| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| |
| #include "./aom_scale_rtcd.h" |
| #include "./aom_config.h" |
| |
| #include "aom/aom_integer.h" |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void av1_highbd_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, |
| const InterpFilter *interp_filter, enum mv_precision precision, int x, |
| int y, int bd) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| const int subpel_x = mv.col & SUBPEL_MASK; |
| const int subpel_y = mv.row & SUBPEL_MASK; |
| |
| src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); |
| |
| high_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, |
| w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4, |
| bd); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, const MV *src_mv, |
| const struct scale_factors *sf, int w, int h, |
| int ref, const InterpFilter *interp_filter, |
| enum mv_precision precision, int x, int y) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| const int subpel_x = mv.col & SUBPEL_MASK; |
| const int subpel_y = mv.row & SUBPEL_MASK; |
| |
| src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); |
| |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, |
| h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4); |
| } |
| |
| void build_inter_predictors(MACROBLOCKD *xd, int plane, |
| #if CONFIG_MOTION_VAR |
| int mi_col_offset, int mi_row_offset, |
| #endif // CONFIG_MOTION_VAR |
| int block, int bw, int bh, int x, int y, int w, |
| int h, int mi_x, int mi_y) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #if CONFIG_MOTION_VAR |
| const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; |
| #else |
| const MODE_INFO *mi = xd->mi[0]; |
| #endif // CONFIG_MOTION_VAR |
| const int is_compound = has_second_ref(&mi->mbmi); |
| int ref; |
| |
| #if CONFIG_SUB8X8_MC |
| if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0) { |
| // block size in log2 |
| const int b4_wl = b_width_log2_lookup[mi->mbmi.sb_type]; |
| const int b4_hl = b_height_log2_lookup[mi->mbmi.sb_type]; |
| const int b8_sl = b_width_log2_lookup[BLOCK_8X8]; |
| |
| // block size |
| const int b4_w = 1 << b4_wl; |
| const int b4_h = 1 << b4_hl; |
| const int b8_s = 1 << b8_sl; |
| int idx, idy; |
| |
| const int x_base = x; |
| const int y_base = y; |
| |
| // processing unit size |
| const int x_step = w >> (b8_sl - b4_wl); |
| const int y_step = h >> (b8_sl - b4_hl); |
| |
| for (idy = 0; idy < b8_s; idy += b4_h) { |
| for (idx = 0; idx < b8_s; idx += b4_w) { |
| const int chr_idx = (idy * 2) + idx; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *dst = dst_buf->buf; |
| const MV mv = mi->bmi[chr_idx].as_mv[ref].as_mv; |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| uint8_t *pre; |
| MV32 scaled_mv; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| |
| x = x_base + idx * x_step; |
| y = y_base + idy * y_step; |
| |
| dst += dst_buf->stride * y + x; |
| |
| if (is_scaled) { |
| pre = |
| pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); |
| scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| pre = pre_buf->buf + y * pre_buf->stride + x; |
| scaled_mv.row = mv_q4.row; |
| scaled_mv.col = mv_q4.col; |
| xs = ys = 16; |
| } |
| |
| subpel_x = scaled_mv.col & SUBPEL_MASK; |
| subpel_y = scaled_mv.row & SUBPEL_MASK; |
| pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + |
| (scaled_mv.col >> SUBPEL_BITS); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| high_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, |
| subpel_x, subpel_y, sf, x_step, y_step, ref, |
| &mi->mbmi.interp_filter, xs, ys, xd->bd); |
| } else { |
| inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, |
| subpel_x, subpel_y, sf, x_step, y_step, ref, |
| &mi->mbmi.interp_filter, xs, ys); |
| } |
| #else |
| inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, x_step, y_step, ref, |
| &mi->mbmi.interp_filter, xs, ys); |
| #endif |
| } |
| } |
| } |
| return; |
| } |
| #endif |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| const MV mv = mi->mbmi.sb_type < BLOCK_8X8 |
| ? average_split_mvs(pd, mi, ref, block) |
| : mi->mbmi.mv[ref].as_mv; |
| |
| // TODO(jkoleszar): This clamping is done in the incorrect place for the |
| // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
| // MV. Note however that it performs the subsampling aware scaling so |
| // that the result is always q4. |
| // mv_precision precision is MV_PRECISION_Q4. |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| |
| uint8_t *pre; |
| MV32 scaled_mv; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| |
| if (is_scaled) { |
| pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); |
| scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| pre = pre_buf->buf + (y * pre_buf->stride + x); |
| scaled_mv.row = mv_q4.row; |
| scaled_mv.col = mv_q4.col; |
| xs = ys = 16; |
| } |
| subpel_x = scaled_mv.col & SUBPEL_MASK; |
| subpel_y = scaled_mv.row & SUBPEL_MASK; |
| pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + |
| (scaled_mv.col >> SUBPEL_BITS); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| high_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, &mi->mbmi.interp_filter, xs, |
| ys, xd->bd); |
| } else { |
| inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, &mi->mbmi.interp_filter, xs, ys); |
| } |
| #else |
| inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, &mi->mbmi.interp_filter, xs, ys); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } |
| |
| void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, |
| int ic, int mi_row, int mi_col) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); |
| const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; |
| |
| uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; |
| int ref; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const uint8_t *pre = |
| &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| av1_highbd_build_inter_predictor( |
| pre, pd->pre[ref].stride, dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, |
| ref, &mi->mbmi.interp_filter, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd); |
| } else { |
| av1_build_inter_predictor( |
| pre, pd->pre[ref].stride, dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, |
| ref, &mi->mbmi.interp_filter, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); |
| } |
| #else |
| av1_build_inter_predictor( |
| pre, pd->pre[ref].stride, dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, |
| ref, &mi->mbmi.interp_filter, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } |
| |
| static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int plane_from, int plane_to) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = 4 * num_4x4_blocks_wide_lookup[bsize] >> pd->subsampling_x; |
| const int bh = 4 * num_4x4_blocks_high_lookup[bsize] >> pd->subsampling_y; |
| |
| if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { |
| const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| const int pw = 8 >> (have_vsplit | pd->subsampling_x); |
| const int ph = 8 >> (have_hsplit | pd->subsampling_y); |
| int x, y; |
| assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); |
| assert(bsize == BLOCK_8X8); |
| assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, mi_x, |
| mi_y); |
| } else { |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y); |
| } |
| } |
| } |
| |
| void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); |
| } |
| |
| void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int plane) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); |
| } |
| |
| void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, |
| MAX_MB_PLANE - 1); |
| } |
| |
| void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, |
| MAX_MB_PLANE - 1); |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, int mi_row, |
| int mi_col) { |
| uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, |
| src->uv_stride }; |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf) { |
| if (src != NULL) { |
| int i; |
| uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, |
| src->uv_stride }; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col, |
| sf, pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| } |
| |
| #if CONFIG_MOTION_VAR |
| #define OBMC_MASK_PREC_BITS 6 |
| // obmc_mask_N[is_neighbor_predictor][overlap_position] |
| static const uint8_t obmc_mask_1[2][1] = { { 55 }, { 9 } }; |
| |
| static const uint8_t obmc_mask_2[2][2] = { { 45, 62 }, { 19, 2 } }; |
| |
| static const uint8_t obmc_mask_4[2][4] = { { 39, 50, 59, 64 }, |
| { 25, 14, 5, 0 } }; |
| |
| static const uint8_t obmc_mask_8[2][8] = { { 36, 42, 48, 53, 57, 61, 63, 64 }, |
| { 28, 22, 16, 11, 7, 3, 1, 0 } }; |
| |
| static const uint8_t obmc_mask_16[2][16] = { |
| { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 63, 64, 64, 64 }, |
| { 30, 27, 24, 21, 18, 15, 12, 10, 8, 6, 4, 3, 1, 0, 0, 0 } |
| }; |
| |
| static const uint8_t obmc_mask_32[2][32] = { |
| { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, |
| 59, 60, 60, 61, 62, 62, 63, 63, 64, 64, 64, 64, 64 }, |
| { 31, 29, 28, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13, 12, 11, 9, 8, 7, 6, 5, |
| 4, 4, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0 } |
| }; |
| |
| void av1_setup_obmc_mask(int length, const uint8_t *mask[2]) { |
| switch (length) { |
| case 1: |
| mask[0] = obmc_mask_1[0]; |
| mask[1] = obmc_mask_1[1]; |
| break; |
| case 2: |
| mask[0] = obmc_mask_2[0]; |
| mask[1] = obmc_mask_2[1]; |
| break; |
| case 4: |
| mask[0] = obmc_mask_4[0]; |
| mask[1] = obmc_mask_4[1]; |
| break; |
| case 8: |
| mask[0] = obmc_mask_8[0]; |
| mask[1] = obmc_mask_8[1]; |
| break; |
| case 16: |
| mask[0] = obmc_mask_16[0]; |
| mask[1] = obmc_mask_16[1]; |
| break; |
| case 32: |
| mask[0] = obmc_mask_32[0]; |
| mask[1] = obmc_mask_32[1]; |
| break; |
| default: |
| mask[0] = NULL; |
| mask[1] = NULL; |
| assert(0); |
| break; |
| } |
| } |
| |
| // This function combines motion compensated predictions that is generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| int use_tmp_dst_buf, |
| uint8_t *final_buf[MAX_MB_PLANE], |
| const int final_stride[MAX_MB_PLANE], |
| uint8_t *above_pred_buf[MAX_MB_PLANE], |
| const int above_pred_stride[MAX_MB_PLANE], |
| uint8_t *left_pred_buf[MAX_MB_PLANE], |
| const int left_pred_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int plane, i, mi_step; |
| const int above_available = mi_row > tile->mi_row_start; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| if (use_tmp_dst_buf) { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (xd->n8_w << 3) >> pd->subsampling_x; |
| const int bh = (xd->n8_h << 3) >> pd->subsampling_y; |
| int row; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) { |
| uint16_t *final_buf16 = CONVERT_TO_SHORTPTR(final_buf[plane]); |
| uint16_t *bmc_buf16 = CONVERT_TO_SHORTPTR(pd->dst.buf); |
| for (row = 0; row < bh; ++row) |
| memcpy(final_buf16 + row * final_stride[plane], |
| bmc_buf16 + row * pd->dst.stride, bw * sizeof(uint16_t)); |
| } else { |
| #endif |
| for (row = 0; row < bh; ++row) |
| memcpy(final_buf[plane] + row * final_stride[plane], |
| pd->dst.buf + row * pd->dst.stride, bw); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } |
| |
| // handle above row |
| for (i = 0; above_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); |
| i += mi_step) { |
| int mi_row_offset = -1; |
| int mi_col_offset = i; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| int overlap; |
| |
| mi_step = AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| overlap = num_4x4_blocks_high_lookup[bsize] << 1; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (mi_step << 3) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| int row, col; |
| const int dst_stride = |
| use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; |
| uint8_t *dst = use_tmp_dst_buf |
| ? &final_buf[plane][(i << 3) >> pd->subsampling_x] |
| : &pd->dst.buf[(i << 3) >> pd->subsampling_x]; |
| const int tmp_stride = above_pred_stride[plane]; |
| uint8_t *tmp = &above_pred_buf[plane][(i << 3) >> pd->subsampling_x]; |
| const uint8_t *mask[2]; |
| |
| av1_setup_obmc_mask(bh, mask); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (row = 0; row < bh; ++row) { |
| for (col = 0; col < bw; ++col) |
| dst16[col] = ROUND_POWER_OF_TWO( |
| mask[0][row] * dst16[col] + mask[1][row] * tmp16[col], |
| OBMC_MASK_PREC_BITS); |
| |
| dst16 += dst_stride; |
| tmp16 += tmp_stride; |
| } |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| for (row = 0; row < bh; ++row) { |
| for (col = 0; col < bw; ++col) |
| dst[col] = ROUND_POWER_OF_TWO( |
| mask[0][row] * dst[col] + mask[1][row] * tmp[col], |
| OBMC_MASK_PREC_BITS); |
| dst += dst_stride; |
| tmp += tmp_stride; |
| } |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } // each mi in the above row |
| |
| // handle left column |
| if (mi_col - 1 < tile->mi_col_start) return; |
| |
| for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { |
| int mi_row_offset = i; |
| int mi_col_offset = -1; |
| int overlap; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| |
| mi_step = AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| overlap = num_4x4_blocks_wide_lookup[bsize] << 1; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (mi_step << 3) >> pd->subsampling_y; |
| int row, col; |
| const int dst_stride = |
| use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; |
| uint8_t *dst = |
| use_tmp_dst_buf |
| ? &final_buf[plane][((i << 3) >> pd->subsampling_y) * dst_stride] |
| : &pd->dst.buf[((i << 3) >> pd->subsampling_y) * dst_stride]; |
| const int tmp_stride = left_pred_stride[plane]; |
| uint8_t *tmp = |
| &left_pred_buf[plane][((i << 3) >> pd->subsampling_y) * tmp_stride]; |
| const uint8_t *mask[2]; |
| |
| av1_setup_obmc_mask(bw, mask); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (row = 0; row < bh; ++row) { |
| for (col = 0; col < bw; ++col) |
| dst16[col] = ROUND_POWER_OF_TWO( |
| mask[0][col] * dst16[col] + mask[1][col] * tmp16[col], |
| OBMC_MASK_PREC_BITS); |
| dst16 += dst_stride; |
| tmp16 += tmp_stride; |
| } |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| for (row = 0; row < bh; ++row) { |
| for (col = 0; col < bw; ++col) |
| dst[col] = ROUND_POWER_OF_TWO( |
| mask[0][col] * dst[col] + mask[1][col] * tmp[col], |
| OBMC_MASK_PREC_BITS); |
| dst += dst_stride; |
| tmp += tmp_stride; |
| } |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| } // each mi in the left column |
| } |
| |
| void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| const int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| |
| if (mi_row <= tile->mi_row_start) return; |
| |
| for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { |
| int mi_row_offset = -1; |
| int mi_col_offset = i; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| |
| mi_step = AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_stride[j], 0, i, NULL, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, |
| &ref_buf->sf); |
| } |
| |
| xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); |
| mi_x = (mi_col + i) << MI_SIZE_LOG2; |
| mi_y = mi_row << MI_SIZE_LOG2; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x; |
| bh = AOMMAX((num_4x4_blocks_high_lookup[bsize] << 1) >> pd->subsampling_y, |
| 4); |
| |
| if (mbmi->sb_type < BLOCK_8X8) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| const int pw = 8 >> (have_vsplit | pd->subsampling_x); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y == 0 && |
| !pd->subsampling_y) |
| continue; |
| |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, |
| y * 2 + x, bw, bh, 4 * x, 0, pw, bh, mi_x, |
| mi_y); |
| } |
| } else { |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, |
| 0, 0, bw, bh, mi_x, mi_y); |
| } |
| } |
| } |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| } |
| |
| void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| const int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| |
| if (mi_col - 1 < tile->mi_col_start) return; |
| |
| for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { |
| int mi_row_offset = i; |
| int mi_col_offset = -1; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| |
| mi_step = AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_stride[j], i, 0, NULL, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, |
| &ref_buf->sf); |
| } |
| |
| xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); |
| mi_x = mi_col << MI_SIZE_LOG2; |
| mi_y = (mi_row + i) << MI_SIZE_LOG2; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = AOMMAX((num_4x4_blocks_wide_lookup[bsize] << 1) >> pd->subsampling_x, |
| 4); |
| bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (mbmi->sb_type < BLOCK_8X8) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| const int ph = 8 >> (have_hsplit | pd->subsampling_y); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x == 0 && |
| !pd->subsampling_x) |
| continue; |
| |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, |
| y * 2 + x, bw, bh, 0, 4 * y, bw, ph, mi_x, |
| mi_y); |
| } |
| } else { |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, |
| 0, 0, bw, bh, mi_x, mi_y); |
| } |
| } |
| } |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| } |
| |
| void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| const int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, |
| MAX_SB_SIZE }; |
| const int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, |
| MAX_SB_SIZE }; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; |
| dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; |
| dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, |
| dst_stride1); |
| av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, |
| dst_stride2); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, 0, NULL, NULL, |
| dst_buf1, dst_stride1, dst_buf2, dst_stride2); |
| } |
| #endif // CONFIG_MOTION_VAR |