| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "libyuv/scale.h" |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "libyuv/planar_functions.h" // For CopyPlane |
| #include "libyuv/row.h" |
| #include "libyuv/scale_row.h" |
| |
| static __inline int Abs(int v) { |
| return v >= 0 ? v : -v; |
| } |
| |
| #define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s) |
| #define CENTERSTART(dx, s) (dx < 0) ? -((-dx >> 1) + s) : ((dx >> 1) + s) |
| |
| #define MIN1(x) ((x) < 1 ? 1 : (x)) |
| |
| static __inline uint32_t SumPixels(int iboxwidth, const uint16_t* src_ptr) { |
| uint32_t sum = 0u; |
| int x; |
| assert(iboxwidth > 0); |
| for (x = 0; x < iboxwidth; ++x) { |
| sum += src_ptr[x]; |
| } |
| return sum; |
| } |
| |
| static __inline uint32_t SumPixels_16(int iboxwidth, const uint32_t* src_ptr) { |
| uint32_t sum = 0u; |
| int x; |
| assert(iboxwidth > 0); |
| for (x = 0; x < iboxwidth; ++x) { |
| sum += src_ptr[x]; |
| } |
| return sum; |
| } |
| |
| static void ScaleAddCols2_C(int dst_width, |
| int boxheight, |
| int x, |
| int dx, |
| const uint16_t* src_ptr, |
| uint8_t* dst_ptr) { |
| int i; |
| int scaletbl[2]; |
| int minboxwidth = dx >> 16; |
| int boxwidth; |
| scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); |
| scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); |
| for (i = 0; i < dst_width; ++i) { |
| int ix = x >> 16; |
| x += dx; |
| boxwidth = MIN1((x >> 16) - ix); |
| int scaletbl_index = boxwidth - minboxwidth; |
| assert((scaletbl_index == 0) || (scaletbl_index == 1)); |
| *dst_ptr++ = (uint8_t)(SumPixels(boxwidth, src_ptr + ix) * |
| scaletbl[scaletbl_index] >> |
| 16); |
| } |
| } |
| |
| static void ScaleAddCols2_16_C(int dst_width, |
| int boxheight, |
| int x, |
| int dx, |
| const uint32_t* src_ptr, |
| uint16_t* dst_ptr) { |
| int i; |
| int scaletbl[2]; |
| int minboxwidth = dx >> 16; |
| int boxwidth; |
| scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); |
| scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); |
| for (i = 0; i < dst_width; ++i) { |
| int ix = x >> 16; |
| x += dx; |
| boxwidth = MIN1((x >> 16) - ix); |
| int scaletbl_index = boxwidth - minboxwidth; |
| assert((scaletbl_index == 0) || (scaletbl_index == 1)); |
| *dst_ptr++ = |
| SumPixels_16(boxwidth, src_ptr + ix) * scaletbl[scaletbl_index] >> 16; |
| } |
| } |
| |
| static void ScaleAddCols0_C(int dst_width, |
| int boxheight, |
| int x, |
| int dx, |
| const uint16_t* src_ptr, |
| uint8_t* dst_ptr) { |
| int scaleval = 65536 / boxheight; |
| int i; |
| (void)dx; |
| src_ptr += (x >> 16); |
| for (i = 0; i < dst_width; ++i) { |
| *dst_ptr++ = (uint8_t)(src_ptr[i] * scaleval >> 16); |
| } |
| } |
| |
| static void ScaleAddCols1_C(int dst_width, |
| int boxheight, |
| int x, |
| int dx, |
| const uint16_t* src_ptr, |
| uint8_t* dst_ptr) { |
| int boxwidth = MIN1(dx >> 16); |
| int scaleval = 65536 / (boxwidth * boxheight); |
| int i; |
| x >>= 16; |
| for (i = 0; i < dst_width; ++i) { |
| *dst_ptr++ = (uint8_t)(SumPixels(boxwidth, src_ptr + x) * scaleval >> 16); |
| x += boxwidth; |
| } |
| } |
| |
| static void ScaleAddCols1_16_C(int dst_width, |
| int boxheight, |
| int x, |
| int dx, |
| const uint32_t* src_ptr, |
| uint16_t* dst_ptr) { |
| int boxwidth = MIN1(dx >> 16); |
| int scaleval = 65536 / (boxwidth * boxheight); |
| int i; |
| for (i = 0; i < dst_width; ++i) { |
| *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16; |
| x += boxwidth; |
| } |
| } |
| |
| // Scale plane down to any dimensions, with interpolation. |
| // (boxfilter). |
| // |
| // Same method as SimpleScale, which is fixed point, outputting |
| // one pixel of destination using fixed point (16.16) to step |
| // through source, sampling a box of pixel with simple |
| // averaging. |
| static int ScalePlaneBox(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr) { |
| int j, k; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| const int max_y = (src_height << 16); |
| ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| { |
| // Allocate a row buffer of uint16_t. |
| align_buffer_64(row16, src_width * 2); |
| if (!row16) |
| return 1; |
| void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, |
| const uint16_t* src_ptr, uint8_t* dst_ptr) = |
| (dx & 0xffff) ? ScaleAddCols2_C |
| : ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C); |
| void (*ScaleAddRow)(const uint8_t* src_ptr, uint16_t* dst_ptr, |
| int src_width) = ScaleAddRow_C; |
| |
| for (j = 0; j < dst_height; ++j) { |
| int boxheight; |
| int iy = y >> 16; |
| const uint8_t* src = src_ptr + iy * (int64_t)src_stride; |
| y += dy; |
| if (y > max_y) { |
| y = max_y; |
| } |
| boxheight = MIN1((y >> 16) - iy); |
| memset(row16, 0, src_width * 2); |
| for (k = 0; k < boxheight; ++k) { |
| ScaleAddRow(src, (uint16_t*)(row16), src_width); |
| src += src_stride; |
| } |
| ScaleAddCols(dst_width, boxheight, x, dx, (uint16_t*)(row16), dst_ptr); |
| dst_ptr += dst_stride; |
| } |
| free_aligned_buffer_64(row16); |
| } |
| return 0; |
| } |
| |
| static int ScalePlaneBox_16(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| int j, k; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| const int max_y = (src_height << 16); |
| ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| { |
| // Allocate a row buffer of uint32_t. |
| align_buffer_64(row32, src_width * 4); |
| if (!row32) |
| return 1; |
| void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, |
| const uint32_t* src_ptr, uint16_t* dst_ptr) = |
| (dx & 0xffff) ? ScaleAddCols2_16_C : ScaleAddCols1_16_C; |
| void (*ScaleAddRow)(const uint16_t* src_ptr, uint32_t* dst_ptr, |
| int src_width) = ScaleAddRow_16_C; |
| |
| #if defined(HAS_SCALEADDROW_16_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) { |
| ScaleAddRow = ScaleAddRow_16_SSE2; |
| } |
| #endif |
| |
| for (j = 0; j < dst_height; ++j) { |
| int boxheight; |
| int iy = y >> 16; |
| const uint16_t* src = src_ptr + iy * (int64_t)src_stride; |
| y += dy; |
| if (y > max_y) { |
| y = max_y; |
| } |
| boxheight = MIN1((y >> 16) - iy); |
| memset(row32, 0, src_width * 4); |
| for (k = 0; k < boxheight; ++k) { |
| ScaleAddRow(src, (uint32_t*)(row32), src_width); |
| src += src_stride; |
| } |
| ScaleAddCols(dst_width, boxheight, x, dx, (uint32_t*)(row32), dst_ptr); |
| dst_ptr += dst_stride; |
| } |
| free_aligned_buffer_64(row32); |
| } |
| return 0; |
| } |
| |
| // Scale plane down with bilinear interpolation. |
| static int ScalePlaneBilinearDown(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr, |
| enum FilterMode filtering) { |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. |
| // Allocate a row buffer. |
| align_buffer_64(row, src_width); |
| if (!row) |
| return 1; |
| |
| const int max_y = (src_height - 1) << 16; |
| int j; |
| void (*ScaleFilterCols)(uint8_t* dst_ptr, const uint8_t* src_ptr, |
| int dst_width, int x, int dx) = |
| (src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C; |
| void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_C; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (y > max_y) { |
| y = max_y; |
| } |
| |
| for (j = 0; j < dst_height; ++j) { |
| int yi = y >> 16; |
| const uint8_t* src = src_ptr + yi * (int64_t)src_stride; |
| if (filtering == kFilterLinear) { |
| ScaleFilterCols(dst_ptr, src, dst_width, x, dx); |
| } else { |
| int yf = (y >> 8) & 255; |
| InterpolateRow(row, src, src_stride, src_width, yf); |
| ScaleFilterCols(dst_ptr, row, dst_width, x, dx); |
| } |
| dst_ptr += dst_stride; |
| y += dy; |
| if (y > max_y) { |
| y = max_y; |
| } |
| } |
| free_aligned_buffer_64(row); |
| return 0; |
| } |
| |
| static int ScalePlaneBilinearDown_16(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr, |
| enum FilterMode filtering) { |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. |
| // Allocate a row buffer. |
| align_buffer_64(row, src_width * 2); |
| if (!row) |
| return 1; |
| |
| const int max_y = (src_height - 1) << 16; |
| int j; |
| void (*ScaleFilterCols)(uint16_t* dst_ptr, const uint16_t* src_ptr, |
| int dst_width, int x, int dx) = |
| (src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C; |
| void (*InterpolateRow)(uint16_t* dst_ptr, const uint16_t* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_16_C; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (y > max_y) { |
| y = max_y; |
| } |
| |
| for (j = 0; j < dst_height; ++j) { |
| int yi = y >> 16; |
| const uint16_t* src = src_ptr + yi * (int64_t)src_stride; |
| if (filtering == kFilterLinear) { |
| ScaleFilterCols(dst_ptr, src, dst_width, x, dx); |
| } else { |
| int yf = (y >> 8) & 255; |
| InterpolateRow((uint16_t*)row, src, src_stride, src_width, yf); |
| ScaleFilterCols(dst_ptr, (uint16_t*)row, dst_width, x, dx); |
| } |
| dst_ptr += dst_stride; |
| y += dy; |
| if (y > max_y) { |
| y = max_y; |
| } |
| } |
| free_aligned_buffer_64(row); |
| return 0; |
| } |
| |
| // Scale up down with bilinear interpolation. |
| static int ScalePlaneBilinearUp(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr, |
| enum FilterMode filtering) { |
| int j; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| const int max_y = (src_height - 1) << 16; |
| void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_C; |
| void (*ScaleFilterCols)(uint8_t* dst_ptr, const uint8_t* src_ptr, |
| int dst_width, int x, int dx) = |
| filtering ? ScaleFilterCols_C : ScaleCols_C; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (filtering && src_width >= 32768) { |
| ScaleFilterCols = ScaleFilterCols64_C; |
| } |
| if (!filtering && src_width * 2 == dst_width && x < 0x8000) { |
| ScaleFilterCols = ScaleColsUp2_C; |
| } |
| |
| if (y > max_y) { |
| y = max_y; |
| } |
| { |
| int yi = y >> 16; |
| const uint8_t* src = src_ptr + yi * (int64_t)src_stride; |
| |
| // Allocate 2 row buffers. |
| const int row_size = (dst_width + 31) & ~31; |
| align_buffer_64(row, row_size * 2); |
| if (!row) |
| return 1; |
| |
| uint8_t* rowptr = row; |
| int rowstride = row_size; |
| int lasty = yi; |
| |
| ScaleFilterCols(rowptr, src, dst_width, x, dx); |
| if (src_height > 1) { |
| src += src_stride; |
| } |
| ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); |
| if (src_height > 2) { |
| src += src_stride; |
| } |
| |
| for (j = 0; j < dst_height; ++j) { |
| yi = y >> 16; |
| if (yi != lasty) { |
| if (y > max_y) { |
| y = max_y; |
| yi = y >> 16; |
| src = src_ptr + yi * (int64_t)src_stride; |
| } |
| if (yi != lasty) { |
| ScaleFilterCols(rowptr, src, dst_width, x, dx); |
| rowptr += rowstride; |
| rowstride = -rowstride; |
| lasty = yi; |
| if ((y + 65536) < max_y) { |
| src += src_stride; |
| } |
| } |
| } |
| if (filtering == kFilterLinear) { |
| InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); |
| } else { |
| int yf = (y >> 8) & 255; |
| InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); |
| } |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| free_aligned_buffer_64(row); |
| } |
| return 0; |
| } |
| |
| // Scale plane, horizontally up by 2 times. |
| // Uses linear filter horizontally, nearest vertically. |
| // This is an optimized version for scaling up a plane to 2 times of |
| // its original width, using linear interpolation. |
| // This is used to scale U and V planes of I422 to I444. |
| static void ScalePlaneUp2_Linear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr) { |
| void (*ScaleRowUp)(const uint8_t* src_ptr, uint8_t* dst_ptr, int dst_width) = |
| ScaleRowUp2_Linear_Any_C; |
| int i; |
| int y; |
| int dy; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times horizontally. |
| assert(src_width == ((dst_width + 1) / 2)); |
| |
| if (dst_height == 1) { |
| ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr, |
| dst_width); |
| } else { |
| dy = FixedDiv(src_height - 1, dst_height - 1); |
| y = (1 << 15) - 1; |
| for (i = 0; i < dst_height; ++i) { |
| ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width); |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| } |
| } |
| |
| // Scale plane, up by 2 times. |
| // This is an optimized version for scaling up a plane to 2 times of |
| // its original size, using bilinear interpolation. |
| // This is used to scale U and V planes of I420 to I444. |
| static void ScalePlaneUp2_Bilinear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr) { |
| void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride, |
| uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) = |
| ScaleRowUp2_Bilinear_Any_C; |
| int x; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times. |
| assert(src_width == ((dst_width + 1) / 2)); |
| assert(src_height == ((dst_height + 1) / 2)); |
| |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| dst_ptr += dst_stride; |
| for (x = 0; x < src_height - 1; ++x) { |
| Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width); |
| src_ptr += src_stride; |
| // TODO(fbarchard): Test performance of writing one row of destination at a |
| // time. |
| dst_ptr += 2 * dst_stride; |
| } |
| if (!(dst_height & 1)) { |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| } |
| } |
| |
| // Scale at most 14 bit plane, horizontally up by 2 times. |
| // This is an optimized version for scaling up a plane to 2 times of |
| // its original width, using linear interpolation. |
| // stride is in count of uint16_t. |
| // This is used to scale U and V planes of I210 to I410 and I212 to I412. |
| static void ScalePlaneUp2_12_Linear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr, |
| int dst_width) = ScaleRowUp2_Linear_16_Any_C; |
| int i; |
| int y; |
| int dy; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times horizontally. |
| assert(src_width == ((dst_width + 1) / 2)); |
| |
| if (dst_height == 1) { |
| ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr, |
| dst_width); |
| } else { |
| dy = FixedDiv(src_height - 1, dst_height - 1); |
| y = (1 << 15) - 1; |
| for (i = 0; i < dst_height; ++i) { |
| ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width); |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| } |
| } |
| |
| // Scale at most 12 bit plane, up by 2 times. |
| // This is an optimized version for scaling up a plane to 2 times of |
| // its original size, using bilinear interpolation. |
| // stride is in count of uint16_t. |
| // This is used to scale U and V planes of I010 to I410 and I012 to I412. |
| static void ScalePlaneUp2_12_Bilinear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride, |
| uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) = |
| ScaleRowUp2_Bilinear_16_Any_C; |
| int x; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times. |
| assert(src_width == ((dst_width + 1) / 2)); |
| assert(src_height == ((dst_height + 1) / 2)); |
| |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| dst_ptr += dst_stride; |
| for (x = 0; x < src_height - 1; ++x) { |
| Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width); |
| src_ptr += src_stride; |
| dst_ptr += 2 * dst_stride; |
| } |
| if (!(dst_height & 1)) { |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| } |
| } |
| |
| static void ScalePlaneUp2_16_Linear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr, |
| int dst_width) = ScaleRowUp2_Linear_16_Any_C; |
| int i; |
| int y; |
| int dy; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times horizontally. |
| assert(src_width == ((dst_width + 1) / 2)); |
| |
| if (dst_height == 1) { |
| ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr, |
| dst_width); |
| } else { |
| dy = FixedDiv(src_height - 1, dst_height - 1); |
| y = (1 << 15) - 1; |
| for (i = 0; i < dst_height; ++i) { |
| ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width); |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| } |
| } |
| |
| static void ScalePlaneUp2_16_Bilinear(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride, |
| uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) = |
| ScaleRowUp2_Bilinear_16_Any_C; |
| int x; |
| |
| (void)src_width; |
| // This function can only scale up by 2 times. |
| assert(src_width == ((dst_width + 1) / 2)); |
| assert(src_height == ((dst_height + 1) / 2)); |
| |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| dst_ptr += dst_stride; |
| for (x = 0; x < src_height - 1; ++x) { |
| Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width); |
| src_ptr += src_stride; |
| dst_ptr += 2 * dst_stride; |
| } |
| if (!(dst_height & 1)) { |
| Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width); |
| } |
| } |
| |
| static int ScalePlaneBilinearUp_16(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr, |
| enum FilterMode filtering) { |
| int j; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| const int max_y = (src_height - 1) << 16; |
| void (*InterpolateRow)(uint16_t* dst_ptr, const uint16_t* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_16_C; |
| void (*ScaleFilterCols)(uint16_t* dst_ptr, const uint16_t* src_ptr, |
| int dst_width, int x, int dx) = |
| filtering ? ScaleFilterCols_16_C : ScaleCols_16_C; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (filtering && src_width >= 32768) { |
| ScaleFilterCols = ScaleFilterCols64_16_C; |
| } |
| if (!filtering && src_width * 2 == dst_width && x < 0x8000) { |
| ScaleFilterCols = ScaleColsUp2_16_C; |
| } |
| if (y > max_y) { |
| y = max_y; |
| } |
| { |
| int yi = y >> 16; |
| const uint16_t* src = src_ptr + yi * (int64_t)src_stride; |
| |
| // Allocate 2 row buffers. |
| const int row_size = (dst_width + 31) & ~31; |
| align_buffer_64(row, row_size * 4); |
| int rowstride = row_size; |
| int lasty = yi; |
| uint16_t* rowptr = (uint16_t*)row; |
| if (!row) |
| return 1; |
| |
| ScaleFilterCols(rowptr, src, dst_width, x, dx); |
| if (src_height > 1) { |
| src += src_stride; |
| } |
| ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); |
| if (src_height > 2) { |
| src += src_stride; |
| } |
| |
| for (j = 0; j < dst_height; ++j) { |
| yi = y >> 16; |
| if (yi != lasty) { |
| if (y > max_y) { |
| y = max_y; |
| yi = y >> 16; |
| src = src_ptr + yi * (int64_t)src_stride; |
| } |
| if (yi != lasty) { |
| ScaleFilterCols(rowptr, src, dst_width, x, dx); |
| rowptr += rowstride; |
| rowstride = -rowstride; |
| lasty = yi; |
| if ((y + 65536) < max_y) { |
| src += src_stride; |
| } |
| } |
| } |
| if (filtering == kFilterLinear) { |
| InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); |
| } else { |
| int yf = (y >> 8) & 255; |
| InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); |
| } |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| free_aligned_buffer_64(row); |
| } |
| return 0; |
| } |
| |
| // Scale Plane to/from any dimensions, without interpolation. |
| // Fixed point math is used for performance: The upper 16 bits |
| // of x and dx is the integer part of the source position and |
| // the lower 16 bits are the fixed decimal part. |
| |
| static void ScalePlaneSimple(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint8_t* src_ptr, |
| uint8_t* dst_ptr) { |
| int i; |
| void (*ScaleCols)(uint8_t* dst_ptr, const uint8_t* src_ptr, int dst_width, |
| int x, int dx) = ScaleCols_C; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (src_width * 2 == dst_width && x < 0x8000) { |
| ScaleCols = ScaleColsUp2_C; |
| } |
| |
| for (i = 0; i < dst_height; ++i) { |
| ScaleCols(dst_ptr, src_ptr + (y >> 16) * (int64_t)src_stride, dst_width, x, |
| dx); |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| } |
| |
| static void ScalePlaneSimple_16(int src_width, |
| int src_height, |
| int dst_width, |
| int dst_height, |
| int src_stride, |
| int dst_stride, |
| const uint16_t* src_ptr, |
| uint16_t* dst_ptr) { |
| int i; |
| void (*ScaleCols)(uint16_t* dst_ptr, const uint16_t* src_ptr, int dst_width, |
| int x, int dx) = ScaleCols_16_C; |
| // Initial source x/y coordinate and step values as 16.16 fixed point. |
| int x = 0; |
| int y = 0; |
| int dx = 0; |
| int dy = 0; |
| ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y, |
| &dx, &dy); |
| src_width = Abs(src_width); |
| |
| if (src_width * 2 == dst_width && x < 0x8000) { |
| ScaleCols = ScaleColsUp2_16_C; |
| } |
| |
| for (i = 0; i < dst_height; ++i) { |
| ScaleCols(dst_ptr, src_ptr + (y >> 16) * (int64_t)src_stride, dst_width, x, |
| dx); |
| dst_ptr += dst_stride; |
| y += dy; |
| } |
| } |
| |
| // Scale a plane. |
| // This function dispatches to a specialized scaler based on scale factor. |
| int ScalePlane(const uint8_t* src, |
| int src_stride, |
| int src_width, |
| int src_height, |
| uint8_t* dst, |
| int dst_stride, |
| int dst_width, |
| int dst_height, |
| enum FilterMode filtering) { |
| // Simplify filtering when possible. |
| filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, |
| filtering); |
| |
| // Negative height means invert the image. |
| if (src_height < 0) { |
| src_height = -src_height; |
| src = src + (src_height - 1) * (int64_t)src_stride; |
| src_stride = -src_stride; |
| } |
| // Use specialized scales to improve performance for common resolutions. |
| // For example, all the 1/2 scalings will use ScalePlaneDown2() |
| if (dst_width == src_width && dst_height == src_height) { |
| // Straight copy. |
| CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height); |
| return 0; |
| } |
| if (dst_width == src_width && filtering != kFilterBox) { |
| int dy = 0; |
| int y = 0; |
| // When scaling down, use the center 2 rows to filter. |
| // When scaling up, last row of destination uses the last 2 source rows. |
| if (dst_height <= src_height) { |
| dy = FixedDiv(src_height, dst_height); |
| y = CENTERSTART(dy, -32768); // Subtract 0.5 (32768) to center filter. |
| } else if (src_height > 1 && dst_height > 1) { |
| dy = FixedDiv1(src_height, dst_height); |
| } |
| // Arbitrary scale vertically, but unscaled horizontally. |
| ScalePlaneVertical(src_height, dst_width, dst_height, src_stride, |
| dst_stride, src, dst, 0, y, dy, /*bpp=*/1, filtering); |
| return 0; |
| } |
| if (filtering == kFilterBox && dst_height * 2 < src_height) { |
| return ScalePlaneBox(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| } |
| if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) { |
| ScalePlaneUp2_Linear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width && |
| (filtering == kFilterBilinear || filtering == kFilterBox)) { |
| ScalePlaneUp2_Bilinear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| if (filtering && dst_height > src_height) { |
| return ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst, filtering); |
| } |
| if (filtering) { |
| return ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst, filtering); |
| } |
| ScalePlaneSimple(src_width, src_height, dst_width, dst_height, src_stride, |
| dst_stride, src, dst); |
| return 0; |
| } |
| |
| int ScalePlane_16(const uint16_t* src, |
| int src_stride, |
| int src_width, |
| int src_height, |
| uint16_t* dst, |
| int dst_stride, |
| int dst_width, |
| int dst_height, |
| enum FilterMode filtering) { |
| // Simplify filtering when possible. |
| filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, |
| filtering); |
| |
| // Negative height means invert the image. |
| if (src_height < 0) { |
| src_height = -src_height; |
| src = src + (src_height - 1) * (int64_t)src_stride; |
| src_stride = -src_stride; |
| } |
| // Use specialized scales to improve performance for common resolutions. |
| // For example, all the 1/2 scalings will use ScalePlaneDown2() |
| if (dst_width == src_width && dst_height == src_height) { |
| // Straight copy. |
| CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height); |
| return 0; |
| } |
| if (dst_width == src_width && filtering != kFilterBox) { |
| int dy = 0; |
| int y = 0; |
| // When scaling down, use the center 2 rows to filter. |
| // When scaling up, last row of destination uses the last 2 source rows. |
| if (dst_height <= src_height) { |
| dy = FixedDiv(src_height, dst_height); |
| y = CENTERSTART(dy, -32768); // Subtract 0.5 (32768) to center filter. |
| // When scaling up, ensure the last row of destination uses the last |
| // source. Avoid divide by zero for dst_height but will do no scaling |
| // later. |
| } else if (src_height > 1 && dst_height > 1) { |
| dy = FixedDiv1(src_height, dst_height); |
| } |
| // Arbitrary scale vertically, but unscaled horizontally. |
| ScalePlaneVertical_16(src_height, dst_width, dst_height, src_stride, |
| dst_stride, src, dst, 0, y, dy, /*bpp=*/1, filtering); |
| return 0; |
| } |
| if (filtering == kFilterBox && dst_height * 2 < src_height) { |
| return ScalePlaneBox_16(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| } |
| if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) { |
| ScalePlaneUp2_16_Linear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width && |
| (filtering == kFilterBilinear || filtering == kFilterBox)) { |
| ScalePlaneUp2_16_Bilinear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| if (filtering && dst_height > src_height) { |
| return ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst, filtering); |
| } |
| if (filtering) { |
| return ScalePlaneBilinearDown_16(src_width, src_height, dst_width, |
| dst_height, src_stride, dst_stride, src, |
| dst, filtering); |
| } |
| ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, src_stride, |
| dst_stride, src, dst); |
| return 0; |
| } |
| |
| int ScalePlane_12(const uint16_t* src, |
| int src_stride, |
| int src_width, |
| int src_height, |
| uint16_t* dst, |
| int dst_stride, |
| int dst_width, |
| int dst_height, |
| enum FilterMode filtering) { |
| // Simplify filtering when possible. |
| filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, |
| filtering); |
| |
| // Negative height means invert the image. |
| if (src_height < 0) { |
| src_height = -src_height; |
| src = src + (src_height - 1) * (int64_t)src_stride; |
| src_stride = -src_stride; |
| } |
| |
| if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) { |
| ScalePlaneUp2_12_Linear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width && |
| (filtering == kFilterBilinear || filtering == kFilterBox)) { |
| ScalePlaneUp2_12_Bilinear(src_width, src_height, dst_width, dst_height, |
| src_stride, dst_stride, src, dst); |
| return 0; |
| } |
| |
| return ScalePlane_16(src, src_stride, src_width, src_height, dst, dst_stride, |
| dst_width, dst_height, filtering); |
| } |