| // Copyright 2019 Joe Drago. All rights reserved. |
| // SPDX-License-Identifier: BSD-2-Clause |
| |
| #include "avif/internal.h" |
| |
| #include <limits.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #define STR_HELPER(x) #x |
| #define STR(x) STR_HELPER(x) |
| #define AVIF_VERSION_STRING (STR(AVIF_VERSION_MAJOR) "." STR(AVIF_VERSION_MINOR) "." STR(AVIF_VERSION_PATCH)) |
| |
| const char * avifVersion(void) |
| { |
| return AVIF_VERSION_STRING; |
| } |
| |
| const char * avifPixelFormatToString(avifPixelFormat format) |
| { |
| switch (format) { |
| case AVIF_PIXEL_FORMAT_YUV444: |
| return "YUV444"; |
| case AVIF_PIXEL_FORMAT_YUV420: |
| return "YUV420"; |
| case AVIF_PIXEL_FORMAT_YUV422: |
| return "YUV422"; |
| case AVIF_PIXEL_FORMAT_YUV400: |
| return "YUV400"; |
| case AVIF_PIXEL_FORMAT_NONE: |
| default: |
| break; |
| } |
| return "Unknown"; |
| } |
| |
| void avifGetPixelFormatInfo(avifPixelFormat format, avifPixelFormatInfo * info) |
| { |
| memset(info, 0, sizeof(avifPixelFormatInfo)); |
| |
| switch (format) { |
| case AVIF_PIXEL_FORMAT_YUV444: |
| info->chromaShiftX = 0; |
| info->chromaShiftY = 0; |
| break; |
| |
| case AVIF_PIXEL_FORMAT_YUV422: |
| info->chromaShiftX = 1; |
| info->chromaShiftY = 0; |
| break; |
| |
| case AVIF_PIXEL_FORMAT_YUV420: |
| info->chromaShiftX = 1; |
| info->chromaShiftY = 1; |
| break; |
| |
| case AVIF_PIXEL_FORMAT_YUV400: |
| info->chromaShiftX = 1; |
| info->chromaShiftY = 1; |
| info->monochrome = AVIF_TRUE; |
| break; |
| |
| case AVIF_PIXEL_FORMAT_NONE: |
| default: |
| break; |
| } |
| } |
| |
| const char * avifResultToString(avifResult result) |
| { |
| // clang-format off |
| switch (result) { |
| case AVIF_RESULT_OK: return "OK"; |
| case AVIF_RESULT_INVALID_FTYP: return "Invalid ftyp"; |
| case AVIF_RESULT_NO_CONTENT: return "No content"; |
| case AVIF_RESULT_NO_YUV_FORMAT_SELECTED: return "No YUV format selected"; |
| case AVIF_RESULT_REFORMAT_FAILED: return "Reformat failed"; |
| case AVIF_RESULT_UNSUPPORTED_DEPTH: return "Unsupported depth"; |
| case AVIF_RESULT_ENCODE_COLOR_FAILED: return "Encoding of color planes failed"; |
| case AVIF_RESULT_ENCODE_ALPHA_FAILED: return "Encoding of alpha plane failed"; |
| case AVIF_RESULT_BMFF_PARSE_FAILED: return "BMFF parsing failed"; |
| case AVIF_RESULT_NO_AV1_ITEMS_FOUND: return "No AV1 items found"; |
| case AVIF_RESULT_DECODE_COLOR_FAILED: return "Decoding of color planes failed"; |
| case AVIF_RESULT_DECODE_ALPHA_FAILED: return "Decoding of alpha plane failed"; |
| case AVIF_RESULT_COLOR_ALPHA_SIZE_MISMATCH: return "Color and alpha planes size mismatch"; |
| case AVIF_RESULT_ISPE_SIZE_MISMATCH: return "Plane sizes don't match ispe values"; |
| case AVIF_RESULT_NO_CODEC_AVAILABLE: return "No codec available"; |
| case AVIF_RESULT_NO_IMAGES_REMAINING: return "No images remaining"; |
| case AVIF_RESULT_INVALID_EXIF_PAYLOAD: return "Invalid Exif payload"; |
| case AVIF_RESULT_INVALID_IMAGE_GRID: return "Invalid image grid"; |
| case AVIF_RESULT_INVALID_CODEC_SPECIFIC_OPTION: return "Invalid codec-specific option"; |
| case AVIF_RESULT_TRUNCATED_DATA: return "Truncated data"; |
| case AVIF_RESULT_IO_NOT_SET: return "IO not set"; |
| case AVIF_RESULT_IO_ERROR: return "IO Error"; |
| case AVIF_RESULT_WAITING_ON_IO: return "Waiting on IO"; |
| case AVIF_RESULT_INVALID_ARGUMENT: return "Invalid argument"; |
| case AVIF_RESULT_NOT_IMPLEMENTED: return "Not implemented"; |
| case AVIF_RESULT_OUT_OF_MEMORY: return "Out of memory"; |
| case AVIF_RESULT_UNKNOWN_ERROR: |
| default: |
| break; |
| } |
| // clang-format on |
| return "Unknown Error"; |
| } |
| |
| const char * avifProgressiveStateToString(avifProgressiveState progressiveState) |
| { |
| // clang-format off |
| switch (progressiveState) { |
| case AVIF_PROGRESSIVE_STATE_UNAVAILABLE: return "Unavailable"; |
| case AVIF_PROGRESSIVE_STATE_AVAILABLE: return "Available"; |
| case AVIF_PROGRESSIVE_STATE_ACTIVE: return "Active"; |
| default: |
| break; |
| } |
| // clang-format on |
| return "Unknown"; |
| } |
| |
| static void avifImageSetDefaults(avifImage * image) |
| { |
| memset(image, 0, sizeof(avifImage)); |
| image->yuvRange = AVIF_RANGE_FULL; |
| image->colorPrimaries = AVIF_COLOR_PRIMARIES_UNSPECIFIED; |
| image->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED; |
| image->matrixCoefficients = AVIF_MATRIX_COEFFICIENTS_UNSPECIFIED; |
| } |
| |
| avifImage * avifImageCreate(int width, int height, int depth, avifPixelFormat yuvFormat) |
| { |
| avifImage * image = (avifImage *)avifAlloc(sizeof(avifImage)); |
| avifImageSetDefaults(image); |
| image->width = width; |
| image->height = height; |
| image->depth = depth; |
| image->yuvFormat = yuvFormat; |
| return image; |
| } |
| |
| avifImage * avifImageCreateEmpty(void) |
| { |
| return avifImageCreate(0, 0, 0, AVIF_PIXEL_FORMAT_NONE); |
| } |
| |
| // Copies all fields that do not need to be freed/allocated from srcImage to dstImage. |
| static void avifImageCopyNoAlloc(avifImage * dstImage, const avifImage * srcImage) |
| { |
| dstImage->width = srcImage->width; |
| dstImage->height = srcImage->height; |
| dstImage->depth = srcImage->depth; |
| dstImage->yuvFormat = srcImage->yuvFormat; |
| dstImage->yuvRange = srcImage->yuvRange; |
| dstImage->yuvChromaSamplePosition = srcImage->yuvChromaSamplePosition; |
| dstImage->alphaPremultiplied = srcImage->alphaPremultiplied; |
| |
| dstImage->colorPrimaries = srcImage->colorPrimaries; |
| dstImage->transferCharacteristics = srcImage->transferCharacteristics; |
| dstImage->matrixCoefficients = srcImage->matrixCoefficients; |
| |
| dstImage->transformFlags = srcImage->transformFlags; |
| dstImage->pasp = srcImage->pasp; |
| dstImage->clap = srcImage->clap; |
| dstImage->irot = srcImage->irot; |
| dstImage->imir = srcImage->imir; |
| } |
| |
| avifResult avifImageCopy(avifImage * dstImage, const avifImage * srcImage, avifPlanesFlags planes) |
| { |
| avifImageFreePlanes(dstImage, AVIF_PLANES_ALL); |
| avifImageCopyNoAlloc(dstImage, srcImage); |
| |
| avifImageSetProfileICC(dstImage, srcImage->icc.data, srcImage->icc.size); |
| |
| avifImageSetMetadataExif(dstImage, srcImage->exif.data, srcImage->exif.size); |
| avifImageSetMetadataXMP(dstImage, srcImage->xmp.data, srcImage->xmp.size); |
| |
| if ((planes & AVIF_PLANES_YUV) && srcImage->yuvPlanes[AVIF_CHAN_Y]) { |
| const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_YUV); |
| if (allocationResult != AVIF_RESULT_OK) { |
| return allocationResult; |
| } |
| |
| avifPixelFormatInfo formatInfo; |
| avifGetPixelFormatInfo(srcImage->yuvFormat, &formatInfo); |
| uint32_t uvHeight = (dstImage->height + formatInfo.chromaShiftY) >> formatInfo.chromaShiftY; |
| for (int yuvPlane = 0; yuvPlane < 3; ++yuvPlane) { |
| uint32_t planeHeight = (yuvPlane == AVIF_CHAN_Y) ? dstImage->height : uvHeight; |
| |
| if (!srcImage->yuvRowBytes[yuvPlane]) { |
| // plane is absent. If we're copying from a source without |
| // them, mimic the source image's state by removing our copy. |
| avifFree(dstImage->yuvPlanes[yuvPlane]); |
| dstImage->yuvPlanes[yuvPlane] = NULL; |
| dstImage->yuvRowBytes[yuvPlane] = 0; |
| continue; |
| } |
| |
| for (uint32_t j = 0; j < planeHeight; ++j) { |
| uint8_t * srcRow = &srcImage->yuvPlanes[yuvPlane][j * srcImage->yuvRowBytes[yuvPlane]]; |
| uint8_t * dstRow = &dstImage->yuvPlanes[yuvPlane][j * dstImage->yuvRowBytes[yuvPlane]]; |
| memcpy(dstRow, srcRow, dstImage->yuvRowBytes[yuvPlane]); |
| } |
| } |
| } |
| |
| if ((planes & AVIF_PLANES_A) && srcImage->alphaPlane) { |
| const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_A); |
| if (allocationResult != AVIF_RESULT_OK) { |
| return allocationResult; |
| } |
| for (uint32_t j = 0; j < dstImage->height; ++j) { |
| uint8_t * srcAlphaRow = &srcImage->alphaPlane[j * srcImage->alphaRowBytes]; |
| uint8_t * dstAlphaRow = &dstImage->alphaPlane[j * dstImage->alphaRowBytes]; |
| memcpy(dstAlphaRow, srcAlphaRow, dstImage->alphaRowBytes); |
| } |
| } |
| return AVIF_RESULT_OK; |
| } |
| |
| avifResult avifImageSetViewRect(avifImage * dstImage, const avifImage * srcImage, const avifCropRect * rect) |
| { |
| avifPixelFormatInfo formatInfo; |
| avifGetPixelFormatInfo(srcImage->yuvFormat, &formatInfo); |
| if ((rect->width > srcImage->width) || (rect->height > srcImage->height) || (rect->x > (srcImage->width - rect->width)) || |
| (rect->y > (srcImage->height - rect->height)) || (rect->x & formatInfo.chromaShiftX) || (rect->y & formatInfo.chromaShiftY)) { |
| return AVIF_RESULT_INVALID_ARGUMENT; |
| } |
| avifImageFreePlanes(dstImage, AVIF_PLANES_ALL); // dstImage->imageOwnsYUVPlanes and dstImage->imageOwnsAlphaPlane set to AVIF_FALSE. |
| avifImageCopyNoAlloc(dstImage, srcImage); |
| dstImage->width = rect->width; |
| dstImage->height = rect->height; |
| const uint32_t pixelBytes = (srcImage->depth > 8) ? 2 : 1; |
| if (srcImage->yuvPlanes[AVIF_CHAN_Y]) { |
| for (int yuvPlane = 0; yuvPlane < 3; ++yuvPlane) { |
| if (srcImage->yuvRowBytes[yuvPlane]) { |
| const size_t planeX = (yuvPlane == AVIF_CHAN_Y) ? rect->x : (rect->x >> formatInfo.chromaShiftX); |
| const size_t planeY = (yuvPlane == AVIF_CHAN_Y) ? rect->y : (rect->y >> formatInfo.chromaShiftY); |
| dstImage->yuvPlanes[yuvPlane] = |
| srcImage->yuvPlanes[yuvPlane] + planeY * srcImage->yuvRowBytes[yuvPlane] + planeX * pixelBytes; |
| dstImage->yuvRowBytes[yuvPlane] = srcImage->yuvRowBytes[yuvPlane]; |
| } |
| } |
| } |
| if (srcImage->alphaPlane) { |
| dstImage->alphaPlane = srcImage->alphaPlane + (size_t)rect->y * srcImage->alphaRowBytes + (size_t)rect->x * pixelBytes; |
| dstImage->alphaRowBytes = srcImage->alphaRowBytes; |
| } |
| return AVIF_RESULT_OK; |
| } |
| |
| void avifImageDestroy(avifImage * image) |
| { |
| avifImageFreePlanes(image, AVIF_PLANES_ALL); |
| avifRWDataFree(&image->icc); |
| avifRWDataFree(&image->exif); |
| avifRWDataFree(&image->xmp); |
| avifFree(image); |
| } |
| |
| void avifImageSetProfileICC(avifImage * image, const uint8_t * icc, size_t iccSize) |
| { |
| avifRWDataSet(&image->icc, icc, iccSize); |
| } |
| |
| void avifImageSetMetadataExif(avifImage * image, const uint8_t * exif, size_t exifSize) |
| { |
| avifRWDataSet(&image->exif, exif, exifSize); |
| } |
| |
| void avifImageSetMetadataXMP(avifImage * image, const uint8_t * xmp, size_t xmpSize) |
| { |
| avifRWDataSet(&image->xmp, xmp, xmpSize); |
| } |
| |
| avifResult avifImageAllocatePlanes(avifImage * image, avifPlanesFlags planes) |
| { |
| if (image->width == 0 || image->height == 0) { |
| return AVIF_RESULT_INVALID_ARGUMENT; |
| } |
| const size_t channelSize = avifImageUsesU16(image) ? 2 : 1; |
| if (image->width > SIZE_MAX / channelSize) { |
| return AVIF_RESULT_INVALID_ARGUMENT; |
| } |
| const size_t fullRowBytes = channelSize * image->width; |
| if ((fullRowBytes > UINT32_MAX) || (image->height > SIZE_MAX / fullRowBytes)) { |
| return AVIF_RESULT_INVALID_ARGUMENT; |
| } |
| const size_t fullSize = fullRowBytes * image->height; |
| |
| if ((planes & AVIF_PLANES_YUV) && (image->yuvFormat != AVIF_PIXEL_FORMAT_NONE)) { |
| avifPixelFormatInfo info; |
| avifGetPixelFormatInfo(image->yuvFormat, &info); |
| |
| // Intermediary computation as 64 bits in case width or height is exactly UINT32_MAX. |
| const uint32_t shiftedW = (uint32_t)(((uint64_t)image->width + info.chromaShiftX) >> info.chromaShiftX); |
| const uint32_t shiftedH = (uint32_t)(((uint64_t)image->height + info.chromaShiftY) >> info.chromaShiftY); |
| |
| // These are less than or equal to fullRowBytes/fullSize. No need to check overflows. |
| const size_t uvRowBytes = channelSize * shiftedW; |
| const size_t uvSize = uvRowBytes * shiftedH; |
| |
| image->imageOwnsYUVPlanes = AVIF_TRUE; |
| if (!image->yuvPlanes[AVIF_CHAN_Y]) { |
| image->yuvRowBytes[AVIF_CHAN_Y] = (uint32_t)fullRowBytes; |
| image->yuvPlanes[AVIF_CHAN_Y] = avifAlloc(fullSize); |
| if (!image->yuvPlanes[AVIF_CHAN_Y]) { |
| return AVIF_RESULT_OUT_OF_MEMORY; |
| } |
| } |
| |
| if (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV400) { |
| if (!image->yuvPlanes[AVIF_CHAN_U]) { |
| image->yuvRowBytes[AVIF_CHAN_U] = (uint32_t)uvRowBytes; |
| image->yuvPlanes[AVIF_CHAN_U] = avifAlloc(uvSize); |
| if (!image->yuvPlanes[AVIF_CHAN_U]) { |
| return AVIF_RESULT_OUT_OF_MEMORY; |
| } |
| } |
| if (!image->yuvPlanes[AVIF_CHAN_V]) { |
| image->yuvRowBytes[AVIF_CHAN_V] = (uint32_t)uvRowBytes; |
| image->yuvPlanes[AVIF_CHAN_V] = avifAlloc(uvSize); |
| if (!image->yuvPlanes[AVIF_CHAN_V]) { |
| return AVIF_RESULT_OUT_OF_MEMORY; |
| } |
| } |
| } |
| } |
| if (planes & AVIF_PLANES_A) { |
| image->imageOwnsAlphaPlane = AVIF_TRUE; |
| if (!image->alphaPlane) { |
| image->alphaRowBytes = (uint32_t)fullRowBytes; |
| image->alphaPlane = avifAlloc(fullSize); |
| if (!image->alphaPlane) { |
| return AVIF_RESULT_OUT_OF_MEMORY; |
| } |
| } |
| } |
| return AVIF_RESULT_OK; |
| } |
| |
| void avifImageFreePlanes(avifImage * image, avifPlanesFlags planes) |
| { |
| if ((planes & AVIF_PLANES_YUV) && (image->yuvFormat != AVIF_PIXEL_FORMAT_NONE)) { |
| if (image->imageOwnsYUVPlanes) { |
| avifFree(image->yuvPlanes[AVIF_CHAN_Y]); |
| avifFree(image->yuvPlanes[AVIF_CHAN_U]); |
| avifFree(image->yuvPlanes[AVIF_CHAN_V]); |
| } |
| image->yuvPlanes[AVIF_CHAN_Y] = NULL; |
| image->yuvRowBytes[AVIF_CHAN_Y] = 0; |
| image->yuvPlanes[AVIF_CHAN_U] = NULL; |
| image->yuvRowBytes[AVIF_CHAN_U] = 0; |
| image->yuvPlanes[AVIF_CHAN_V] = NULL; |
| image->yuvRowBytes[AVIF_CHAN_V] = 0; |
| image->imageOwnsYUVPlanes = AVIF_FALSE; |
| } |
| if (planes & AVIF_PLANES_A) { |
| if (image->imageOwnsAlphaPlane) { |
| avifFree(image->alphaPlane); |
| } |
| image->alphaPlane = NULL; |
| image->alphaRowBytes = 0; |
| image->imageOwnsAlphaPlane = AVIF_FALSE; |
| } |
| } |
| |
| void avifImageStealPlanes(avifImage * dstImage, avifImage * srcImage, avifPlanesFlags planes) |
| { |
| avifImageFreePlanes(dstImage, planes); |
| |
| if (planes & AVIF_PLANES_YUV) { |
| dstImage->yuvPlanes[AVIF_CHAN_Y] = srcImage->yuvPlanes[AVIF_CHAN_Y]; |
| dstImage->yuvRowBytes[AVIF_CHAN_Y] = srcImage->yuvRowBytes[AVIF_CHAN_Y]; |
| dstImage->yuvPlanes[AVIF_CHAN_U] = srcImage->yuvPlanes[AVIF_CHAN_U]; |
| dstImage->yuvRowBytes[AVIF_CHAN_U] = srcImage->yuvRowBytes[AVIF_CHAN_U]; |
| dstImage->yuvPlanes[AVIF_CHAN_V] = srcImage->yuvPlanes[AVIF_CHAN_V]; |
| dstImage->yuvRowBytes[AVIF_CHAN_V] = srcImage->yuvRowBytes[AVIF_CHAN_V]; |
| |
| srcImage->yuvPlanes[AVIF_CHAN_Y] = NULL; |
| srcImage->yuvRowBytes[AVIF_CHAN_Y] = 0; |
| srcImage->yuvPlanes[AVIF_CHAN_U] = NULL; |
| srcImage->yuvRowBytes[AVIF_CHAN_U] = 0; |
| srcImage->yuvPlanes[AVIF_CHAN_V] = NULL; |
| srcImage->yuvRowBytes[AVIF_CHAN_V] = 0; |
| |
| dstImage->yuvFormat = srcImage->yuvFormat; |
| dstImage->imageOwnsYUVPlanes = srcImage->imageOwnsYUVPlanes; |
| srcImage->imageOwnsYUVPlanes = AVIF_FALSE; |
| } |
| if (planes & AVIF_PLANES_A) { |
| dstImage->alphaPlane = srcImage->alphaPlane; |
| dstImage->alphaRowBytes = srcImage->alphaRowBytes; |
| |
| srcImage->alphaPlane = NULL; |
| srcImage->alphaRowBytes = 0; |
| |
| dstImage->imageOwnsAlphaPlane = srcImage->imageOwnsAlphaPlane; |
| srcImage->imageOwnsAlphaPlane = AVIF_FALSE; |
| } |
| } |
| |
| avifBool avifImageUsesU16(const avifImage * image) |
| { |
| return (image->depth > 8); |
| } |
| |
| // avifCodecCreate*() functions are in their respective codec_*.c files |
| |
| void avifCodecDestroy(avifCodec * codec) |
| { |
| if (codec && codec->destroyInternal) { |
| codec->destroyInternal(codec); |
| } |
| avifFree(codec); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // avifRGBImage |
| |
| avifBool avifRGBFormatHasAlpha(avifRGBFormat format) |
| { |
| return (format != AVIF_RGB_FORMAT_RGB) && (format != AVIF_RGB_FORMAT_BGR); |
| } |
| |
| uint32_t avifRGBFormatChannelCount(avifRGBFormat format) |
| { |
| return avifRGBFormatHasAlpha(format) ? 4 : 3; |
| } |
| |
| uint32_t avifRGBImagePixelSize(const avifRGBImage * rgb) |
| { |
| return avifRGBFormatChannelCount(rgb->format) * ((rgb->depth > 8) ? 2 : 1); |
| } |
| |
| void avifRGBImageSetDefaults(avifRGBImage * rgb, const avifImage * image) |
| { |
| rgb->width = image->width; |
| rgb->height = image->height; |
| rgb->depth = image->depth; |
| rgb->format = AVIF_RGB_FORMAT_RGBA; |
| rgb->chromaUpsampling = AVIF_CHROMA_UPSAMPLING_AUTOMATIC; |
| rgb->chromaDownsampling = AVIF_CHROMA_DOWNSAMPLING_AUTOMATIC; |
| rgb->ignoreAlpha = AVIF_FALSE; |
| rgb->pixels = NULL; |
| rgb->rowBytes = 0; |
| rgb->alphaPremultiplied = AVIF_FALSE; // Most expect RGBA output to *not* be premultiplied. Those that do can opt-in by |
| // setting this to match image->alphaPremultiplied or forcing this to true |
| // after calling avifRGBImageSetDefaults(), |
| rgb->isFloat = AVIF_FALSE; |
| } |
| |
| void avifRGBImageAllocatePixels(avifRGBImage * rgb) |
| { |
| if (rgb->pixels) { |
| avifFree(rgb->pixels); |
| } |
| |
| rgb->rowBytes = rgb->width * avifRGBImagePixelSize(rgb); |
| rgb->pixels = avifAlloc((size_t)rgb->rowBytes * rgb->height); |
| } |
| |
| void avifRGBImageFreePixels(avifRGBImage * rgb) |
| { |
| if (rgb->pixels) { |
| avifFree(rgb->pixels); |
| } |
| |
| rgb->pixels = NULL; |
| rgb->rowBytes = 0; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // avifCropRect |
| |
| typedef struct clapFraction |
| { |
| int32_t n; |
| int32_t d; |
| } clapFraction; |
| |
| static clapFraction calcCenter(int32_t dim) |
| { |
| clapFraction f; |
| f.n = dim >> 1; |
| f.d = 1; |
| if ((dim % 2) != 0) { |
| f.n = dim; |
| f.d = 2; |
| } |
| return f; |
| } |
| |
| // |a| and |b| hold int32_t values. The int64_t type is used so that we can negate INT_MIN without |
| // overflowing int32_t. |
| static int64_t calcGCD(int64_t a, int64_t b) |
| { |
| if (a < 0) { |
| a *= -1; |
| } |
| if (b < 0) { |
| b *= -1; |
| } |
| while (a > 0) { |
| if (a < b) { |
| int64_t t = a; |
| a = b; |
| b = t; |
| } |
| a = a - b; |
| } |
| return b; |
| } |
| |
| static void clapFractionSimplify(clapFraction * f) |
| { |
| int64_t gcd = calcGCD(f->n, f->d); |
| if (gcd > 1) { |
| f->n = (int32_t)(f->n / gcd); |
| f->d = (int32_t)(f->d / gcd); |
| } |
| } |
| |
| static avifBool overflowsInt32(int64_t x) |
| { |
| return (x < INT32_MIN) || (x > INT32_MAX); |
| } |
| |
| // Make the fractions have a common denominator |
| static avifBool clapFractionCD(clapFraction * a, clapFraction * b) |
| { |
| clapFractionSimplify(a); |
| clapFractionSimplify(b); |
| if (a->d != b->d) { |
| const int64_t ad = a->d; |
| const int64_t bd = b->d; |
| const int64_t anNew = a->n * bd; |
| const int64_t adNew = a->d * bd; |
| const int64_t bnNew = b->n * ad; |
| const int64_t bdNew = b->d * ad; |
| if (overflowsInt32(anNew) || overflowsInt32(adNew) || overflowsInt32(bnNew) || overflowsInt32(bdNew)) { |
| return AVIF_FALSE; |
| } |
| a->n = (int32_t)anNew; |
| a->d = (int32_t)adNew; |
| b->n = (int32_t)bnNew; |
| b->d = (int32_t)bdNew; |
| } |
| return AVIF_TRUE; |
| } |
| |
| static avifBool clapFractionAdd(clapFraction a, clapFraction b, clapFraction * result) |
| { |
| if (!clapFractionCD(&a, &b)) { |
| return AVIF_FALSE; |
| } |
| |
| const int64_t resultN = (int64_t)a.n + b.n; |
| if (overflowsInt32(resultN)) { |
| return AVIF_FALSE; |
| } |
| result->n = (int32_t)resultN; |
| result->d = a.d; |
| |
| clapFractionSimplify(result); |
| return AVIF_TRUE; |
| } |
| |
| static avifBool clapFractionSub(clapFraction a, clapFraction b, clapFraction * result) |
| { |
| if (!clapFractionCD(&a, &b)) { |
| return AVIF_FALSE; |
| } |
| |
| const int64_t resultN = (int64_t)a.n - b.n; |
| if (overflowsInt32(resultN)) { |
| return AVIF_FALSE; |
| } |
| result->n = (int32_t)resultN; |
| result->d = a.d; |
| |
| clapFractionSimplify(result); |
| return AVIF_TRUE; |
| } |
| |
| static avifBool avifCropRectIsValid(const avifCropRect * cropRect, uint32_t imageW, uint32_t imageH, avifPixelFormat yuvFormat, avifDiagnostics * diag) |
| |
| { |
| // ISO/IEC 23000-22:2019/DAM 2:2021, Section 7.3.6.7: |
| // The clean aperture property is restricted according to the chroma |
| // sampling format of the input image (4:4:4, 4:2:2:, 4:2:0, or 4:0:0) as |
| // follows: |
| // - when the image is 4:0:0 (monochrome) or 4:4:4, the horizontal and |
| // vertical cropped offsets and widths shall be integers; |
| // - when the image is 4:2:2 the horizontal cropped offset and width |
| // shall be even numbers and the vertical values shall be integers; |
| // - when the image is 4:2:0 both the horizontal and vertical cropped |
| // offsets and widths shall be even numbers. |
| |
| if ((cropRect->width == 0) || (cropRect->height == 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] crop rect width and height must be nonzero"); |
| return AVIF_FALSE; |
| } |
| if ((cropRect->x > (UINT32_MAX - cropRect->width)) || ((cropRect->x + cropRect->width) > imageW) || |
| (cropRect->y > (UINT32_MAX - cropRect->height)) || ((cropRect->y + cropRect->height) > imageH)) { |
| avifDiagnosticsPrintf(diag, "[Strict] crop rect is out of the image's bounds"); |
| return AVIF_FALSE; |
| } |
| |
| if ((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) || (yuvFormat == AVIF_PIXEL_FORMAT_YUV422)) { |
| if (((cropRect->x % 2) != 0) || ((cropRect->width % 2) != 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] crop rect X offset and width must both be even due to this image's YUV subsampling"); |
| return AVIF_FALSE; |
| } |
| } |
| if (yuvFormat == AVIF_PIXEL_FORMAT_YUV420) { |
| if (((cropRect->y % 2) != 0) || ((cropRect->height % 2) != 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] crop rect Y offset and height must both be even due to this image's YUV subsampling"); |
| return AVIF_FALSE; |
| } |
| } |
| return AVIF_TRUE; |
| } |
| |
| avifBool avifCropRectConvertCleanApertureBox(avifCropRect * cropRect, |
| const avifCleanApertureBox * clap, |
| uint32_t imageW, |
| uint32_t imageH, |
| avifPixelFormat yuvFormat, |
| avifDiagnostics * diag) |
| { |
| avifDiagnosticsClearError(diag); |
| |
| // ISO/IEC 14496-12:2020, Section 12.1.4.1: |
| // For horizOff and vertOff, D shall be strictly positive and N may be |
| // positive or negative. For cleanApertureWidth and cleanApertureHeight, |
| // N shall be positive and D shall be strictly positive. |
| |
| const int32_t widthN = (int32_t)clap->widthN; |
| const int32_t widthD = (int32_t)clap->widthD; |
| const int32_t heightN = (int32_t)clap->heightN; |
| const int32_t heightD = (int32_t)clap->heightD; |
| const int32_t horizOffN = (int32_t)clap->horizOffN; |
| const int32_t horizOffD = (int32_t)clap->horizOffD; |
| const int32_t vertOffN = (int32_t)clap->vertOffN; |
| const int32_t vertOffD = (int32_t)clap->vertOffD; |
| if ((widthD <= 0) || (heightD <= 0) || (horizOffD <= 0) || (vertOffD <= 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] clap contains a denominator that is not strictly positive"); |
| return AVIF_FALSE; |
| } |
| if ((widthN < 0) || (heightN < 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] clap width or height is negative"); |
| return AVIF_FALSE; |
| } |
| |
| if ((widthN % widthD) != 0) { |
| avifDiagnosticsPrintf(diag, "[Strict] clap width %d/%d is not an integer", widthN, widthD); |
| return AVIF_FALSE; |
| } |
| if ((heightN % heightD) != 0) { |
| avifDiagnosticsPrintf(diag, "[Strict] clap height %d/%d is not an integer", heightN, heightD); |
| return AVIF_FALSE; |
| } |
| const int32_t clapW = widthN / widthD; |
| const int32_t clapH = heightN / heightD; |
| |
| if ((imageW > INT32_MAX) || (imageH > INT32_MAX)) { |
| avifDiagnosticsPrintf(diag, "[Strict] image width %u or height %u is greater than INT32_MAX", imageW, imageH); |
| return AVIF_FALSE; |
| } |
| clapFraction uncroppedCenterX = calcCenter((int32_t)imageW); |
| clapFraction uncroppedCenterY = calcCenter((int32_t)imageH); |
| |
| clapFraction horizOff; |
| horizOff.n = horizOffN; |
| horizOff.d = horizOffD; |
| clapFraction croppedCenterX; |
| if (!clapFractionAdd(uncroppedCenterX, horizOff, &croppedCenterX)) { |
| avifDiagnosticsPrintf(diag, "[Strict] croppedCenterX overflowed"); |
| return AVIF_FALSE; |
| } |
| |
| clapFraction vertOff; |
| vertOff.n = vertOffN; |
| vertOff.d = vertOffD; |
| clapFraction croppedCenterY; |
| if (!clapFractionAdd(uncroppedCenterY, vertOff, &croppedCenterY)) { |
| avifDiagnosticsPrintf(diag, "[Strict] croppedCenterY overflowed"); |
| return AVIF_FALSE; |
| } |
| |
| clapFraction halfW; |
| halfW.n = clapW; |
| halfW.d = 2; |
| clapFraction cropX; |
| if (!clapFractionSub(croppedCenterX, halfW, &cropX)) { |
| avifDiagnosticsPrintf(diag, "[Strict] cropX overflowed"); |
| return AVIF_FALSE; |
| } |
| if ((cropX.n % cropX.d) != 0) { |
| avifDiagnosticsPrintf(diag, "[Strict] calculated crop X offset %d/%d is not an integer", cropX.n, cropX.d); |
| return AVIF_FALSE; |
| } |
| |
| clapFraction halfH; |
| halfH.n = clapH; |
| halfH.d = 2; |
| clapFraction cropY; |
| if (!clapFractionSub(croppedCenterY, halfH, &cropY)) { |
| avifDiagnosticsPrintf(diag, "[Strict] cropY overflowed"); |
| return AVIF_FALSE; |
| } |
| if ((cropY.n % cropY.d) != 0) { |
| avifDiagnosticsPrintf(diag, "[Strict] calculated crop Y offset %d/%d is not an integer", cropY.n, cropY.d); |
| return AVIF_FALSE; |
| } |
| |
| if ((cropX.n < 0) || (cropY.n < 0)) { |
| avifDiagnosticsPrintf(diag, "[Strict] at least one crop offset is not positive"); |
| return AVIF_FALSE; |
| } |
| |
| cropRect->x = (uint32_t)(cropX.n / cropX.d); |
| cropRect->y = (uint32_t)(cropY.n / cropY.d); |
| cropRect->width = (uint32_t)clapW; |
| cropRect->height = (uint32_t)clapH; |
| return avifCropRectIsValid(cropRect, imageW, imageH, yuvFormat, diag); |
| } |
| |
| avifBool avifCleanApertureBoxConvertCropRect(avifCleanApertureBox * clap, |
| const avifCropRect * cropRect, |
| uint32_t imageW, |
| uint32_t imageH, |
| avifPixelFormat yuvFormat, |
| avifDiagnostics * diag) |
| { |
| avifDiagnosticsClearError(diag); |
| |
| if (!avifCropRectIsValid(cropRect, imageW, imageH, yuvFormat, diag)) { |
| return AVIF_FALSE; |
| } |
| |
| if ((imageW > INT32_MAX) || (imageH > INT32_MAX)) { |
| avifDiagnosticsPrintf(diag, "[Strict] image width %u or height %u is greater than INT32_MAX", imageW, imageH); |
| return AVIF_FALSE; |
| } |
| clapFraction uncroppedCenterX = calcCenter((int32_t)imageW); |
| clapFraction uncroppedCenterY = calcCenter((int32_t)imageH); |
| |
| if ((cropRect->width > INT32_MAX) || (cropRect->height > INT32_MAX)) { |
| avifDiagnosticsPrintf(diag, |
| "[Strict] crop rect width %u or height %u is greater than INT32_MAX", |
| cropRect->width, |
| cropRect->height); |
| return AVIF_FALSE; |
| } |
| clapFraction croppedCenterX = calcCenter((int32_t)cropRect->width); |
| const int64_t croppedCenterXN = croppedCenterX.n + (int64_t)cropRect->x * croppedCenterX.d; |
| if (overflowsInt32(croppedCenterXN)) { |
| avifDiagnosticsPrintf(diag, "[Strict] croppedCenterX overflowed"); |
| return AVIF_FALSE; |
| } |
| croppedCenterX.n = (int32_t)croppedCenterXN; |
| clapFraction croppedCenterY = calcCenter((int32_t)cropRect->height); |
| const int64_t croppedCenterYN = croppedCenterY.n + (int64_t)cropRect->y * croppedCenterY.d; |
| if (overflowsInt32(croppedCenterYN)) { |
| avifDiagnosticsPrintf(diag, "[Strict] croppedCenterY overflowed"); |
| return AVIF_FALSE; |
| } |
| croppedCenterY.n = (int32_t)croppedCenterYN; |
| |
| clapFraction horizOff; |
| if (!clapFractionSub(croppedCenterX, uncroppedCenterX, &horizOff)) { |
| avifDiagnosticsPrintf(diag, "[Strict] horizOff overflowed"); |
| return AVIF_FALSE; |
| } |
| clapFraction vertOff; |
| if (!clapFractionSub(croppedCenterY, uncroppedCenterY, &vertOff)) { |
| avifDiagnosticsPrintf(diag, "[Strict] vertOff overflowed"); |
| return AVIF_FALSE; |
| } |
| |
| clap->widthN = cropRect->width; |
| clap->widthD = 1; |
| clap->heightN = cropRect->height; |
| clap->heightD = 1; |
| clap->horizOffN = horizOff.n; |
| clap->horizOffD = horizOff.d; |
| clap->vertOffN = vertOff.n; |
| clap->vertOffD = vertOff.d; |
| return AVIF_TRUE; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| avifBool avifAreGridDimensionsValid(avifPixelFormat yuvFormat, uint32_t imageW, uint32_t imageH, uint32_t tileW, uint32_t tileH, avifDiagnostics * diag) |
| { |
| // ISO/IEC 23000-22:2019, Section 7.3.11.4.2: |
| // - the tile_width shall be greater than or equal to 64, and should be a multiple of 64 |
| // - the tile_height shall be greater than or equal to 64, and should be a multiple of 64 |
| // The "should" part is ignored here. |
| if ((tileW < 64) || (tileH < 64)) { |
| avifDiagnosticsPrintf(diag, |
| "Grid image tile width (%u) or height (%u) cannot be smaller than 64. " |
| "See MIAF (ISO/IEC 23000-22:2019), Section 7.3.11.4.2", |
| tileW, |
| tileH); |
| return AVIF_FALSE; |
| } |
| |
| // ISO/IEC 23000-22:2019, Section 7.3.11.4.2: |
| // - when the images are in the 4:2:2 chroma sampling format the horizontal tile offsets and widths, |
| // and the output width, shall be even numbers; |
| // - when the images are in the 4:2:0 chroma sampling format both the horizontal and vertical tile |
| // offsets and widths, and the output width and height, shall be even numbers. |
| // If the rules above were not respected, the following problematic situation may happen: |
| // Some 4:2:0 image is 650 pixels wide and has 10 cell columns, each being 65 pixels wide. |
| // The chroma plane of the whole image is 325 pixels wide. The chroma plane of each cell is 33 pixels wide. |
| // 33*10 - 325 gives 5 extra pixels with no specified destination in the reconstructed image. |
| |
| // Tile offsets are not enforced since they depend on tile size (ISO/IEC 23008-12:2017, Section 6.6.2.3.1): |
| // The reconstructed image is formed by tiling the input images into a grid [...] without gap or overlap |
| if ((((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) || (yuvFormat == AVIF_PIXEL_FORMAT_YUV422)) && |
| (((imageW % 2) != 0) || ((tileW % 2) != 0))) || |
| ((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) && (((imageH % 2) != 0) || ((tileH % 2) != 0)))) { |
| avifDiagnosticsPrintf(diag, |
| "Grid image width (%u) or height (%u) or tile width (%u) or height (%u) " |
| "shall be even if chroma is subsampled in that dimension. " |
| "See MIAF (ISO/IEC 23000-22:2019), Section 7.3.11.4.2", |
| imageW, |
| imageH, |
| tileW, |
| tileH); |
| return AVIF_FALSE; |
| } |
| return AVIF_TRUE; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // avifCodecSpecificOption |
| |
| static char * avifStrdup(const char * str) |
| { |
| size_t len = strlen(str); |
| char * dup = avifAlloc(len + 1); |
| memcpy(dup, str, len + 1); |
| return dup; |
| } |
| |
| avifCodecSpecificOptions * avifCodecSpecificOptionsCreate(void) |
| { |
| avifCodecSpecificOptions * ava = avifAlloc(sizeof(avifCodecSpecificOptions)); |
| if (!avifArrayCreate(ava, sizeof(avifCodecSpecificOption), 4)) { |
| goto error; |
| } |
| return ava; |
| |
| error: |
| avifFree(ava); |
| return NULL; |
| } |
| |
| void avifCodecSpecificOptionsDestroy(avifCodecSpecificOptions * csOptions) |
| { |
| if (!csOptions) { |
| return; |
| } |
| |
| for (uint32_t i = 0; i < csOptions->count; ++i) { |
| avifCodecSpecificOption * entry = &csOptions->entries[i]; |
| avifFree(entry->key); |
| avifFree(entry->value); |
| } |
| avifArrayDestroy(csOptions); |
| avifFree(csOptions); |
| } |
| |
| void avifCodecSpecificOptionsSet(avifCodecSpecificOptions * csOptions, const char * key, const char * value) |
| { |
| // Check to see if a key must be replaced |
| for (uint32_t i = 0; i < csOptions->count; ++i) { |
| avifCodecSpecificOption * entry = &csOptions->entries[i]; |
| if (!strcmp(entry->key, key)) { |
| if (value) { |
| // Update the value |
| avifFree(entry->value); |
| entry->value = avifStrdup(value); |
| } else { |
| // Delete the value |
| avifFree(entry->key); |
| avifFree(entry->value); |
| --csOptions->count; |
| if (csOptions->count > 0) { |
| memmove(&csOptions->entries[i], &csOptions->entries[i + 1], (csOptions->count - i) * (size_t)csOptions->elementSize); |
| } |
| } |
| return; |
| } |
| } |
| |
| // Add a new key |
| avifCodecSpecificOption * entry = (avifCodecSpecificOption *)avifArrayPushPtr(csOptions); |
| entry->key = avifStrdup(key); |
| entry->value = avifStrdup(value); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Codec availability and versions |
| |
| typedef const char * (*versionFunc)(void); |
| typedef avifCodec * (*avifCodecCreateFunc)(void); |
| |
| struct AvailableCodec |
| { |
| avifCodecChoice choice; |
| const char * name; |
| versionFunc version; |
| avifCodecCreateFunc create; |
| uint32_t flags; |
| }; |
| |
| // This is the main codec table; it determines all usage/availability in libavif. |
| |
| static struct AvailableCodec availableCodecs[] = { |
| // Ordered by preference (for AUTO) |
| |
| #if defined(AVIF_CODEC_DAV1D) |
| { AVIF_CODEC_CHOICE_DAV1D, "dav1d", avifCodecVersionDav1d, avifCodecCreateDav1d, AVIF_CODEC_FLAG_CAN_DECODE }, |
| #endif |
| #if defined(AVIF_CODEC_LIBGAV1) |
| { AVIF_CODEC_CHOICE_LIBGAV1, "libgav1", avifCodecVersionGav1, avifCodecCreateGav1, AVIF_CODEC_FLAG_CAN_DECODE }, |
| #endif |
| #if defined(AVIF_CODEC_AOM) |
| { AVIF_CODEC_CHOICE_AOM, |
| "aom", |
| avifCodecVersionAOM, |
| avifCodecCreateAOM, |
| #if defined(AVIF_CODEC_AOM_DECODE) && defined(AVIF_CODEC_AOM_ENCODE) |
| AVIF_CODEC_FLAG_CAN_DECODE | AVIF_CODEC_FLAG_CAN_ENCODE |
| #elif defined(AVIF_CODEC_AOM_DECODE) |
| AVIF_CODEC_FLAG_CAN_DECODE |
| #elif defined(AVIF_CODEC_AOM_ENCODE) |
| AVIF_CODEC_FLAG_CAN_ENCODE |
| #else |
| #error AVIF_CODEC_AOM_DECODE or AVIF_CODEC_AOM_ENCODE must be defined |
| #endif |
| }, |
| #endif |
| #if defined(AVIF_CODEC_RAV1E) |
| { AVIF_CODEC_CHOICE_RAV1E, "rav1e", avifCodecVersionRav1e, avifCodecCreateRav1e, AVIF_CODEC_FLAG_CAN_ENCODE }, |
| #endif |
| #if defined(AVIF_CODEC_SVT) |
| { AVIF_CODEC_CHOICE_SVT, "svt", avifCodecVersionSvt, avifCodecCreateSvt, AVIF_CODEC_FLAG_CAN_ENCODE }, |
| #endif |
| { AVIF_CODEC_CHOICE_AUTO, NULL, NULL, NULL, 0 } |
| }; |
| |
| static const int availableCodecsCount = (sizeof(availableCodecs) / sizeof(availableCodecs[0])) - 1; |
| |
| static struct AvailableCodec * findAvailableCodec(avifCodecChoice choice, avifCodecFlags requiredFlags) |
| { |
| for (int i = 0; i < availableCodecsCount; ++i) { |
| if ((choice != AVIF_CODEC_CHOICE_AUTO) && (availableCodecs[i].choice != choice)) { |
| continue; |
| } |
| if (requiredFlags && ((availableCodecs[i].flags & requiredFlags) != requiredFlags)) { |
| continue; |
| } |
| return &availableCodecs[i]; |
| } |
| return NULL; |
| } |
| |
| const char * avifCodecName(avifCodecChoice choice, avifCodecFlags requiredFlags) |
| { |
| struct AvailableCodec * availableCodec = findAvailableCodec(choice, requiredFlags); |
| if (availableCodec) { |
| return availableCodec->name; |
| } |
| return NULL; |
| } |
| |
| avifCodecChoice avifCodecChoiceFromName(const char * name) |
| { |
| for (int i = 0; i < availableCodecsCount; ++i) { |
| if (!strcmp(availableCodecs[i].name, name)) { |
| return availableCodecs[i].choice; |
| } |
| } |
| return AVIF_CODEC_CHOICE_AUTO; |
| } |
| |
| avifCodec * avifCodecCreate(avifCodecChoice choice, avifCodecFlags requiredFlags) |
| { |
| struct AvailableCodec * availableCodec = findAvailableCodec(choice, requiredFlags); |
| if (availableCodec) { |
| return availableCodec->create(); |
| } |
| return NULL; |
| } |
| |
| static void append(char ** writePos, size_t * remainingLen, const char * appendStr) |
| { |
| size_t appendLen = strlen(appendStr); |
| if (appendLen > *remainingLen) { |
| appendLen = *remainingLen; |
| } |
| |
| memcpy(*writePos, appendStr, appendLen); |
| *remainingLen -= appendLen; |
| *writePos += appendLen; |
| *(*writePos) = 0; |
| } |
| |
| void avifCodecVersions(char outBuffer[256]) |
| { |
| size_t remainingLen = 255; |
| char * writePos = outBuffer; |
| *writePos = 0; |
| |
| for (int i = 0; i < availableCodecsCount; ++i) { |
| if (i > 0) { |
| append(&writePos, &remainingLen, ", "); |
| } |
| append(&writePos, &remainingLen, availableCodecs[i].name); |
| if ((availableCodecs[i].flags & (AVIF_CODEC_FLAG_CAN_ENCODE | AVIF_CODEC_FLAG_CAN_DECODE)) == |
| (AVIF_CODEC_FLAG_CAN_ENCODE | AVIF_CODEC_FLAG_CAN_DECODE)) { |
| append(&writePos, &remainingLen, " [enc/dec]"); |
| } else if (availableCodecs[i].flags & AVIF_CODEC_FLAG_CAN_ENCODE) { |
| append(&writePos, &remainingLen, " [enc]"); |
| } else if (availableCodecs[i].flags & AVIF_CODEC_FLAG_CAN_DECODE) { |
| append(&writePos, &remainingLen, " [dec]"); |
| } |
| append(&writePos, &remainingLen, ":"); |
| append(&writePos, &remainingLen, availableCodecs[i].version()); |
| } |
| } |