blob: 40e40f07bcc33ecf50edf352b9bda96ac1fe2cd3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_config.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#if defined(__ARM_FEATURE_DOTPROD)
static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
uint32x4_t src_sum = vdupq_n_u32(0);
uint32x4_t ref_sum = vdupq_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
int i = 0;
do {
uint8x16_t s = load_unaligned_u8q(src, src_stride);
uint8x16_t r = load_unaligned_u8q(ref, ref_stride);
src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1));
ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1));
uint8x16_t abs_diff = vabdq_u8(s, r);
sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff);
src += 4 * src_stride;
ref += 4 * ref_stride;
i += 4;
} while (i < h);
int32x4_t sum_diff =
vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum));
*sum = horizontal_add_s32x4(sum_diff);
*sse = horizontal_add_u32x4(sse_u32);
}
static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
uint32x4_t src_sum = vdupq_n_u32(0);
uint32x4_t ref_sum = vdupq_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
int i = 0;
do {
uint8x16_t s = vcombine_u8(vld1_u8(src), vld1_u8(src + src_stride));
uint8x16_t r = vcombine_u8(vld1_u8(ref), vld1_u8(ref + ref_stride));
src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1));
ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1));
uint8x16_t abs_diff = vabdq_u8(s, r);
sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff);
src += 2 * src_stride;
ref += 2 * ref_stride;
i += 2;
} while (i < h);
int32x4_t sum_diff =
vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum));
*sum = horizontal_add_s32x4(sum_diff);
*sse = horizontal_add_u32x4(sse_u32);
}
static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
uint32x4_t src_sum = vdupq_n_u32(0);
uint32x4_t ref_sum = vdupq_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
int i = 0;
do {
uint8x16_t s = vld1q_u8(src);
uint8x16_t r = vld1q_u8(ref);
src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1));
ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1));
uint8x16_t abs_diff = vabdq_u8(s, r);
sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff);
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
int32x4_t sum_diff =
vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum));
*sum = horizontal_add_s32x4(sum_diff);
*sse = horizontal_add_u32x4(sse_u32);
}
static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int w, int h, uint32_t *sse, int *sum) {
uint32x4_t src_sum = vdupq_n_u32(0);
uint32x4_t ref_sum = vdupq_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
int i = 0;
do {
int j = 0;
do {
uint8x16_t s = vld1q_u8(src + j);
uint8x16_t r = vld1q_u8(ref + j);
src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1));
ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1));
uint8x16_t abs_diff = vabdq_u8(s, r);
sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff);
j += 16;
} while (j < w);
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
int32x4_t sum_diff =
vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum));
*sum = horizontal_add_s32x4(sum_diff);
*sse = horizontal_add_u32x4(sse_u32);
}
static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 32, h, sse, sum);
}
static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 64, h, sse, sum);
}
static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int h, uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 128, h, sse, sum);
}
#else // !defined(__ARM_FEATURE_DOTPROD)
static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32 = vdupq_n_s32(0);
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
assert(h <= 256);
int i = 0;
do {
uint8x8_t s = load_unaligned_u8(src, src_stride);
uint8x8_t r = load_unaligned_u8(ref, ref_stride);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
src += 2 * src_stride;
ref += 2 * ref_stride;
i += 2;
} while (i < h);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(sse_s32);
}
static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128
assert(h <= 128);
int i = 0;
do {
uint8x8_t s = vld1_u8(src);
uint8x8_t r = vld1_u8(ref);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' accumulators overflow:
// 32767 / 255 ~= 128, so 128 16-wide rows.
assert(h <= 128);
int i = 0;
do {
uint8x16_t s = vld1q_u8(src);
uint8x16_t r = vld1q_u8(ref);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
*sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int w, int h, int h_limit, uint32_t *sse,
int *sum) {
int32x4_t sum_s32 = vdupq_n_s32(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
// accumulator overflows. After hitting this limit we accumulate into 32-bit
// elements.
int h_tmp = h > h_limit ? h_limit : h;
int i = 0;
do {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
do {
int j = 0;
do {
uint8x16_t s = vld1q_u8(src + j);
uint8x16_t r = vld1q_u8(ref + j);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
j += 16;
} while (j < w);
src += src_stride;
ref += ref_stride;
i++;
} while (i < h_tmp);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
h_tmp += h_limit;
} while (i < h);
*sum = horizontal_add_s32x4(sum_s32);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
}
static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
}
static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int h, uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum);
}
#endif // defined(__ARM_FEATURE_DOTPROD)
#define VARIANCE_WXH_NEON(w, h, shift) \
unsigned int aom_variance##w##x##h##_neon( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
int sum; \
variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \
}
VARIANCE_WXH_NEON(4, 4, 4)
VARIANCE_WXH_NEON(4, 8, 5)
VARIANCE_WXH_NEON(4, 16, 6)
VARIANCE_WXH_NEON(8, 4, 5)
VARIANCE_WXH_NEON(8, 8, 6)
VARIANCE_WXH_NEON(8, 16, 7)
VARIANCE_WXH_NEON(8, 32, 8)
VARIANCE_WXH_NEON(16, 4, 6)
VARIANCE_WXH_NEON(16, 8, 7)
VARIANCE_WXH_NEON(16, 16, 8)
VARIANCE_WXH_NEON(16, 32, 9)
VARIANCE_WXH_NEON(16, 64, 10)
VARIANCE_WXH_NEON(32, 8, 8)
VARIANCE_WXH_NEON(32, 16, 9)
VARIANCE_WXH_NEON(32, 32, 10)
VARIANCE_WXH_NEON(32, 64, 11)
VARIANCE_WXH_NEON(64, 16, 10)
VARIANCE_WXH_NEON(64, 32, 11)
VARIANCE_WXH_NEON(64, 64, 12)
VARIANCE_WXH_NEON(64, 128, 13)
VARIANCE_WXH_NEON(128, 64, 13)
VARIANCE_WXH_NEON(128, 128, 14)
#undef VARIANCE_WXH_NEON
void aom_get8x8var_neon(const uint8_t *src, int src_stride, const uint8_t *ref,
int ref_stride, unsigned int *sse, int *sum) {
variance_8xh_neon(src, src_stride, ref, ref_stride, 8, sse, sum);
}
void aom_get16x16var_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, unsigned int *sse,
int *sum) {
variance_16xh_neon(src, src_stride, ref, ref_stride, 16, sse, sum);
}
// TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of
// AVX2. Also, implement the NEON for variance computation present in this
// function.
void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
uint32_t *sse8x8, int *sum8x8,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var8x8) {
// Loop over 4 8x8 blocks. Process one 8x32 block.
for (int k = 0; k < 4; k++) {
variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8,
&sse8x8[k], &sum8x8[k]);
}
*tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3];
*tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3];
for (int i = 0; i < 4; i++)
var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6);
}
#if defined(__ARM_FEATURE_DOTPROD)
static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint32x4_t sse_u32 = vdupq_n_u32(0);
int i = 0;
do {
uint8x16_t s = vcombine_u8(vld1_u8(src), vld1_u8(src + src_stride));
uint8x16_t r = vcombine_u8(vld1_u8(ref), vld1_u8(ref + ref_stride));
uint8x16_t abs_diff = vabdq_u8(s, r);
sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff);
src += 2 * src_stride;
ref += 2 * ref_stride;
i += 2;
} while (i < h);
*sse = horizontal_add_u32x4(sse_u32);
return horizontal_add_u32x4(sse_u32);
}
static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = 0;
do {
uint8x16_t s0 = vld1q_u8(src);
uint8x16_t s1 = vld1q_u8(src + src_stride);
uint8x16_t r0 = vld1q_u8(ref);
uint8x16_t r1 = vld1q_u8(ref + ref_stride);
uint8x16_t abs_diff0 = vabdq_u8(s0, r0);
uint8x16_t abs_diff1 = vabdq_u8(s1, r1);
sse_u32[0] = vdotq_u32(sse_u32[0], abs_diff0, abs_diff0);
sse_u32[1] = vdotq_u32(sse_u32[1], abs_diff1, abs_diff1);
src += 2 * src_stride;
ref += 2 * ref_stride;
i += 2;
} while (i < h);
*sse = horizontal_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
return horizontal_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
}
unsigned int aom_get4x4sse_cs_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride) {
uint8x16_t s = load_unaligned_u8q(src, src_stride);
uint8x16_t r = load_unaligned_u8q(ref, ref_stride);
uint8x16_t abs_diff = vabdq_u8(s, r);
uint32x4_t sse = vdotq_u32(vdupq_n_u32(0), abs_diff, abs_diff);
return horizontal_add_u32x4(sse);
}
#else // !defined(__ARM_FEATURE_DOTPROD)
static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint8x8_t s[2], r[2];
int16x4_t diff_lo[2], diff_hi[2];
uint16x8_t diff[2];
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int i = 0;
do {
s[0] = vld1_u8(src);
src += src_stride;
s[1] = vld1_u8(src);
src += src_stride;
r[0] = vld1_u8(ref);
ref += ref_stride;
r[1] = vld1_u8(ref);
ref += ref_stride;
diff[0] = vsubl_u8(s[0], r[0]);
diff[1] = vsubl_u8(s[1], r[1]);
diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
i += 2;
} while (i < h);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
*sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
}
static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int h) {
uint8x16_t s[2], r[2];
int16x4_t diff_lo[4], diff_hi[4];
uint16x8_t diff[4];
int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0) };
int i = 0;
do {
s[0] = vld1q_u8(src);
src += src_stride;
s[1] = vld1q_u8(src);
src += src_stride;
r[0] = vld1q_u8(ref);
ref += ref_stride;
r[1] = vld1q_u8(ref);
ref += ref_stride;
diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0]));
diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0]));
diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1]));
diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1]));
diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2]));
diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3]));
sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]);
sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]);
diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2]));
diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3]));
sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]);
sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]);
i += 2;
} while (i < h);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]);
sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]);
*sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
}
unsigned int aom_get4x4sse_cs_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride) {
uint8x8_t s[4], r[4];
int16x4_t diff[4];
int32x4_t sse;
s[0] = vld1_u8(src);
src += src_stride;
r[0] = vld1_u8(ref);
ref += ref_stride;
s[1] = vld1_u8(src);
src += src_stride;
r[1] = vld1_u8(ref);
ref += ref_stride;
s[2] = vld1_u8(src);
src += src_stride;
r[2] = vld1_u8(ref);
ref += ref_stride;
s[3] = vld1_u8(src);
r[3] = vld1_u8(ref);
diff[0] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[0], r[0])));
diff[1] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[1], r[1])));
diff[2] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[2], r[2])));
diff[3] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[3], r[3])));
sse = vmull_s16(diff[0], diff[0]);
sse = vmlal_s16(sse, diff[1], diff[1]);
sse = vmlal_s16(sse, diff[2], diff[2]);
sse = vmlal_s16(sse, diff[3], diff[3]);
return horizontal_add_u32x4(vreinterpretq_u32_s32(sse));
}
#endif // defined(__ARM_FEATURE_DOTPROD)
#define MSE_WXH_NEON(w, h) \
unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \
}
MSE_WXH_NEON(8, 8)
MSE_WXH_NEON(8, 16)
MSE_WXH_NEON(16, 8)
MSE_WXH_NEON(16, 16)
#undef MSE_WXH_NEON
#define COMPUTE_MSE_16BIT(src_16x8, dst_16x8) \
/* r7 r6 r5 r4 r3 r2 r1 r0 - 16 bit */ \
const uint16x8_t diff = vabdq_u16(src_16x8, dst_16x8); \
/*r3 r2 r1 r0 - 16 bit */ \
const uint16x4_t res0_low_16x4 = vget_low_u16(diff); \
/*r7 r6 r5 r4 - 16 bit */ \
const uint16x4_t res0_high_16x4 = vget_high_u16(diff); \
/* (r3*r3)= b3 (r2*r2)= b2 (r1*r1)= b1 (r0*r0)= b0 - 32 bit */ \
const uint32x4_t res0_32x4 = vmull_u16(res0_low_16x4, res0_low_16x4); \
/* (r7*r7)= b7 (r6*r6)= b6 (r5*r5)= b5 (r4*r4)= b4 - 32 bit*/ \
/* b3+b7 b2+b6 b1+b5 b0+b4 - 32 bit*/ \
const uint32x4_t res_32x4 = \
vmlal_u16(res0_32x4, res0_high_16x4, res0_high_16x4); \
\
/*a1 a0 - 64 bit*/ \
const uint64x2_t vl = vpaddlq_u32(res_32x4); \
/*a1+a2= f1 a3+a0= f0*/ \
square_result = vaddq_u64(square_result, vl);
static AOM_INLINE uint64_t mse_4xh_16bit_neon(uint8_t *dst, int dstride,
uint16_t *src, int sstride,
int h) {
uint64x2_t square_result = vdupq_n_u64(0);
uint32_t d0, d1;
int i = 0;
uint8_t *dst_ptr = dst;
uint16_t *src_ptr = src;
do {
// d03 d02 d01 d00 - 8 bit
memcpy(&d0, dst_ptr, 4);
dst_ptr += dstride;
// d13 d12 d11 d10 - 8 bit
memcpy(&d1, dst_ptr, 4);
dst_ptr += dstride;
// duplication
uint8x8_t tmp0_8x8 = vreinterpret_u8_u32(vdup_n_u32(d0));
// d03 d02 d01 d00 - 16 bit
const uint16x4_t dst0_16x4 = vget_low_u16(vmovl_u8(tmp0_8x8));
// duplication
tmp0_8x8 = vreinterpret_u8_u32(vdup_n_u32(d1));
// d13 d12 d11 d10 - 16 bit
const uint16x4_t dst1_16x4 = vget_low_u16(vmovl_u8(tmp0_8x8));
// d13 d12 d11 d10 d03 d02 d01 d00 - 16 bit
const uint16x8_t dst_16x8 = vcombine_u16(dst0_16x4, dst1_16x4);
// b1r0 - s03 s02 s01 s00 - 16 bit
const uint16x4_t src0_16x4 = vld1_u16(src_ptr);
src_ptr += sstride;
// b1r1 - s13 s12 s11 s10 - 16 bit
const uint16x4_t src1_16x4 = vld1_u16(src_ptr);
src_ptr += sstride;
// s13 s12 s11 s10 s03 s02 s01 s00 - 16 bit
const uint16x8_t src_16x8 = vcombine_u16(src0_16x4, src1_16x4);
COMPUTE_MSE_16BIT(src_16x8, dst_16x8)
i += 2;
} while (i < h);
uint64x1_t sum =
vadd_u64(vget_high_u64(square_result), vget_low_u64(square_result));
return vget_lane_u64(sum, 0);
}
static AOM_INLINE uint64_t mse_8xh_16bit_neon(uint8_t *dst, int dstride,
uint16_t *src, int sstride,
int h) {
uint64x2_t square_result = vdupq_n_u64(0);
int i = 0;
do {
// d7 d6 d5 d4 d3 d2 d1 d0 - 8 bit
const uint16x8_t dst_16x8 = vmovl_u8(vld1_u8(&dst[i * dstride]));
// s7 s6 s5 s4 s3 s2 s1 s0 - 16 bit
const uint16x8_t src_16x8 = vld1q_u16(&src[i * sstride]);
COMPUTE_MSE_16BIT(src_16x8, dst_16x8)
i++;
} while (i < h);
uint64x1_t sum =
vadd_u64(vget_high_u64(square_result), vget_low_u64(square_result));
return vget_lane_u64(sum, 0);
}
// Computes mse for a given block size. This function gets called for specific
// block sizes, which are 8x8, 8x4, 4x8 and 4x4.
uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h) {
assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
"w=8/4 and h=8/4 must satisfy");
switch (w) {
case 4: return mse_4xh_16bit_neon(dst, dstride, src, sstride, h);
case 8: return mse_8xh_16bit_neon(dst, dstride, src, sstride, h);
default: assert(0 && "unsupported width"); return -1;
}
}