blob: da11a3f2c2aaf70791295b22693600f5dd1c747d [file] [log] [blame]
// Copyright 2022 Google LLC. All rights reserved.
// SPDX-License-Identifier: BSD-2-Clause
#include "avifincrtest_helpers.h"
#include <algorithm>
#include <cstring>
#include <vector>
#include "avif/avif.h"
#include "aviftest_helpers.h"
#include "gtest/gtest.h"
namespace libavif {
namespace testutil {
namespace {
//------------------------------------------------------------------------------
// Verifies that the first (top) row_count rows of image1 and image2 are
// identical.
void ComparePartialYuva(const avifImage& image1, const avifImage& image2,
uint32_t row_count) {
if (row_count == 0) {
return;
}
ASSERT_EQ(image1.width, image2.width);
ASSERT_GE(image1.height, row_count);
ASSERT_GE(image2.height, row_count);
ASSERT_EQ(image1.depth, image2.depth);
ASSERT_EQ(image1.yuvFormat, image2.yuvFormat);
ASSERT_EQ(image1.yuvRange, image2.yuvRange);
avifPixelFormatInfo info;
avifGetPixelFormatInfo(image1.yuvFormat, &info);
const uint32_t uv_width =
(image1.width + info.chromaShiftX) >> info.chromaShiftX;
const uint32_t uv_height =
(row_count + info.chromaShiftY) >> info.chromaShiftY;
const uint32_t pixel_byte_count =
(image1.depth > 8) ? sizeof(uint16_t) : sizeof(uint8_t);
for (int plane = 0; plane < (info.monochrome ? 1 : AVIF_PLANE_COUNT_YUV);
++plane) {
const uint32_t width = (plane == AVIF_CHAN_Y) ? image1.width : uv_width;
const uint32_t width_byte_count = width * pixel_byte_count;
const uint32_t height = (plane == AVIF_CHAN_Y) ? row_count : uv_height;
const uint8_t* data1 = image1.yuvPlanes[plane];
const uint8_t* data2 = image2.yuvPlanes[plane];
for (uint32_t y = 0; y < height; ++y) {
ASSERT_EQ(std::memcmp(data1, data2, width_byte_count), 0);
data1 += image1.yuvRowBytes[plane];
data2 += image2.yuvRowBytes[plane];
}
}
if (image1.alphaPlane) {
ASSERT_NE(image2.alphaPlane, nullptr);
ASSERT_EQ(image1.alphaPremultiplied, image2.alphaPremultiplied);
const uint32_t width_byte_count = image1.width * pixel_byte_count;
const uint8_t* data1 = image1.alphaPlane;
const uint8_t* data2 = image2.alphaPlane;
for (uint32_t y = 0; y < row_count; ++y) {
ASSERT_EQ(std::memcmp(data1, data2, width_byte_count), 0);
data1 += image1.alphaRowBytes;
data2 += image2.alphaRowBytes;
}
}
}
// Returns the expected number of decoded rows when available_byte_count out of
// byte_count were given to the decoder, for an image of height rows, split into
// cells of cell_height rows.
uint32_t GetMinDecodedRowCount(uint32_t height, uint32_t cell_height,
bool has_alpha, size_t available_byte_count,
size_t byte_count) {
// The whole image should be available when the full input is.
if (available_byte_count >= byte_count) {
return height;
}
// All but one cell should be decoded if at most 10 bytes are missing.
if ((available_byte_count + 10) >= byte_count) {
return height - cell_height;
}
// Subtract the header because decoding it does not output any pixel.
// Most AVIF headers are below 500 bytes.
if (available_byte_count <= 500) {
return 0;
}
available_byte_count -= 500;
byte_count -= 500;
// Alpha, if any, is assumed to be located before the other planes and to
// represent at most 50% of the payload.
if (has_alpha) {
if (available_byte_count <= (byte_count / 2)) {
return 0;
}
available_byte_count -= byte_count / 2;
byte_count -= byte_count / 2;
}
// Linearly map the input availability ratio to the decoded row ratio.
const uint32_t min_decoded_cell_row_count = static_cast<uint32_t>(
(height / cell_height) * available_byte_count / byte_count);
const uint32_t min_decoded_px_row_count =
min_decoded_cell_row_count * cell_height;
// One cell is the incremental decoding granularity.
// It is unlikely that bytes are evenly distributed among cells. Offset two of
// them.
if (min_decoded_px_row_count <= (2 * cell_height)) {
return 0;
}
return min_decoded_px_row_count - 2 * cell_height;
}
//------------------------------------------------------------------------------
struct PartialData {
avifROData available;
size_t full_size;
// Only used as nonpersistent input.
std::unique_ptr<uint8_t[]> nonpersistent_bytes;
size_t num_nonpersistent_bytes;
};
// Implementation of avifIOReadFunc simulating a stream from an array. See
// avifIOReadFunc documentation. io->data is expected to point to PartialData.
avifResult PartialRead(struct avifIO* io, uint32_t read_flags,
uint64_t offset64, size_t size, avifROData* out) {
PartialData* data = reinterpret_cast<PartialData*>(io->data);
if ((read_flags != 0) || !data || (data->full_size < offset64)) {
return AVIF_RESULT_IO_ERROR;
}
const size_t offset = static_cast<size_t>(offset64);
// Use |offset| instead of |offset64| from this point on.
if (size > (data->full_size - offset)) {
size = data->full_size - offset;
}
if (data->available.size < (offset + size)) {
return AVIF_RESULT_WAITING_ON_IO;
}
if (io->persistent) {
out->data = data->available.data + offset;
} else {
// Dedicated buffer containing just the available bytes and nothing more.
std::unique_ptr<uint8_t[]> bytes(new uint8_t[size]);
std::copy(data->available.data + offset,
data->available.data + offset + size, bytes.get());
out->data = bytes.get();
// Flip the previously returned bytes to make sure the values changed.
for (size_t i = 0; i < data->num_nonpersistent_bytes; ++i) {
data->nonpersistent_bytes[i] = ~data->nonpersistent_bytes[i];
}
// Free the memory to invalidate the old pointer. Only do that after
// allocating the new bytes to make sure to have a different pointer.
data->nonpersistent_bytes = std::move(bytes);
data->num_nonpersistent_bytes = size;
}
out->size = size;
return AVIF_RESULT_OK;
}
//------------------------------------------------------------------------------
// Encodes the image as a grid of at most grid_cols*grid_rows cells.
// The cell count is reduced to fit libavif or AVIF format constraints. If
// impossible, the encoded output is returned empty. The final cell_width and
// cell_height are output.
void EncodeAsGrid(const avifImage& image, uint32_t grid_cols,
uint32_t grid_rows, avifRWData* output, uint32_t* cell_width,
uint32_t* cell_height) {
// Chroma subsampling requires even dimensions. See ISO 23000-22 - 7.3.11.4.2
const bool need_even_widths =
((image.yuvFormat == AVIF_PIXEL_FORMAT_YUV420) ||
(image.yuvFormat == AVIF_PIXEL_FORMAT_YUV422));
const bool need_even_heights = (image.yuvFormat == AVIF_PIXEL_FORMAT_YUV420);
ASSERT_GT(grid_cols * grid_rows, 0u);
*cell_width = image.width / grid_cols;
*cell_height = image.height / grid_rows;
// avifEncoderAddImageGrid() only accepts grids that evenly split the image
// into cells at least 64 pixels wide and tall.
while ((grid_cols > 1) &&
(((*cell_width * grid_cols) != image.width) || (*cell_width < 64) ||
(need_even_widths && ((*cell_width & 1) != 0)))) {
--grid_cols;
*cell_width = image.width / grid_cols;
}
while ((grid_rows > 1) &&
(((*cell_height * grid_rows) != image.height) || (*cell_height < 64) ||
(need_even_heights && ((*cell_height & 1) != 0)))) {
--grid_rows;
*cell_height = image.height / grid_rows;
}
std::vector<testutil::AvifImagePtr> cell_images;
cell_images.reserve(grid_cols * grid_rows);
for (uint32_t row = 0, i_cell = 0; row < grid_rows; ++row) {
for (uint32_t col = 0; col < grid_cols; ++col, ++i_cell) {
avifCropRect cell;
cell.x = col * *cell_width;
cell.y = row * *cell_height;
cell.width = ((cell.x + *cell_width) <= image.width)
? *cell_width
: (image.width - cell.x);
cell.height = ((cell.y + *cell_height) <= image.height)
? *cell_height
: (image.height - cell.y);
cell_images.emplace_back(avifImageCreateEmpty(), avifImageDestroy);
ASSERT_NE(cell_images.back(), nullptr);
ASSERT_EQ(avifImageSetViewRect(cell_images.back().get(), &image, &cell),
AVIF_RESULT_OK);
}
}
testutil::AvifEncoderPtr encoder(avifEncoderCreate(), avifEncoderDestroy);
ASSERT_NE(encoder, nullptr);
encoder->speed = AVIF_SPEED_FASTEST;
// Just here to match libavif API.
std::vector<avifImage*> cell_image_ptrs(cell_images.size());
for (size_t i = 0; i < cell_images.size(); ++i) {
cell_image_ptrs[i] = cell_images[i].get();
}
ASSERT_EQ(avifEncoderAddImageGrid(encoder.get(), grid_cols, grid_rows,
cell_image_ptrs.data(),
AVIF_ADD_IMAGE_FLAG_SINGLE),
AVIF_RESULT_OK);
ASSERT_EQ(avifEncoderFinish(encoder.get(), output), AVIF_RESULT_OK);
}
// Encodes the image to be decoded incrementally.
void EncodeAsIncremental(const avifImage& image, bool flat_cells,
avifRWData* output, uint32_t* cell_width,
uint32_t* cell_height) {
const uint32_t grid_cols = image.width / 64; // 64px is the min cell width.
const uint32_t grid_rows = flat_cells ? 1 : (image.height / 64);
EncodeAsGrid(image, (grid_cols > 1) ? grid_cols : 1,
(grid_rows > 1) ? grid_rows : 1, output, cell_width,
cell_height);
}
} // namespace
void EncodeRectAsIncremental(const avifImage& image, uint32_t width,
uint32_t height, bool create_alpha_if_none,
bool flat_cells, avifRWData* output,
uint32_t* cell_width, uint32_t* cell_height) {
AvifImagePtr sub_image(avifImageCreateEmpty(), avifImageDestroy);
ASSERT_NE(sub_image, nullptr);
ASSERT_LE(width, image.width);
ASSERT_LE(height, image.height);
avifPixelFormatInfo info;
avifGetPixelFormatInfo(image.yuvFormat, &info);
const avifCropRect rect{
/*x=*/((image.width - width) / 2) & ~info.chromaShiftX,
/*y=*/((image.height - height) / 2) & ~info.chromaShiftX, width, height};
ASSERT_EQ(avifImageSetViewRect(sub_image.get(), &image, &rect),
AVIF_RESULT_OK);
if (create_alpha_if_none && !sub_image->alphaPlane) {
ASSERT_NE(image.yuvPlanes[AVIF_CHAN_Y], nullptr)
<< "No luma plane to simulate an alpha plane";
sub_image->alphaPlane = image.yuvPlanes[AVIF_CHAN_Y];
sub_image->alphaRowBytes = image.yuvRowBytes[AVIF_CHAN_Y];
sub_image->alphaPremultiplied = AVIF_FALSE;
sub_image->imageOwnsAlphaPlane = AVIF_FALSE;
}
EncodeAsIncremental(*sub_image, flat_cells, output, cell_width, cell_height);
}
//------------------------------------------------------------------------------
void DecodeIncrementally(const avifRWData& encoded_avif, bool is_persistent,
bool give_size_hint, bool use_nth_image_api,
const avifImage& reference, uint32_t cell_height) {
// AVIF cells are at least 64 pixels tall.
if (cell_height != reference.height) {
ASSERT_GE(cell_height, 64u);
}
// Emulate a byte-by-byte stream.
PartialData data = {
/*available=*/{encoded_avif.data, 0}, /*fullSize=*/encoded_avif.size,
/*nonpersistent_bytes=*/nullptr, /*num_nonpersistent_bytes=*/0};
avifIO io = {
/*destroy=*/nullptr, PartialRead,
/*write=*/nullptr, give_size_hint ? encoded_avif.size : 0,
is_persistent, &data};
testutil::AvifDecoderPtr decoder(avifDecoderCreate(), avifDecoderDestroy);
ASSERT_NE(decoder, nullptr);
avifDecoderSetIO(decoder.get(), &io);
decoder->allowIncremental = AVIF_TRUE;
const size_t step = std::max<size_t>(1, data.full_size / 10000);
// Parsing is not incremental.
avifResult parse_result = avifDecoderParse(decoder.get());
while (parse_result == AVIF_RESULT_WAITING_ON_IO) {
ASSERT_LT(data.available.size, data.full_size)
<< "avifDecoderParse() returned WAITING_ON_IO instead of OK";
data.available.size = std::min(data.available.size + step, data.full_size);
parse_result = avifDecoderParse(decoder.get());
}
ASSERT_EQ(parse_result, AVIF_RESULT_OK);
// Decoding is incremental.
uint32_t previously_decoded_row_count = 0;
avifResult next_image_result = use_nth_image_api
? avifDecoderNthImage(decoder.get(), 0)
: avifDecoderNextImage(decoder.get());
while (next_image_result == AVIF_RESULT_WAITING_ON_IO) {
ASSERT_LT(data.available.size, data.full_size)
<< (use_nth_image_api ? "avifDecoderNthImage(0)"
: "avifDecoderNextImage()")
<< " returned WAITING_ON_IO instead of OK";
const uint32_t decoded_row_count =
avifDecoderDecodedRowCount(decoder.get());
ASSERT_GE(decoded_row_count, previously_decoded_row_count);
const uint32_t min_decoded_row_count = GetMinDecodedRowCount(
reference.height, cell_height, reference.alphaPlane != nullptr,
data.available.size, data.full_size);
ASSERT_GE(decoded_row_count, min_decoded_row_count);
ComparePartialYuva(reference, *decoder->image, decoded_row_count);
previously_decoded_row_count = decoded_row_count;
data.available.size = std::min(data.available.size + step, data.full_size);
next_image_result = use_nth_image_api
? avifDecoderNthImage(decoder.get(), 0)
: avifDecoderNextImage(decoder.get());
}
ASSERT_EQ(next_image_result, AVIF_RESULT_OK);
ASSERT_EQ(data.available.size, data.full_size);
ASSERT_EQ(avifDecoderDecodedRowCount(decoder.get()), decoder->image->height);
ComparePartialYuva(reference, *decoder->image, reference.height);
}
void DecodeNonIncrementallyAndIncrementally(const avifRWData& encoded_avif,
bool is_persistent,
bool give_size_hint,
bool use_nth_image_api,
uint32_t cell_height) {
AvifImagePtr reference(avifImageCreateEmpty(), avifImageDestroy);
ASSERT_NE(reference, nullptr);
testutil::AvifDecoderPtr decoder(avifDecoderCreate(), avifDecoderDestroy);
ASSERT_NE(decoder, nullptr);
ASSERT_EQ(avifDecoderReadMemory(decoder.get(), reference.get(),
encoded_avif.data, encoded_avif.size),
AVIF_RESULT_OK);
DecodeIncrementally(encoded_avif, is_persistent, give_size_hint,
use_nth_image_api, *reference, cell_height);
}
//------------------------------------------------------------------------------
} // namespace testutil
} // namespace libavif