blob: 22ccfad27be88502097fd041f83932bad733b1ba [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/scale.h"
#include <assert.h>
#include <string.h>
#include "libyuv/planar_functions.h" // For CopyPlane
#include "libyuv/row.h"
#include "libyuv/scale_row.h"
static __inline int Abs(int v) {
return v >= 0 ? v : -v;
}
#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s)
#define CENTERSTART(dx, s) (dx < 0) ? -((-dx >> 1) + s) : ((dx >> 1) + s)
#define MIN1(x) ((x) < 1 ? 1 : (x))
static __inline uint32_t SumPixels(int iboxwidth, const uint16_t* src_ptr) {
uint32_t sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static __inline uint32_t SumPixels_16(int iboxwidth, const uint32_t* src_ptr) {
uint32_t sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static void ScaleAddCols2_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
int scaletbl_index = boxwidth - minboxwidth;
assert((scaletbl_index == 0) || (scaletbl_index == 1));
*dst_ptr++ = (uint8_t)(SumPixels(boxwidth, src_ptr + ix) *
scaletbl[scaletbl_index] >>
16);
}
}
static void ScaleAddCols2_16_C(int dst_width,
int boxheight,
int x,
int dx,
const uint32_t* src_ptr,
uint16_t* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
int scaletbl_index = boxwidth - minboxwidth;
assert((scaletbl_index == 0) || (scaletbl_index == 1));
*dst_ptr++ =
SumPixels_16(boxwidth, src_ptr + ix) * scaletbl[scaletbl_index] >> 16;
}
}
static void ScaleAddCols0_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int scaleval = 65536 / boxheight;
int i;
(void)dx;
src_ptr += (x >> 16);
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = (uint8_t)(src_ptr[i] * scaleval >> 16);
}
}
static void ScaleAddCols1_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
x >>= 16;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = (uint8_t)(SumPixels(boxwidth, src_ptr + x) * scaleval >> 16);
x += boxwidth;
}
}
static void ScaleAddCols1_16_C(int dst_width,
int boxheight,
int x,
int dx,
const uint32_t* src_ptr,
uint16_t* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16;
x += boxwidth;
}
}
// Scale plane down to any dimensions, with interpolation.
// (boxfilter).
//
// Same method as SimpleScale, which is fixed point, outputting
// one pixel of destination using fixed point (16.16) to step
// through source, sampling a box of pixel with simple
// averaging.
static int ScalePlaneBox(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint16_t.
align_buffer_64(row16, src_width * 2);
if (!row16)
return 1;
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint16_t* src_ptr, uint8_t* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_C
: ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C);
void (*ScaleAddRow)(const uint8_t* src_ptr, uint16_t* dst_ptr,
int src_width) = ScaleAddRow_C;
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint8_t* src = src_ptr + iy * (int64_t)src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row16, 0, src_width * 2);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint16_t*)(row16), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint16_t*)(row16), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row16);
}
return 0;
}
static int ScalePlaneBox_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint32_t.
align_buffer_64(row32, src_width * 4);
if (!row32)
return 1;
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint32_t* src_ptr, uint16_t* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_16_C : ScaleAddCols1_16_C;
void (*ScaleAddRow)(const uint16_t* src_ptr, uint32_t* dst_ptr,
int src_width) = ScaleAddRow_16_C;
#if defined(HAS_SCALEADDROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_16_SSE2;
}
#endif
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint16_t* src = src_ptr + iy * (int64_t)src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row32, 0, src_width * 4);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint32_t*)(row32), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint32_t*)(row32), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row32);
}
return 0;
}
// Scale plane down with bilinear interpolation.
static int ScalePlaneBilinearDown(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width);
if (!row)
return 1;
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint8_t* dst_ptr, const uint8_t* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C;
void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint8_t* src = src_ptr + yi * (int64_t)src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
return 0;
}
static int ScalePlaneBilinearDown_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width * 2);
if (!row)
return 1;
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint16_t* dst_ptr, const uint16_t* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C;
void (*InterpolateRow)(uint16_t* dst_ptr, const uint16_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint16_t* src = src_ptr + yi * (int64_t)src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow((uint16_t*)row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, (uint16_t*)row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
return 0;
}
// Scale up down with bilinear interpolation.
static int ScalePlaneBilinearUp(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
void (*ScaleFilterCols)(uint8_t* dst_ptr, const uint8_t* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_C : ScaleCols_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_C;
}
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_C;
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint8_t* src = src_ptr + yi * (int64_t)src_stride;
// Allocate 2 row buffers.
const int row_size = (dst_width + 31) & ~31;
align_buffer_64(row, row_size * 2);
if (!row)
return 1;
uint8_t* rowptr = row;
int rowstride = row_size;
int lasty = yi;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
if (src_height > 2) {
src += src_stride;
}
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * (int64_t)src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
if ((y + 65536) < max_y) {
src += src_stride;
}
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
return 0;
}
// Scale plane, horizontally up by 2 times.
// Uses linear filter horizontally, nearest vertically.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// This is used to scale U and V planes of I422 to I444.
static void ScalePlaneUp2_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
void (*ScaleRowUp)(const uint8_t* src_ptr, uint8_t* dst_ptr, int dst_width) =
ScaleRowUp2_Linear_Any_C;
int i;
int y;
int dy;
(void)src_width;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
// Scale plane, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// This is used to scale U and V planes of I420 to I444.
static void ScalePlaneUp2_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_Any_C;
int x;
(void)src_width;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
// TODO(fbarchard): Test performance of writing one row of destination at a
// time.
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
// Scale at most 14 bit plane, horizontally up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// stride is in count of uint16_t.
// This is used to scale U and V planes of I210 to I410 and I212 to I412.
static void ScalePlaneUp2_12_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr,
int dst_width) = ScaleRowUp2_Linear_16_Any_C;
int i;
int y;
int dy;
(void)src_width;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
// Scale at most 12 bit plane, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// stride is in count of uint16_t.
// This is used to scale U and V planes of I010 to I410 and I012 to I412.
static void ScalePlaneUp2_12_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_16_Any_C;
int x;
(void)src_width;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
static void ScalePlaneUp2_16_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr,
int dst_width) = ScaleRowUp2_Linear_16_Any_C;
int i;
int y;
int dy;
(void)src_width;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * (int64_t)src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * (int64_t)src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
static void ScalePlaneUp2_16_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_16_Any_C;
int x;
(void)src_width;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
static int ScalePlaneBilinearUp_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint16_t* dst_ptr, const uint16_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_16_C;
void (*ScaleFilterCols)(uint16_t* dst_ptr, const uint16_t* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_16_C : ScaleCols_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_16_C;
}
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_16_C;
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint16_t* src = src_ptr + yi * (int64_t)src_stride;
// Allocate 2 row buffers.
const int row_size = (dst_width + 31) & ~31;
align_buffer_64(row, row_size * 4);
int rowstride = row_size;
int lasty = yi;
uint16_t* rowptr = (uint16_t*)row;
if (!row)
return 1;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
if (src_height > 2) {
src += src_stride;
}
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * (int64_t)src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
if ((y + 65536) < max_y) {
src += src_stride;
}
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
return 0;
}
// Scale Plane to/from any dimensions, without interpolation.
// Fixed point math is used for performance: The upper 16 bits
// of x and dx is the integer part of the source position and
// the lower 16 bits are the fixed decimal part.
static void ScalePlaneSimple(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
int i;
void (*ScaleCols)(uint8_t* dst_ptr, const uint8_t* src_ptr, int dst_width,
int x, int dx) = ScaleCols_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_C;
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * (int64_t)src_stride, dst_width, x,
dx);
dst_ptr += dst_stride;
y += dy;
}
}
static void ScalePlaneSimple_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
int i;
void (*ScaleCols)(uint16_t* dst_ptr, const uint16_t* src_ptr, int dst_width,
int x, int dx) = ScaleCols_16_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_16_C;
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * (int64_t)src_stride, dst_width, x,
dx);
dst_ptr += dst_stride;
y += dy;
}
}
// Scale a plane.
// This function dispatches to a specialized scaler based on scale factor.
int ScalePlane(const uint8_t* src,
int src_stride,
int src_width,
int src_height,
uint8_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * (int64_t)src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height);
return 0;
}
if (dst_width == src_width && filtering != kFilterBox) {
int dy = 0;
int y = 0;
// When scaling down, use the center 2 rows to filter.
// When scaling up, last row of destination uses the last 2 source rows.
if (dst_height <= src_height) {
dy = FixedDiv(src_height, dst_height);
y = CENTERSTART(dy, -32768); // Subtract 0.5 (32768) to center filter.
} else if (src_height > 1 && dst_height > 1) {
dy = FixedDiv1(src_height, dst_height);
}
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical(src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, 0, y, dy, /*bpp=*/1, filtering);
return 0;
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
return ScalePlaneBox(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
if (filtering && dst_height > src_height) {
return ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
}
if (filtering) {
return ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
}
ScalePlaneSimple(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
return 0;
}
int ScalePlane_16(const uint16_t* src,
int src_stride,
int src_width,
int src_height,
uint16_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * (int64_t)src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height);
return 0;
}
if (dst_width == src_width && filtering != kFilterBox) {
int dy = 0;
int y = 0;
// When scaling down, use the center 2 rows to filter.
// When scaling up, last row of destination uses the last 2 source rows.
if (dst_height <= src_height) {
dy = FixedDiv(src_height, dst_height);
y = CENTERSTART(dy, -32768); // Subtract 0.5 (32768) to center filter.
// When scaling up, ensure the last row of destination uses the last
// source. Avoid divide by zero for dst_height but will do no scaling
// later.
} else if (src_height > 1 && dst_height > 1) {
dy = FixedDiv1(src_height, dst_height);
}
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical_16(src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, 0, y, dy, /*bpp=*/1, filtering);
return 0;
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
return ScalePlaneBox_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_16_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_16_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
if (filtering && dst_height > src_height) {
return ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
}
if (filtering) {
return ScalePlaneBilinearDown_16(src_width, src_height, dst_width,
dst_height, src_stride, dst_stride, src,
dst, filtering);
}
ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
return 0;
}
int ScalePlane_12(const uint16_t* src,
int src_stride,
int src_width,
int src_height,
uint16_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * (int64_t)src_stride;
src_stride = -src_stride;
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_12_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_12_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return 0;
}
return ScalePlane_16(src, src_stride, src_width, src_height, dst, dst_stride,
dst_width, dst_height, filtering);
}