| // Copyright 2023 Google LLC |
| // SPDX-License-Identifier: BSD-2-Clause |
| |
| #include <cmath> |
| |
| #include "avif/internal.h" |
| #include "gtest/gtest.h" |
| |
| namespace avif { |
| namespace { |
| |
| // Converts a double value to a fraction, and checks that the difference |
| // between fraction.n/fraction.d and v is below relative_tolerance. |
| void TestRoundTrip(double v, double relative_tolerance) { |
| // Unsigned. |
| if (v >= 0) { |
| avifUnsignedFraction fraction; |
| ASSERT_TRUE(avifDoubleToUnsignedFraction(v, &fraction)) << v; |
| const double reconstructed = (double)fraction.n / fraction.d; |
| const double tolerance = v * relative_tolerance; |
| EXPECT_NEAR(reconstructed, v, tolerance) |
| << "fraction.n " << (double)fraction.n << " fraction.d " |
| << (double)fraction.d; |
| } |
| |
| // Signed. |
| if (v <= INT32_MAX) { |
| for (double multiplier : {1.0, -1.0}) { |
| double v2 = v * multiplier; |
| avifSignedFraction fraction; |
| |
| ASSERT_TRUE(avifDoubleToSignedFraction(v2, &fraction)) << v2; |
| const double reconstructed = (double)fraction.n / fraction.d; |
| const double tolerance = v * relative_tolerance; |
| EXPECT_NEAR(reconstructed, v2, tolerance) |
| << "fraction.n " << (double)fraction.n << " fraction.d " |
| << (double)fraction.d; |
| } |
| } |
| } |
| |
| constexpr double kLotsOfDecimals = 0.14159265358979323846; |
| |
| TEST(ToFractionTest, RoundTrip) { |
| // Whole numbers and simple fractions should match perfectly. |
| constexpr double kPerfectTolerance = 0.0; |
| TestRoundTrip(0.0, kPerfectTolerance); |
| TestRoundTrip(1.0, kPerfectTolerance); |
| TestRoundTrip(42.0, kPerfectTolerance); |
| TestRoundTrip(102356.0, kPerfectTolerance); |
| TestRoundTrip(102356456.0f, kPerfectTolerance); |
| TestRoundTrip(UINT32_MAX / 2.0, kPerfectTolerance); |
| TestRoundTrip((double)UINT32_MAX - 1.0, kPerfectTolerance); |
| TestRoundTrip((double)UINT32_MAX, kPerfectTolerance); |
| TestRoundTrip(0.123, kPerfectTolerance); |
| TestRoundTrip(1.0 / 3.0, kPerfectTolerance); |
| TestRoundTrip(1.0 / 4.0, kPerfectTolerance); |
| TestRoundTrip(3.0 / 23.0, kPerfectTolerance); |
| TestRoundTrip(1253456.456, kPerfectTolerance); |
| TestRoundTrip(8598533.9, kPerfectTolerance); |
| |
| // Numbers with a lot of decimals or very large/small can show a small |
| // error. |
| constexpr double kSmallTolerance = 1e-9; |
| TestRoundTrip(0.0123456, kSmallTolerance); |
| TestRoundTrip(3 + kLotsOfDecimals, kSmallTolerance); |
| TestRoundTrip(sqrt(2.0), kSmallTolerance); |
| TestRoundTrip(exp(1.0), kSmallTolerance); |
| TestRoundTrip(exp(10.0), kSmallTolerance); |
| TestRoundTrip(exp(15.0), kSmallTolerance); |
| // The golden ratio, the irrational number that is the "most difficult" to |
| // approximate rationally according to Wikipedia. |
| const double kGoldenRatio = (1.0 + std::sqrt(5.0)) / 2.0; |
| TestRoundTrip(kGoldenRatio, kSmallTolerance); // Golden ratio. |
| TestRoundTrip(((double)UINT32_MAX) - 0.5, kSmallTolerance); |
| // Note that values smaller than this might have a larger relative error |
| // (e.g. 1.0e-10). |
| TestRoundTrip(4.2e-10, kSmallTolerance); |
| } |
| |
| // Tests the max difference between the fraction-ified value and the original |
| // value, for a subset of values between 0.0 and UINT32_MAX. |
| TEST(ToFractionTest, MaxDifference) { |
| double max_error = 0; |
| double max_error_v = 0; |
| double max_relative_error = 0; |
| double max_relative_error_v = 0; |
| for (uint64_t i = 0; i < UINT32_MAX; i += 1000) { |
| const double v = i + kLotsOfDecimals; |
| avifUnsignedFraction fraction; |
| ASSERT_TRUE(avifDoubleToUnsignedFraction(v, &fraction)) << v; |
| const double reconstructed = (double)fraction.n / fraction.d; |
| const double error = abs(reconstructed - v); |
| const double relative_error = error / v; |
| if (error > max_error) { |
| max_error = error; |
| max_error_v = v; |
| } |
| if (relative_error > max_relative_error) { |
| max_relative_error = relative_error; |
| max_relative_error_v = v; |
| } |
| } |
| EXPECT_LE(max_error, 0.5f) << max_error_v; |
| EXPECT_LT(max_relative_error, 1e-9) << max_relative_error_v; |
| } |
| |
| // Tests the max difference between the fraction-ified value and the original |
| // value, for a subset of values between 0 and 1.0/UINT32_MAX. |
| TEST(ToFractionTest, MaxDifferenceSmall) { |
| double max_error = 0; |
| double max_error_v = 0; |
| double max_relative_error = 0; |
| double max_relative_error_v = 0; |
| for (uint64_t i = 1; i < UINT32_MAX; i += 1000) { |
| const double v = 1.0 / (i + kLotsOfDecimals); |
| avifUnsignedFraction fraction; |
| ASSERT_TRUE(avifDoubleToUnsignedFraction(v, &fraction)) << v; |
| const double reconstructed = (double)fraction.n / fraction.d; |
| const double error = abs(reconstructed - v); |
| const double relative_error = error / v; |
| if (error > max_error) { |
| max_error = error; |
| max_error_v = v; |
| } |
| if (relative_error > max_relative_error) { |
| max_relative_error = relative_error; |
| max_relative_error_v = v; |
| } |
| } |
| EXPECT_LE(max_error, 1e-10) << max_error_v; |
| EXPECT_LT(max_relative_error, 1e-5) << max_relative_error_v; |
| } |
| |
| TEST(ToFractionTest, BadValues) { |
| avifUnsignedFraction fraction; |
| // Negative value. |
| EXPECT_FALSE(avifDoubleToUnsignedFraction(-0.1, &fraction)); |
| // Too large. |
| EXPECT_FALSE( |
| avifDoubleToUnsignedFraction(((double)UINT32_MAX) + 1.0, &fraction)); |
| } |
| |
| } // namespace |
| } // namespace avif |