int *eob_2, int *eob_3,
int64_t *rd, int64_t *rd_0,
int64_t *rd_1, int64_t *rd_2,
int64_t *rd_3) {
*rd = rd_stats->rd;
*rd_0 = rd_stats->rd_0;
*rd_1 = rd_stats->rd_1;
*rd_2 = rd_stats->rd_2;
*rd_3 = rd_stats->rd_3;
*eob = rd_stats->eob;
*eob_0 = rd_stats->eob_0;
*eob_1 = rd_stats->eob_1;
*eob_2 = rd_stats->eob_2;
*eob_3 = rd_stats->eob_3;
}
static INLINE void av1_set_reg_stat(RD_STATS *rd_stats, int eob, int eob_0,
int eob_1, int eob_2, int eob_3, int64_t rd,
int64_t rd_0, int64_t rd_1, int64_t rd_2,
int64_t rd_3) {
rd_stats->rd = rd;
rd_stats->rd_0 = rd_0;
rd_stats->rd_1 = rd_1;
rd_stats->rd_2 = rd_2;
rd_stats->rd_3 = rd_3;
rd_stats->eob = eob;
rd_stats->eob_0 = eob_0;
rd_stats->eob_1 = eob_1;
rd_stats->eob_2 = eob_2;
rd_stats->eob_3 = eob_3;
}
#endif
struct TileInfo;
struct TileDataEnc;
struct AV1_COMP;
struct macroblock;
int av1_compute_rd_mult_based_on_qindex(const struct AV1_COMP *cpi, int qindex);
int av1_compute_rd_mult(const struct AV1_COMP *cpi, int qindex);
void av1_initialize_rd_consts(struct AV1_COMP *cpi);
void av1_initialize_cost_tables(const AV1_COMMON *const cm, MACROBLOCK *x);
void av1_initialize_me_consts(const struct AV1_COMP *cpi, MACROBLOCK *x,
int qindex);
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n,
unsigned int qstep, int *rate, int64_t *dist);
void av1_model_rd_curvfit(double xqr, double *rate_f, double *distbysse_f);
void av1_model_rd_surffit(double xm, double yl, double *rate_f,
double *distbysse_f);
int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x,
const MACROBLOCKD *xd);
int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
int stride);
int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
int16_t *base);
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const struct AV1_COMP *cpi,
int ref_frame);
void av1_init_me_luts(void);
void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx);
void av1_get_entropy_contexts(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]);
void av1_set_rd_speed_thresholds(struct AV1_COMP *cpi);
void av1_set_rd_speed_thresholds_sub8x8(struct AV1_COMP *cpi);
void av1_update_rd_thresh_fact(const AV1_COMMON *const cm,
int (*fact)[MAX_MODES], int rd_thresh, int bsize,
int best_mode_index);
static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
int thresh_fact) {
return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
}
void av1_mv_pred(const struct AV1_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame,
BLOCK_SIZE block_size);
static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) {
x->errorperbit = rdmult >> RD_EPB_SHIFT;
x->errorperbit += (x->errorperbit == 0);
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv,
const int num_planes);
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth);
void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x,
FRAME_CONTEXT *fc);
void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc,
const int num_planes);
int av1_get_adaptive_rdmult(const struct AV1_COMP *cpi, double beta);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_RD_H_