blob: 75ea27c3641f318cfe1f40587cb785be86c7ff94 [file] [log] [blame]
// Copyright 2019 Joe Drago. All rights reserved.
// SPDX-License-Identifier: BSD-2-Clause
#include "avif/internal.h"
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <string.h>
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
#define AVIF_VERSION_STRING (STR(AVIF_VERSION_MAJOR) "." STR(AVIF_VERSION_MINOR) "." STR(AVIF_VERSION_PATCH))
const char * avifVersion(void)
{
return AVIF_VERSION_STRING;
}
const char * avifPixelFormatToString(avifPixelFormat format)
{
switch (format) {
case AVIF_PIXEL_FORMAT_YUV444:
return "YUV444";
case AVIF_PIXEL_FORMAT_YUV420:
return "YUV420";
case AVIF_PIXEL_FORMAT_YUV422:
return "YUV422";
case AVIF_PIXEL_FORMAT_YUV400:
return "YUV400";
case AVIF_PIXEL_FORMAT_NONE:
case AVIF_PIXEL_FORMAT_COUNT:
default:
break;
}
return "Unknown";
}
void avifGetPixelFormatInfo(avifPixelFormat format, avifPixelFormatInfo * info)
{
memset(info, 0, sizeof(avifPixelFormatInfo));
switch (format) {
case AVIF_PIXEL_FORMAT_YUV444:
info->chromaShiftX = 0;
info->chromaShiftY = 0;
break;
case AVIF_PIXEL_FORMAT_YUV422:
info->chromaShiftX = 1;
info->chromaShiftY = 0;
break;
case AVIF_PIXEL_FORMAT_YUV420:
info->chromaShiftX = 1;
info->chromaShiftY = 1;
break;
case AVIF_PIXEL_FORMAT_YUV400:
info->chromaShiftX = 1;
info->chromaShiftY = 1;
info->monochrome = AVIF_TRUE;
break;
case AVIF_PIXEL_FORMAT_NONE:
case AVIF_PIXEL_FORMAT_COUNT:
default:
break;
}
}
const char * avifResultToString(avifResult result)
{
// clang-format off
switch (result) {
case AVIF_RESULT_OK: return "OK";
case AVIF_RESULT_INVALID_FTYP: return "Invalid ftyp";
case AVIF_RESULT_NO_CONTENT: return "No content";
case AVIF_RESULT_NO_YUV_FORMAT_SELECTED: return "No YUV format selected";
case AVIF_RESULT_REFORMAT_FAILED: return "Reformat failed";
case AVIF_RESULT_UNSUPPORTED_DEPTH: return "Unsupported depth";
case AVIF_RESULT_ENCODE_COLOR_FAILED: return "Encoding of color planes failed";
case AVIF_RESULT_ENCODE_ALPHA_FAILED: return "Encoding of alpha plane failed";
case AVIF_RESULT_BMFF_PARSE_FAILED: return "BMFF parsing failed";
case AVIF_RESULT_NO_AV1_ITEMS_FOUND: return "No AV1 items found";
case AVIF_RESULT_DECODE_COLOR_FAILED: return "Decoding of color planes failed";
case AVIF_RESULT_DECODE_ALPHA_FAILED: return "Decoding of alpha plane failed";
case AVIF_RESULT_COLOR_ALPHA_SIZE_MISMATCH: return "Color and alpha planes size mismatch";
case AVIF_RESULT_ISPE_SIZE_MISMATCH: return "Plane sizes don't match ispe values";
case AVIF_RESULT_NO_CODEC_AVAILABLE: return "No codec available";
case AVIF_RESULT_NO_IMAGES_REMAINING: return "No images remaining";
case AVIF_RESULT_INVALID_EXIF_PAYLOAD: return "Invalid Exif payload";
case AVIF_RESULT_INVALID_IMAGE_GRID: return "Invalid image grid";
case AVIF_RESULT_INVALID_CODEC_SPECIFIC_OPTION: return "Invalid codec-specific option";
case AVIF_RESULT_TRUNCATED_DATA: return "Truncated data";
case AVIF_RESULT_IO_NOT_SET: return "IO not set";
case AVIF_RESULT_IO_ERROR: return "IO Error";
case AVIF_RESULT_WAITING_ON_IO: return "Waiting on IO";
case AVIF_RESULT_INVALID_ARGUMENT: return "Invalid argument";
case AVIF_RESULT_NOT_IMPLEMENTED: return "Not implemented";
case AVIF_RESULT_OUT_OF_MEMORY: return "Out of memory";
case AVIF_RESULT_CANNOT_CHANGE_SETTING: return "Cannot change some setting during encoding";
case AVIF_RESULT_INCOMPATIBLE_IMAGE: return "The image is incompatible with already encoded images";
case AVIF_RESULT_UNKNOWN_ERROR:
default:
break;
}
// clang-format on
return "Unknown Error";
}
const char * avifProgressiveStateToString(avifProgressiveState progressiveState)
{
// clang-format off
switch (progressiveState) {
case AVIF_PROGRESSIVE_STATE_UNAVAILABLE: return "Unavailable";
case AVIF_PROGRESSIVE_STATE_AVAILABLE: return "Available";
case AVIF_PROGRESSIVE_STATE_ACTIVE: return "Active";
default:
break;
}
// clang-format on
return "Unknown";
}
static void avifImageSetDefaults(avifImage * image)
{
memset(image, 0, sizeof(avifImage));
image->yuvRange = AVIF_RANGE_FULL;
image->colorPrimaries = AVIF_COLOR_PRIMARIES_UNSPECIFIED;
image->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED;
image->matrixCoefficients = AVIF_MATRIX_COEFFICIENTS_UNSPECIFIED;
}
avifImage * avifImageCreate(uint32_t width, uint32_t height, uint32_t depth, avifPixelFormat yuvFormat)
{
avifImage * image = (avifImage *)avifAlloc(sizeof(avifImage));
avifImageSetDefaults(image);
image->width = width;
image->height = height;
image->depth = depth;
image->yuvFormat = yuvFormat;
return image;
}
avifImage * avifImageCreateEmpty(void)
{
return avifImageCreate(0, 0, 0, AVIF_PIXEL_FORMAT_NONE);
}
// Copies all fields that do not need to be freed/allocated from srcImage to dstImage.
static void avifImageCopyNoAlloc(avifImage * dstImage, const avifImage * srcImage)
{
dstImage->width = srcImage->width;
dstImage->height = srcImage->height;
dstImage->depth = srcImage->depth;
dstImage->yuvFormat = srcImage->yuvFormat;
dstImage->yuvRange = srcImage->yuvRange;
dstImage->yuvChromaSamplePosition = srcImage->yuvChromaSamplePosition;
dstImage->alphaPremultiplied = srcImage->alphaPremultiplied;
dstImage->colorPrimaries = srcImage->colorPrimaries;
dstImage->transferCharacteristics = srcImage->transferCharacteristics;
dstImage->matrixCoefficients = srcImage->matrixCoefficients;
dstImage->transformFlags = srcImage->transformFlags;
dstImage->pasp = srcImage->pasp;
dstImage->clap = srcImage->clap;
dstImage->irot = srcImage->irot;
dstImage->imir = srcImage->imir;
}
avifResult avifImageCopy(avifImage * dstImage, const avifImage * srcImage, avifPlanesFlags planes)
{
avifImageFreePlanes(dstImage, AVIF_PLANES_ALL);
avifImageCopyNoAlloc(dstImage, srcImage);
avifImageSetProfileICC(dstImage, srcImage->icc.data, srcImage->icc.size);
avifRWDataSet(&dstImage->exif, srcImage->exif.data, srcImage->exif.size);
avifImageSetMetadataXMP(dstImage, srcImage->xmp.data, srcImage->xmp.size);
if ((planes & AVIF_PLANES_YUV) && srcImage->yuvPlanes[AVIF_CHAN_Y]) {
if ((srcImage->yuvFormat != AVIF_PIXEL_FORMAT_YUV400) &&
(!srcImage->yuvPlanes[AVIF_CHAN_U] || !srcImage->yuvPlanes[AVIF_CHAN_V])) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_YUV);
if (allocationResult != AVIF_RESULT_OK) {
return allocationResult;
}
}
if ((planes & AVIF_PLANES_A) && srcImage->alphaPlane) {
const avifResult allocationResult = avifImageAllocatePlanes(dstImage, AVIF_PLANES_A);
if (allocationResult != AVIF_RESULT_OK) {
return allocationResult;
}
}
for (int plane = AVIF_CHAN_Y; plane <= AVIF_CHAN_A; ++plane) {
uint8_t * dstRow = avifImagePlane(dstImage, plane);
if (!dstRow) {
continue;
}
const uint8_t * srcRow = avifImagePlane(srcImage, plane);
uint32_t srcRowBytes = avifImagePlaneRowBytes(srcImage, plane);
uint32_t dstRowBytes = avifImagePlaneRowBytes(dstImage, plane);
uint32_t planeWidthBytes = avifImagePlaneWidth(dstImage, plane) << (dstImage->depth > 8);
uint32_t planeHeight = avifImagePlaneHeight(dstImage, plane);
for (uint32_t j = 0; j < planeHeight; ++j) {
memcpy(dstRow, srcRow, planeWidthBytes);
srcRow += srcRowBytes;
dstRow += dstRowBytes;
}
}
return AVIF_RESULT_OK;
}
avifResult avifImageSetViewRect(avifImage * dstImage, const avifImage * srcImage, const avifCropRect * rect)
{
avifPixelFormatInfo formatInfo;
avifGetPixelFormatInfo(srcImage->yuvFormat, &formatInfo);
if ((rect->width > srcImage->width) || (rect->height > srcImage->height) || (rect->x > (srcImage->width - rect->width)) ||
(rect->y > (srcImage->height - rect->height)) || (rect->x & formatInfo.chromaShiftX) || (rect->y & formatInfo.chromaShiftY)) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
avifImageFreePlanes(dstImage, AVIF_PLANES_ALL); // dstImage->imageOwnsYUVPlanes and dstImage->imageOwnsAlphaPlane set to AVIF_FALSE.
avifImageCopyNoAlloc(dstImage, srcImage);
dstImage->width = rect->width;
dstImage->height = rect->height;
const uint32_t pixelBytes = (srcImage->depth > 8) ? 2 : 1;
if (srcImage->yuvPlanes[AVIF_CHAN_Y]) {
for (int yuvPlane = AVIF_CHAN_Y; yuvPlane <= AVIF_CHAN_V; ++yuvPlane) {
if (srcImage->yuvRowBytes[yuvPlane]) {
const size_t planeX = (yuvPlane == AVIF_CHAN_Y) ? rect->x : (rect->x >> formatInfo.chromaShiftX);
const size_t planeY = (yuvPlane == AVIF_CHAN_Y) ? rect->y : (rect->y >> formatInfo.chromaShiftY);
dstImage->yuvPlanes[yuvPlane] =
srcImage->yuvPlanes[yuvPlane] + planeY * srcImage->yuvRowBytes[yuvPlane] + planeX * pixelBytes;
dstImage->yuvRowBytes[yuvPlane] = srcImage->yuvRowBytes[yuvPlane];
}
}
}
if (srcImage->alphaPlane) {
dstImage->alphaPlane = srcImage->alphaPlane + (size_t)rect->y * srcImage->alphaRowBytes + (size_t)rect->x * pixelBytes;
dstImage->alphaRowBytes = srcImage->alphaRowBytes;
}
return AVIF_RESULT_OK;
}
void avifImageDestroy(avifImage * image)
{
avifImageFreePlanes(image, AVIF_PLANES_ALL);
avifRWDataFree(&image->icc);
avifRWDataFree(&image->exif);
avifRWDataFree(&image->xmp);
avifFree(image);
}
void avifImageSetProfileICC(avifImage * image, const uint8_t * icc, size_t iccSize)
{
avifRWDataSet(&image->icc, icc, iccSize);
}
void avifImageSetMetadataXMP(avifImage * image, const uint8_t * xmp, size_t xmpSize)
{
avifRWDataSet(&image->xmp, xmp, xmpSize);
}
avifResult avifImageAllocatePlanes(avifImage * image, avifPlanesFlags planes)
{
if (image->width == 0 || image->height == 0) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
const size_t channelSize = avifImageUsesU16(image) ? 2 : 1;
if (image->width > SIZE_MAX / channelSize) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
const size_t fullRowBytes = channelSize * image->width;
if ((fullRowBytes > UINT32_MAX) || (image->height > SIZE_MAX / fullRowBytes)) {
return AVIF_RESULT_INVALID_ARGUMENT;
}
const size_t fullSize = fullRowBytes * image->height;
if ((planes & AVIF_PLANES_YUV) && (image->yuvFormat != AVIF_PIXEL_FORMAT_NONE)) {
avifPixelFormatInfo info;
avifGetPixelFormatInfo(image->yuvFormat, &info);
// Intermediary computation as 64 bits in case width or height is exactly UINT32_MAX.
const uint32_t shiftedW = (uint32_t)(((uint64_t)image->width + info.chromaShiftX) >> info.chromaShiftX);
const uint32_t shiftedH = (uint32_t)(((uint64_t)image->height + info.chromaShiftY) >> info.chromaShiftY);
// These are less than or equal to fullRowBytes/fullSize. No need to check overflows.
const size_t uvRowBytes = channelSize * shiftedW;
const size_t uvSize = uvRowBytes * shiftedH;
image->imageOwnsYUVPlanes = AVIF_TRUE;
if (!image->yuvPlanes[AVIF_CHAN_Y]) {
image->yuvRowBytes[AVIF_CHAN_Y] = (uint32_t)fullRowBytes;
image->yuvPlanes[AVIF_CHAN_Y] = avifAlloc(fullSize);
if (!image->yuvPlanes[AVIF_CHAN_Y]) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
}
if (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV400) {
for (int uvPlane = AVIF_CHAN_U; uvPlane <= AVIF_CHAN_V; ++uvPlane) {
if (!image->yuvPlanes[uvPlane]) {
image->yuvRowBytes[uvPlane] = (uint32_t)uvRowBytes;
image->yuvPlanes[uvPlane] = avifAlloc(uvSize);
if (!image->yuvPlanes[uvPlane]) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
}
}
}
}
if (planes & AVIF_PLANES_A) {
image->imageOwnsAlphaPlane = AVIF_TRUE;
if (!image->alphaPlane) {
image->alphaRowBytes = (uint32_t)fullRowBytes;
image->alphaPlane = avifAlloc(fullSize);
if (!image->alphaPlane) {
return AVIF_RESULT_OUT_OF_MEMORY;
}
}
}
return AVIF_RESULT_OK;
}
void avifImageFreePlanes(avifImage * image, avifPlanesFlags planes)
{
if ((planes & AVIF_PLANES_YUV) && (image->yuvFormat != AVIF_PIXEL_FORMAT_NONE)) {
if (image->imageOwnsYUVPlanes) {
avifFree(image->yuvPlanes[AVIF_CHAN_Y]);
avifFree(image->yuvPlanes[AVIF_CHAN_U]);
avifFree(image->yuvPlanes[AVIF_CHAN_V]);
}
image->yuvPlanes[AVIF_CHAN_Y] = NULL;
image->yuvRowBytes[AVIF_CHAN_Y] = 0;
image->yuvPlanes[AVIF_CHAN_U] = NULL;
image->yuvRowBytes[AVIF_CHAN_U] = 0;
image->yuvPlanes[AVIF_CHAN_V] = NULL;
image->yuvRowBytes[AVIF_CHAN_V] = 0;
image->imageOwnsYUVPlanes = AVIF_FALSE;
}
if (planes & AVIF_PLANES_A) {
if (image->imageOwnsAlphaPlane) {
avifFree(image->alphaPlane);
}
image->alphaPlane = NULL;
image->alphaRowBytes = 0;
image->imageOwnsAlphaPlane = AVIF_FALSE;
}
}
void avifImageStealPlanes(avifImage * dstImage, avifImage * srcImage, avifPlanesFlags planes)
{
avifImageFreePlanes(dstImage, planes);
if (planes & AVIF_PLANES_YUV) {
dstImage->yuvPlanes[AVIF_CHAN_Y] = srcImage->yuvPlanes[AVIF_CHAN_Y];
dstImage->yuvRowBytes[AVIF_CHAN_Y] = srcImage->yuvRowBytes[AVIF_CHAN_Y];
dstImage->yuvPlanes[AVIF_CHAN_U] = srcImage->yuvPlanes[AVIF_CHAN_U];
dstImage->yuvRowBytes[AVIF_CHAN_U] = srcImage->yuvRowBytes[AVIF_CHAN_U];
dstImage->yuvPlanes[AVIF_CHAN_V] = srcImage->yuvPlanes[AVIF_CHAN_V];
dstImage->yuvRowBytes[AVIF_CHAN_V] = srcImage->yuvRowBytes[AVIF_CHAN_V];
srcImage->yuvPlanes[AVIF_CHAN_Y] = NULL;
srcImage->yuvRowBytes[AVIF_CHAN_Y] = 0;
srcImage->yuvPlanes[AVIF_CHAN_U] = NULL;
srcImage->yuvRowBytes[AVIF_CHAN_U] = 0;
srcImage->yuvPlanes[AVIF_CHAN_V] = NULL;
srcImage->yuvRowBytes[AVIF_CHAN_V] = 0;
dstImage->yuvFormat = srcImage->yuvFormat;
dstImage->imageOwnsYUVPlanes = srcImage->imageOwnsYUVPlanes;
srcImage->imageOwnsYUVPlanes = AVIF_FALSE;
}
if (planes & AVIF_PLANES_A) {
dstImage->alphaPlane = srcImage->alphaPlane;
dstImage->alphaRowBytes = srcImage->alphaRowBytes;
srcImage->alphaPlane = NULL;
srcImage->alphaRowBytes = 0;
dstImage->imageOwnsAlphaPlane = srcImage->imageOwnsAlphaPlane;
srcImage->imageOwnsAlphaPlane = AVIF_FALSE;
}
}
avifBool avifImageUsesU16(const avifImage * image)
{
return (image->depth > 8);
}
uint8_t * avifImagePlane(const avifImage * image, int channel)
{
if ((channel == AVIF_CHAN_Y) || (channel == AVIF_CHAN_U) || (channel == AVIF_CHAN_V)) {
return image->yuvPlanes[channel];
}
if (channel == AVIF_CHAN_A) {
return image->alphaPlane;
}
return NULL;
}
uint32_t avifImagePlaneRowBytes(const avifImage * image, int channel)
{
if ((channel == AVIF_CHAN_Y) || (channel == AVIF_CHAN_U) || (channel == AVIF_CHAN_V)) {
return image->yuvRowBytes[channel];
}
if (channel == AVIF_CHAN_A) {
return image->alphaRowBytes;
}
return 0;
}
uint32_t avifImagePlaneWidth(const avifImage * image, int channel)
{
if (channel == AVIF_CHAN_Y) {
return image->width;
}
if ((channel == AVIF_CHAN_U) || (channel == AVIF_CHAN_V)) {
avifPixelFormatInfo formatInfo;
avifGetPixelFormatInfo(image->yuvFormat, &formatInfo);
if (formatInfo.monochrome) {
return 0;
}
return (image->width + formatInfo.chromaShiftX) >> formatInfo.chromaShiftX;
}
if ((channel == AVIF_CHAN_A) && image->alphaPlane) {
return image->width;
}
return 0;
}
uint32_t avifImagePlaneHeight(const avifImage * image, int channel)
{
if (channel == AVIF_CHAN_Y) {
return image->height;
}
if ((channel == AVIF_CHAN_U) || (channel == AVIF_CHAN_V)) {
avifPixelFormatInfo formatInfo;
avifGetPixelFormatInfo(image->yuvFormat, &formatInfo);
if (formatInfo.monochrome) {
return 0;
}
return (image->height + formatInfo.chromaShiftY) >> formatInfo.chromaShiftY;
}
if ((channel == AVIF_CHAN_A) && image->alphaPlane) {
return image->height;
}
return 0;
}
avifBool avifDimensionsTooLarge(uint32_t width, uint32_t height, uint32_t imageSizeLimit, uint32_t imageDimensionLimit)
{
if (width > (imageSizeLimit / height)) {
return AVIF_TRUE;
}
if ((imageDimensionLimit != 0) && ((width > imageDimensionLimit) || (height > imageDimensionLimit))) {
return AVIF_TRUE;
}
return AVIF_FALSE;
}
// avifCodecCreate*() functions are in their respective codec_*.c files
void avifCodecDestroy(avifCodec * codec)
{
if (codec && codec->destroyInternal) {
codec->destroyInternal(codec);
}
avifFree(codec);
}
// ---------------------------------------------------------------------------
// avifRGBImage
avifBool avifRGBFormatHasAlpha(avifRGBFormat format)
{
return (format != AVIF_RGB_FORMAT_RGB) && (format != AVIF_RGB_FORMAT_BGR) && (format != AVIF_RGB_FORMAT_RGB_565);
}
uint32_t avifRGBFormatChannelCount(avifRGBFormat format)
{
return avifRGBFormatHasAlpha(format) ? 4 : 3;
}
uint32_t avifRGBImagePixelSize(const avifRGBImage * rgb)
{
if (rgb->format == AVIF_RGB_FORMAT_RGB_565) {
return 2;
}
return avifRGBFormatChannelCount(rgb->format) * ((rgb->depth > 8) ? 2 : 1);
}
void avifRGBImageSetDefaults(avifRGBImage * rgb, const avifImage * image)
{
rgb->width = image->width;
rgb->height = image->height;
rgb->depth = image->depth;
rgb->format = AVIF_RGB_FORMAT_RGBA;
rgb->chromaUpsampling = AVIF_CHROMA_UPSAMPLING_AUTOMATIC;
rgb->chromaDownsampling = AVIF_CHROMA_DOWNSAMPLING_AUTOMATIC;
rgb->avoidLibYUV = AVIF_FALSE;
rgb->ignoreAlpha = AVIF_FALSE;
rgb->pixels = NULL;
rgb->rowBytes = 0;
rgb->alphaPremultiplied = AVIF_FALSE; // Most expect RGBA output to *not* be premultiplied. Those that do can opt-in by
// setting this to match image->alphaPremultiplied or forcing this to true
// after calling avifRGBImageSetDefaults(),
rgb->isFloat = AVIF_FALSE;
}
void avifRGBImageAllocatePixels(avifRGBImage * rgb)
{
if (rgb->pixels) {
avifFree(rgb->pixels);
}
rgb->rowBytes = rgb->width * avifRGBImagePixelSize(rgb);
rgb->pixels = avifAlloc((size_t)rgb->rowBytes * rgb->height);
}
void avifRGBImageFreePixels(avifRGBImage * rgb)
{
if (rgb->pixels) {
avifFree(rgb->pixels);
}
rgb->pixels = NULL;
rgb->rowBytes = 0;
}
// ---------------------------------------------------------------------------
// avifCropRect
typedef struct clapFraction
{
int32_t n;
int32_t d;
} clapFraction;
static clapFraction calcCenter(int32_t dim)
{
clapFraction f;
f.n = dim >> 1;
f.d = 1;
if ((dim % 2) != 0) {
f.n = dim;
f.d = 2;
}
return f;
}
// |a| and |b| hold int32_t values. The int64_t type is used so that we can negate INT32_MIN without
// overflowing int32_t.
static int64_t calcGCD(int64_t a, int64_t b)
{
if (a < 0) {
a *= -1;
}
if (b < 0) {
b *= -1;
}
while (b != 0) {
int64_t r = a % b;
a = b;
b = r;
}
return a;
}
static void clapFractionSimplify(clapFraction * f)
{
int64_t gcd = calcGCD(f->n, f->d);
if (gcd > 1) {
f->n = (int32_t)(f->n / gcd);
f->d = (int32_t)(f->d / gcd);
}
}
static avifBool overflowsInt32(int64_t x)
{
return (x < INT32_MIN) || (x > INT32_MAX);
}
// Make the fractions have a common denominator
static avifBool clapFractionCD(clapFraction * a, clapFraction * b)
{
clapFractionSimplify(a);
clapFractionSimplify(b);
if (a->d != b->d) {
const int64_t ad = a->d;
const int64_t bd = b->d;
const int64_t anNew = a->n * bd;
const int64_t adNew = a->d * bd;
const int64_t bnNew = b->n * ad;
const int64_t bdNew = b->d * ad;
if (overflowsInt32(anNew) || overflowsInt32(adNew) || overflowsInt32(bnNew) || overflowsInt32(bdNew)) {
return AVIF_FALSE;
}
a->n = (int32_t)anNew;
a->d = (int32_t)adNew;
b->n = (int32_t)bnNew;
b->d = (int32_t)bdNew;
}
return AVIF_TRUE;
}
static avifBool clapFractionAdd(clapFraction a, clapFraction b, clapFraction * result)
{
if (!clapFractionCD(&a, &b)) {
return AVIF_FALSE;
}
const int64_t resultN = (int64_t)a.n + b.n;
if (overflowsInt32(resultN)) {
return AVIF_FALSE;
}
result->n = (int32_t)resultN;
result->d = a.d;
clapFractionSimplify(result);
return AVIF_TRUE;
}
static avifBool clapFractionSub(clapFraction a, clapFraction b, clapFraction * result)
{
if (!clapFractionCD(&a, &b)) {
return AVIF_FALSE;
}
const int64_t resultN = (int64_t)a.n - b.n;
if (overflowsInt32(resultN)) {
return AVIF_FALSE;
}
result->n = (int32_t)resultN;
result->d = a.d;
clapFractionSimplify(result);
return AVIF_TRUE;
}
static avifBool avifCropRectIsValid(const avifCropRect * cropRect, uint32_t imageW, uint32_t imageH, avifPixelFormat yuvFormat, avifDiagnostics * diag)
{
// ISO/IEC 23000-22:2019/DAM 2:2021, Section 7.3.6.7:
// The clean aperture property is restricted according to the chroma
// sampling format of the input image (4:4:4, 4:2:2:, 4:2:0, or 4:0:0) as
// follows:
// - when the image is 4:0:0 (monochrome) or 4:4:4, the horizontal and
// vertical cropped offsets and widths shall be integers;
// - when the image is 4:2:2 the horizontal cropped offset and width
// shall be even numbers and the vertical values shall be integers;
// - when the image is 4:2:0 both the horizontal and vertical cropped
// offsets and widths shall be even numbers.
if ((cropRect->width == 0) || (cropRect->height == 0)) {
avifDiagnosticsPrintf(diag, "[Strict] crop rect width and height must be nonzero");
return AVIF_FALSE;
}
if ((cropRect->x > (UINT32_MAX - cropRect->width)) || ((cropRect->x + cropRect->width) > imageW) ||
(cropRect->y > (UINT32_MAX - cropRect->height)) || ((cropRect->y + cropRect->height) > imageH)) {
avifDiagnosticsPrintf(diag, "[Strict] crop rect is out of the image's bounds");
return AVIF_FALSE;
}
if ((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) || (yuvFormat == AVIF_PIXEL_FORMAT_YUV422)) {
if (((cropRect->x % 2) != 0) || ((cropRect->width % 2) != 0)) {
avifDiagnosticsPrintf(diag, "[Strict] crop rect X offset and width must both be even due to this image's YUV subsampling");
return AVIF_FALSE;
}
}
if (yuvFormat == AVIF_PIXEL_FORMAT_YUV420) {
if (((cropRect->y % 2) != 0) || ((cropRect->height % 2) != 0)) {
avifDiagnosticsPrintf(diag, "[Strict] crop rect Y offset and height must both be even due to this image's YUV subsampling");
return AVIF_FALSE;
}
}
return AVIF_TRUE;
}
avifBool avifCropRectConvertCleanApertureBox(avifCropRect * cropRect,
const avifCleanApertureBox * clap,
uint32_t imageW,
uint32_t imageH,
avifPixelFormat yuvFormat,
avifDiagnostics * diag)
{
avifDiagnosticsClearError(diag);
// ISO/IEC 14496-12:2020, Section 12.1.4.1:
// For horizOff and vertOff, D shall be strictly positive and N may be
// positive or negative. For cleanApertureWidth and cleanApertureHeight,
// N shall be positive and D shall be strictly positive.
const int32_t widthN = (int32_t)clap->widthN;
const int32_t widthD = (int32_t)clap->widthD;
const int32_t heightN = (int32_t)clap->heightN;
const int32_t heightD = (int32_t)clap->heightD;
const int32_t horizOffN = (int32_t)clap->horizOffN;
const int32_t horizOffD = (int32_t)clap->horizOffD;
const int32_t vertOffN = (int32_t)clap->vertOffN;
const int32_t vertOffD = (int32_t)clap->vertOffD;
if ((widthD <= 0) || (heightD <= 0) || (horizOffD <= 0) || (vertOffD <= 0)) {
avifDiagnosticsPrintf(diag, "[Strict] clap contains a denominator that is not strictly positive");
return AVIF_FALSE;
}
if ((widthN < 0) || (heightN < 0)) {
avifDiagnosticsPrintf(diag, "[Strict] clap width or height is negative");
return AVIF_FALSE;
}
if ((widthN % widthD) != 0) {
avifDiagnosticsPrintf(diag, "[Strict] clap width %d/%d is not an integer", widthN, widthD);
return AVIF_FALSE;
}
if ((heightN % heightD) != 0) {
avifDiagnosticsPrintf(diag, "[Strict] clap height %d/%d is not an integer", heightN, heightD);
return AVIF_FALSE;
}
const int32_t clapW = widthN / widthD;
const int32_t clapH = heightN / heightD;
if ((imageW > INT32_MAX) || (imageH > INT32_MAX)) {
avifDiagnosticsPrintf(diag, "[Strict] image width %u or height %u is greater than INT32_MAX", imageW, imageH);
return AVIF_FALSE;
}
clapFraction uncroppedCenterX = calcCenter((int32_t)imageW);
clapFraction uncroppedCenterY = calcCenter((int32_t)imageH);
clapFraction horizOff;
horizOff.n = horizOffN;
horizOff.d = horizOffD;
clapFraction croppedCenterX;
if (!clapFractionAdd(uncroppedCenterX, horizOff, &croppedCenterX)) {
avifDiagnosticsPrintf(diag, "[Strict] croppedCenterX overflowed");
return AVIF_FALSE;
}
clapFraction vertOff;
vertOff.n = vertOffN;
vertOff.d = vertOffD;
clapFraction croppedCenterY;
if (!clapFractionAdd(uncroppedCenterY, vertOff, &croppedCenterY)) {
avifDiagnosticsPrintf(diag, "[Strict] croppedCenterY overflowed");
return AVIF_FALSE;
}
clapFraction halfW;
halfW.n = clapW;
halfW.d = 2;
clapFraction cropX;
if (!clapFractionSub(croppedCenterX, halfW, &cropX)) {
avifDiagnosticsPrintf(diag, "[Strict] cropX overflowed");
return AVIF_FALSE;
}
if ((cropX.n % cropX.d) != 0) {
avifDiagnosticsPrintf(diag, "[Strict] calculated crop X offset %d/%d is not an integer", cropX.n, cropX.d);
return AVIF_FALSE;
}
clapFraction halfH;
halfH.n = clapH;
halfH.d = 2;
clapFraction cropY;
if (!clapFractionSub(croppedCenterY, halfH, &cropY)) {
avifDiagnosticsPrintf(diag, "[Strict] cropY overflowed");
return AVIF_FALSE;
}
if ((cropY.n % cropY.d) != 0) {
avifDiagnosticsPrintf(diag, "[Strict] calculated crop Y offset %d/%d is not an integer", cropY.n, cropY.d);
return AVIF_FALSE;
}
if ((cropX.n < 0) || (cropY.n < 0)) {
avifDiagnosticsPrintf(diag, "[Strict] at least one crop offset is not positive");
return AVIF_FALSE;
}
cropRect->x = (uint32_t)(cropX.n / cropX.d);
cropRect->y = (uint32_t)(cropY.n / cropY.d);
cropRect->width = (uint32_t)clapW;
cropRect->height = (uint32_t)clapH;
return avifCropRectIsValid(cropRect, imageW, imageH, yuvFormat, diag);
}
avifBool avifCleanApertureBoxConvertCropRect(avifCleanApertureBox * clap,
const avifCropRect * cropRect,
uint32_t imageW,
uint32_t imageH,
avifPixelFormat yuvFormat,
avifDiagnostics * diag)
{
avifDiagnosticsClearError(diag);
if (!avifCropRectIsValid(cropRect, imageW, imageH, yuvFormat, diag)) {
return AVIF_FALSE;
}
if ((imageW > INT32_MAX) || (imageH > INT32_MAX)) {
avifDiagnosticsPrintf(diag, "[Strict] image width %u or height %u is greater than INT32_MAX", imageW, imageH);
return AVIF_FALSE;
}
clapFraction uncroppedCenterX = calcCenter((int32_t)imageW);
clapFraction uncroppedCenterY = calcCenter((int32_t)imageH);
if ((cropRect->width > INT32_MAX) || (cropRect->height > INT32_MAX)) {
avifDiagnosticsPrintf(diag,
"[Strict] crop rect width %u or height %u is greater than INT32_MAX",
cropRect->width,
cropRect->height);
return AVIF_FALSE;
}
clapFraction croppedCenterX = calcCenter((int32_t)cropRect->width);
const int64_t croppedCenterXN = croppedCenterX.n + (int64_t)cropRect->x * croppedCenterX.d;
if (overflowsInt32(croppedCenterXN)) {
avifDiagnosticsPrintf(diag, "[Strict] croppedCenterX overflowed");
return AVIF_FALSE;
}
croppedCenterX.n = (int32_t)croppedCenterXN;
clapFraction croppedCenterY = calcCenter((int32_t)cropRect->height);
const int64_t croppedCenterYN = croppedCenterY.n + (int64_t)cropRect->y * croppedCenterY.d;
if (overflowsInt32(croppedCenterYN)) {
avifDiagnosticsPrintf(diag, "[Strict] croppedCenterY overflowed");
return AVIF_FALSE;
}
croppedCenterY.n = (int32_t)croppedCenterYN;
clapFraction horizOff;
if (!clapFractionSub(croppedCenterX, uncroppedCenterX, &horizOff)) {
avifDiagnosticsPrintf(diag, "[Strict] horizOff overflowed");
return AVIF_FALSE;
}
clapFraction vertOff;
if (!clapFractionSub(croppedCenterY, uncroppedCenterY, &vertOff)) {
avifDiagnosticsPrintf(diag, "[Strict] vertOff overflowed");
return AVIF_FALSE;
}
clap->widthN = cropRect->width;
clap->widthD = 1;
clap->heightN = cropRect->height;
clap->heightD = 1;
clap->horizOffN = horizOff.n;
clap->horizOffD = horizOff.d;
clap->vertOffN = vertOff.n;
clap->vertOffD = vertOff.d;
return AVIF_TRUE;
}
// ---------------------------------------------------------------------------
avifBool avifAreGridDimensionsValid(avifPixelFormat yuvFormat, uint32_t imageW, uint32_t imageH, uint32_t tileW, uint32_t tileH, avifDiagnostics * diag)
{
// ISO/IEC 23000-22:2019, Section 7.3.11.4.2:
// - the tile_width shall be greater than or equal to 64, and should be a multiple of 64
// - the tile_height shall be greater than or equal to 64, and should be a multiple of 64
// The "should" part is ignored here.
if ((tileW < 64) || (tileH < 64)) {
avifDiagnosticsPrintf(diag,
"Grid image tile width (%u) or height (%u) cannot be smaller than 64. "
"See MIAF (ISO/IEC 23000-22:2019), Section 7.3.11.4.2",
tileW,
tileH);
return AVIF_FALSE;
}
// ISO/IEC 23000-22:2019, Section 7.3.11.4.2:
// - when the images are in the 4:2:2 chroma sampling format the horizontal tile offsets and widths,
// and the output width, shall be even numbers;
// - when the images are in the 4:2:0 chroma sampling format both the horizontal and vertical tile
// offsets and widths, and the output width and height, shall be even numbers.
// If the rules above were not respected, the following problematic situation may happen:
// Some 4:2:0 image is 650 pixels wide and has 10 cell columns, each being 65 pixels wide.
// The chroma plane of the whole image is 325 pixels wide. The chroma plane of each cell is 33 pixels wide.
// 33*10 - 325 gives 5 extra pixels with no specified destination in the reconstructed image.
// Tile offsets are not enforced since they depend on tile size (ISO/IEC 23008-12:2017, Section 6.6.2.3.1):
// The reconstructed image is formed by tiling the input images into a grid [...] without gap or overlap
if ((((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) || (yuvFormat == AVIF_PIXEL_FORMAT_YUV422)) &&
(((imageW % 2) != 0) || ((tileW % 2) != 0))) ||
((yuvFormat == AVIF_PIXEL_FORMAT_YUV420) && (((imageH % 2) != 0) || ((tileH % 2) != 0)))) {
avifDiagnosticsPrintf(diag,
"Grid image width (%u) or height (%u) or tile width (%u) or height (%u) "
"shall be even if chroma is subsampled in that dimension. "
"See MIAF (ISO/IEC 23000-22:2019), Section 7.3.11.4.2",
imageW,
imageH,
tileW,
tileH);
return AVIF_FALSE;
}
return AVIF_TRUE;
}
// ---------------------------------------------------------------------------
// avifCodecSpecificOption
static char * avifStrdup(const char * str)
{
size_t len = strlen(str);
char * dup = avifAlloc(len + 1);
memcpy(dup, str, len + 1);
return dup;
}
avifCodecSpecificOptions * avifCodecSpecificOptionsCreate(void)
{
avifCodecSpecificOptions * ava = avifAlloc(sizeof(avifCodecSpecificOptions));
if (!avifArrayCreate(ava, sizeof(avifCodecSpecificOption), 4)) {
goto error;
}
return ava;
error:
avifFree(ava);
return NULL;
}
void avifCodecSpecificOptionsClear(avifCodecSpecificOptions * csOptions)
{
for (uint32_t i = 0; i < csOptions->count; ++i) {
avifCodecSpecificOption * entry = &csOptions->entries[i];
avifFree(entry->key);
avifFree(entry->value);
}
csOptions->count = 0;
}
void avifCodecSpecificOptionsDestroy(avifCodecSpecificOptions * csOptions)
{
if (!csOptions) {
return;
}
avifCodecSpecificOptionsClear(csOptions);
avifArrayDestroy(csOptions);
avifFree(csOptions);
}
void avifCodecSpecificOptionsSet(avifCodecSpecificOptions * csOptions, const char * key, const char * value)
{
// Check to see if a key must be replaced
for (uint32_t i = 0; i < csOptions->count; ++i) {
avifCodecSpecificOption * entry = &csOptions->entries[i];
if (!strcmp(entry->key, key)) {
if (value) {
// Update the value
avifFree(entry->value);
entry->value = avifStrdup(value);
} else {
// Delete the value
avifFree(entry->key);
avifFree(entry->value);
--csOptions->count;
if (csOptions->count > 0) {
memmove(&csOptions->entries[i], &csOptions->entries[i + 1], (csOptions->count - i) * (size_t)csOptions->elementSize);
}
}
return;
}
}
if (value) {
// Add a new key
avifCodecSpecificOption * entry = (avifCodecSpecificOption *)avifArrayPushPtr(csOptions);
entry->key = avifStrdup(key);
entry->value = avifStrdup(value);
}
}
// ---------------------------------------------------------------------------
// Codec availability and versions
typedef const char * (*versionFunc)(void);
typedef avifCodec * (*avifCodecCreateFunc)(void);
struct AvailableCodec
{
avifCodecChoice choice;
const char * name;
versionFunc version;
avifCodecCreateFunc create;
uint32_t flags;
};
// This is the main codec table; it determines all usage/availability in libavif.
static struct AvailableCodec availableCodecs[] = {
// Ordered by preference (for AUTO)
#if defined(AVIF_CODEC_DAV1D)
{ AVIF_CODEC_CHOICE_DAV1D, "dav1d", avifCodecVersionDav1d, avifCodecCreateDav1d, AVIF_CODEC_FLAG_CAN_DECODE },
#endif
#if defined(AVIF_CODEC_LIBGAV1)
{ AVIF_CODEC_CHOICE_LIBGAV1, "libgav1", avifCodecVersionGav1, avifCodecCreateGav1, AVIF_CODEC_FLAG_CAN_DECODE },
#endif
#if defined(AVIF_CODEC_AOM)
{ AVIF_CODEC_CHOICE_AOM,
"aom",
avifCodecVersionAOM,
avifCodecCreateAOM,
#if defined(AVIF_CODEC_AOM_DECODE) && defined(AVIF_CODEC_AOM_ENCODE)
AVIF_CODEC_FLAG_CAN_DECODE | AVIF_CODEC_FLAG_CAN_ENCODE
#elif defined(AVIF_CODEC_AOM_DECODE)
AVIF_CODEC_FLAG_CAN_DECODE
#elif defined(AVIF_CODEC_AOM_ENCODE)
AVIF_CODEC_FLAG_CAN_ENCODE
#else
#error AVIF_CODEC_AOM_DECODE or AVIF_CODEC_AOM_ENCODE must be defined
#endif
},
#endif
#if defined(AVIF_CODEC_RAV1E)
{ AVIF_CODEC_CHOICE_RAV1E, "rav1e", avifCodecVersionRav1e, avifCodecCreateRav1e, AVIF_CODEC_FLAG_CAN_ENCODE },
#endif
#if defined(AVIF_CODEC_SVT)
{ AVIF_CODEC_CHOICE_SVT, "svt", avifCodecVersionSvt, avifCodecCreateSvt, AVIF_CODEC_FLAG_CAN_ENCODE },
#endif
{ AVIF_CODEC_CHOICE_AUTO, NULL, NULL, NULL, 0 }
};
static const int availableCodecsCount = (sizeof(availableCodecs) / sizeof(availableCodecs[0])) - 1;
static struct AvailableCodec * findAvailableCodec(avifCodecChoice choice, avifCodecFlags requiredFlags)
{
for (int i = 0; i < availableCodecsCount; ++i) {
if ((choice != AVIF_CODEC_CHOICE_AUTO) && (availableCodecs[i].choice != choice)) {
continue;
}
if (requiredFlags && ((availableCodecs[i].flags & requiredFlags) != requiredFlags)) {
continue;
}
return &availableCodecs[i];
}
return NULL;
}
const char * avifCodecName(avifCodecChoice choice, avifCodecFlags requiredFlags)
{
struct AvailableCodec * availableCodec = findAvailableCodec(choice, requiredFlags);
if (availableCodec) {
return availableCodec->name;
}
return NULL;
}
avifCodecChoice avifCodecChoiceFromName(const char * name)
{
for (int i = 0; i < availableCodecsCount; ++i) {
if (!strcmp(availableCodecs[i].name, name)) {
return availableCodecs[i].choice;
}
}
return AVIF_CODEC_CHOICE_AUTO;
}
avifCodec * avifCodecCreate(avifCodecChoice choice, avifCodecFlags requiredFlags)
{
struct AvailableCodec * availableCodec = findAvailableCodec(choice, requiredFlags);
if (availableCodec) {
return availableCodec->create();
}
return NULL;
}
static void append(char ** writePos, size_t * remainingLen, const char * appendStr)
{
size_t appendLen = strlen(appendStr);
if (appendLen > *remainingLen) {
appendLen = *remainingLen;
}
memcpy(*writePos, appendStr, appendLen);
*remainingLen -= appendLen;
*writePos += appendLen;
*(*writePos) = 0;
}
void avifCodecVersions(char outBuffer[256])
{
size_t remainingLen = 255;
char * writePos = outBuffer;
*writePos = 0;
for (int i = 0; i < availableCodecsCount; ++i) {
if (i > 0) {
append(&writePos, &remainingLen, ", ");
}
append(&writePos, &remainingLen, availableCodecs[i].name);
if ((availableCodecs[i].flags & (AVIF_CODEC_FLAG_CAN_ENCODE | AVIF_CODEC_FLAG_CAN_DECODE)) ==
(AVIF_CODEC_FLAG_CAN_ENCODE | AVIF_CODEC_FLAG_CAN_DECODE)) {
append(&writePos, &remainingLen, " [enc/dec]");
} else if (availableCodecs[i].flags & AVIF_CODEC_FLAG_CAN_ENCODE) {
append(&writePos, &remainingLen, " [enc]");
} else if (availableCodecs[i].flags & AVIF_CODEC_FLAG_CAN_DECODE) {
append(&writePos, &remainingLen, " [dec]");
}
append(&writePos, &remainingLen, ":");
append(&writePos, &remainingLen, availableCodecs[i].version());
}
}