blob: 06c3192039f91184e109b63358a5a5b29d6d522b [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cstdlib>
#include <new>
#include <tuple>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_dsp/variance.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/reconinter_enc.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
namespace {
typedef void (*comp_mask_pred_func)(uint8_t *comp_pred, const uint8_t *pred,
int width, int height, const uint8_t *ref,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask);
typedef void (*comp_avg_pred_func)(uint8_t *comp_pred, const uint8_t *pred,
int width, int height, const uint8_t *ref,
int ref_stride);
#if HAVE_SSSE3 || HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON
const BLOCK_SIZE kCompMaskPredParams[] = {
BLOCK_8X8, BLOCK_8X16, BLOCK_8X32, BLOCK_16X8, BLOCK_16X16,
BLOCK_16X32, BLOCK_32X8, BLOCK_32X16, BLOCK_32X32
};
#endif
class AV1CompMaskPredBase : public ::testing::Test {
public:
~AV1CompMaskPredBase();
void SetUp();
void TearDown();
protected:
bool CheckResult(int width, int height) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const int idx = y * width + x;
if (comp_pred1_[idx] != comp_pred2_[idx]) {
printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, y, x);
printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]);
return false;
}
}
}
return true;
}
libaom_test::ACMRandom rnd_;
uint8_t *comp_pred1_;
uint8_t *comp_pred2_;
uint8_t *pred_;
uint8_t *ref_buffer_;
uint8_t *ref_;
};
AV1CompMaskPredBase::~AV1CompMaskPredBase() {}
void AV1CompMaskPredBase::SetUp() {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
av1_init_wedge_masks();
comp_pred1_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(comp_pred1_, nullptr);
comp_pred2_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(comp_pred2_, nullptr);
pred_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(pred_, nullptr);
// The biggest block size is MAX_SB_SQUARE(128*128), however for the
// convolution we need to access 3 bytes before and 4 bytes after (for an
// 8-tap filter), in both directions, so we need to allocate
// (128 + 7) * (128 + 7) = MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49
ref_buffer_ =
(uint8_t *)aom_memalign(16, MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49);
ASSERT_NE(ref_buffer_, nullptr);
// Start of the actual block where the convolution will be computed
ref_ = ref_buffer_ + (3 * MAX_SB_SIZE + 3);
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand8();
}
for (int i = 0; i < MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49; ++i) {
ref_buffer_[i] = rnd_.Rand8();
}
}
void AV1CompMaskPredBase::TearDown() {
aom_free(comp_pred1_);
aom_free(comp_pred2_);
aom_free(pred_);
aom_free(ref_buffer_);
}
typedef std::tuple<comp_mask_pred_func, BLOCK_SIZE> CompMaskPredParam;
class AV1CompMaskPredTest
: public AV1CompMaskPredBase,
public ::testing::WithParamInterface<CompMaskPredParam> {
protected:
void RunCheckOutput(comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv);
void RunSpeedTest(comp_mask_pred_func test_impl, BLOCK_SIZE bsize);
};
void AV1CompMaskPredTest::RunCheckOutput(comp_mask_pred_func test_impl,
BLOCK_SIZE bsize, int inv) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int wedge_types = get_wedge_types_lookup(bsize);
for (int wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize);
aom_comp_mask_pred_c(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w,
inv);
test_impl(comp_pred2_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w, inv);
ASSERT_EQ(CheckResult(w, h), true)
<< " wedge " << wedge_index << " inv " << inv;
}
}
void AV1CompMaskPredTest::RunSpeedTest(comp_mask_pred_func test_impl,
BLOCK_SIZE bsize) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int wedge_types = get_wedge_types_lookup(bsize);
int wedge_index = wedge_types / 2;
const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize);
const int num_loops = 1000000000 / (w + h);
comp_mask_pred_func funcs[2] = { aom_comp_mask_pred_c, test_impl };
double elapsed_time[2] = { 0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
comp_mask_pred_func func = funcs[i];
for (int j = 0; j < num_loops; ++j) {
func(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w, 0);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("compMask %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0],
elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CompMaskPredTest);
TEST_P(AV1CompMaskPredTest, CheckOutput) {
// inv = 0, 1
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 0);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 1);
}
TEST_P(AV1CompMaskPredTest, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
#if HAVE_SSSE3
INSTANTIATE_TEST_SUITE_P(
SSSE3, AV1CompMaskPredTest,
::testing::Combine(::testing::Values(&aom_comp_mask_pred_ssse3),
::testing::ValuesIn(kCompMaskPredParams)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1CompMaskPredTest,
::testing::Combine(::testing::Values(&aom_comp_mask_pred_avx2),
::testing::ValuesIn(kCompMaskPredParams)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AV1CompMaskPredTest,
::testing::Combine(::testing::Values(&aom_comp_mask_pred_neon),
::testing::ValuesIn(kCompMaskPredParams)));
#endif
#if HAVE_SSSE3 || HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON
const BLOCK_SIZE kValidBlockSize[] = {
BLOCK_4X4, BLOCK_8X8, BLOCK_8X16, BLOCK_8X32, BLOCK_16X8,
BLOCK_16X16, BLOCK_16X32, BLOCK_32X8, BLOCK_32X16, BLOCK_32X32,
BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, BLOCK_64X128, BLOCK_128X64,
BLOCK_128X128, BLOCK_16X64, BLOCK_64X16
};
#endif
typedef void (*upsampled_pred_func)(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref, int ref_stride,
int subpel_search);
typedef std::tuple<upsampled_pred_func, BLOCK_SIZE> UpsampledPredParam;
class AV1UpsampledPredTest
: public AV1CompMaskPredBase,
public ::testing::WithParamInterface<UpsampledPredParam> {
protected:
void RunCheckOutput(upsampled_pred_func test_impl, BLOCK_SIZE bsize);
void RunSpeedTest(upsampled_pred_func test_impl, BLOCK_SIZE bsize,
int havSub);
};
void AV1UpsampledPredTest::RunCheckOutput(upsampled_pred_func test_impl,
BLOCK_SIZE bsize) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
for (int subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS;
++subpel_search) {
// loop through subx and suby
for (int sub = 0; sub < 8 * 8; ++sub) {
int subx = sub & 0x7;
int suby = (sub >> 3);
aom_upsampled_pred_c(nullptr, nullptr, 0, 0, nullptr, comp_pred1_, w, h,
subx, suby, ref_, MAX_SB_SIZE, subpel_search);
test_impl(nullptr, nullptr, 0, 0, nullptr, comp_pred2_, w, h, subx, suby,
ref_, MAX_SB_SIZE, subpel_search);
ASSERT_EQ(CheckResult(w, h), true)
<< "sub (" << subx << "," << suby << ")";
}
}
}
void AV1UpsampledPredTest::RunSpeedTest(upsampled_pred_func test_impl,
BLOCK_SIZE bsize, int havSub) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int subx = havSub ? 3 : 0;
const int suby = havSub ? 4 : 0;
const int num_loops = 1000000000 / (w + h);
upsampled_pred_func funcs[2] = { aom_upsampled_pred_c, test_impl };
double elapsed_time[2] = { 0 };
int subpel_search = USE_8_TAPS; // set to USE_4_TAPS to test 4-tap filter.
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
upsampled_pred_func func = funcs[i];
for (int j = 0; j < num_loops; ++j) {
func(nullptr, nullptr, 0, 0, nullptr, comp_pred1_, w, h, subx, suby, ref_,
MAX_SB_SIZE, subpel_search);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("UpsampledPred[%d] %3dx%-3d:%7.2f/%7.2fns", havSub, w, h,
elapsed_time[0], elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1UpsampledPredTest);
TEST_P(AV1UpsampledPredTest, CheckOutput) {
RunCheckOutput(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1UpsampledPredTest, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 1);
}
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1UpsampledPredTest,
::testing::Combine(::testing::Values(&aom_upsampled_pred_sse2),
::testing::ValuesIn(kValidBlockSize)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AV1UpsampledPredTest,
::testing::Combine(::testing::Values(&aom_upsampled_pred_neon),
::testing::ValuesIn(kValidBlockSize)));
#endif
typedef std::tuple<comp_avg_pred_func, BLOCK_SIZE> CompAvgPredParam;
class AV1CompAvgPredTest : public ::testing::TestWithParam<CompAvgPredParam> {
public:
~AV1CompAvgPredTest();
void SetUp();
void TearDown();
protected:
void RunCheckOutput(comp_avg_pred_func test_impl, BLOCK_SIZE bsize);
void RunSpeedTest(comp_avg_pred_func test_impl, BLOCK_SIZE bsize);
bool CheckResult(int width, int height) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const int idx = y * width + x;
if (comp_pred1_[idx] != comp_pred2_[idx]) {
printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, x, y);
printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]);
return false;
}
}
}
return true;
}
libaom_test::ACMRandom rnd_;
uint8_t *comp_pred1_;
uint8_t *comp_pred2_;
uint8_t *pred_;
uint8_t *ref_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CompAvgPredTest);
AV1CompAvgPredTest::~AV1CompAvgPredTest() {}
void AV1CompAvgPredTest::SetUp() {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
comp_pred1_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(comp_pred1_, nullptr);
comp_pred2_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(comp_pred2_, nullptr);
pred_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(pred_, nullptr);
ref_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE);
ASSERT_NE(ref_, nullptr);
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand8();
}
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
ref_[i] = rnd_.Rand8();
}
}
void AV1CompAvgPredTest::TearDown() {
aom_free(comp_pred1_);
aom_free(comp_pred2_);
aom_free(pred_);
aom_free(ref_);
}
void AV1CompAvgPredTest::RunCheckOutput(comp_avg_pred_func test_impl,
BLOCK_SIZE bsize) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
aom_comp_avg_pred_c(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE);
test_impl(comp_pred2_, pred_, w, h, ref_, MAX_SB_SIZE);
ASSERT_EQ(CheckResult(w, h), true);
}
void AV1CompAvgPredTest::RunSpeedTest(comp_avg_pred_func test_impl,
BLOCK_SIZE bsize) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int num_loops = 1000000000 / (w + h);
comp_avg_pred_func functions[2] = { aom_comp_avg_pred_c, test_impl };
double elapsed_time[2] = { 0.0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
comp_avg_pred_func func = functions[i];
for (int j = 0; j < num_loops; ++j) {
func(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE);
}
aom_usec_timer_mark(&timer);
const double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time;
}
printf("compMask %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0],
elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
TEST_P(AV1CompAvgPredTest, CheckOutput) {
RunCheckOutput(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1CompAvgPredTest, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1CompAvgPredTest,
::testing::Combine(::testing::Values(&aom_comp_avg_pred_avx2),
::testing::ValuesIn(kValidBlockSize)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AV1CompAvgPredTest,
::testing::Combine(::testing::Values(&aom_comp_avg_pred_neon),
::testing::ValuesIn(kValidBlockSize)));
#endif
#if CONFIG_AV1_HIGHBITDEPTH
class AV1HighbdCompMaskPredTestBase : public ::testing::Test {
public:
~AV1HighbdCompMaskPredTestBase();
void SetUp();
void TearDown();
protected:
bool CheckResult(int width, int height) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const int idx = y * width + x;
if (comp_pred1_[idx] != comp_pred2_[idx]) {
printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, y, x);
printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]);
return false;
}
}
}
return true;
}
libaom_test::ACMRandom rnd_;
uint16_t *comp_pred1_;
uint16_t *comp_pred2_;
uint16_t *pred_;
uint16_t *ref_buffer_;
uint16_t *ref_;
};
AV1HighbdCompMaskPredTestBase::~AV1HighbdCompMaskPredTestBase() {}
void AV1HighbdCompMaskPredTestBase::SetUp() {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
av1_init_wedge_masks();
comp_pred1_ =
(uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred1_));
ASSERT_NE(comp_pred1_, nullptr);
comp_pred2_ =
(uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred2_));
ASSERT_NE(comp_pred2_, nullptr);
pred_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*pred_));
ASSERT_NE(pred_, nullptr);
// The biggest block size is MAX_SB_SQUARE(128*128), however for the
// convolution we need to access 3 elements before and 4 elements after (for
// an 8-tap filter), in both directions, so we need to allocate (128 + 7) *
// (128 + 7) = (MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49) *
// sizeof(*ref_buffer_)
ref_buffer_ = (uint16_t *)aom_memalign(
16, (MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49) * sizeof(*ref_buffer_));
ASSERT_NE(ref_buffer_, nullptr);
// Start of the actual block where the convolution will be computed
ref_ = ref_buffer_ + (3 * MAX_SB_SIZE + 3);
}
void AV1HighbdCompMaskPredTestBase::TearDown() {
aom_free(comp_pred1_);
aom_free(comp_pred2_);
aom_free(pred_);
aom_free(ref_buffer_);
}
typedef void (*highbd_comp_mask_pred_func)(uint8_t *comp_pred8,
const uint8_t *pred8, int width,
int height, const uint8_t *ref8,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask);
typedef std::tuple<highbd_comp_mask_pred_func, BLOCK_SIZE, int>
HighbdCompMaskPredParam;
class AV1HighbdCompMaskPredTest
: public AV1HighbdCompMaskPredTestBase,
public ::testing::WithParamInterface<HighbdCompMaskPredParam> {
public:
~AV1HighbdCompMaskPredTest();
protected:
void RunCheckOutput(comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv);
void RunSpeedTest(comp_mask_pred_func test_impl, BLOCK_SIZE bsize);
};
AV1HighbdCompMaskPredTest::~AV1HighbdCompMaskPredTest() {}
void AV1HighbdCompMaskPredTest::RunCheckOutput(
highbd_comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv) {
int bd_ = GET_PARAM(2);
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int wedge_types = get_wedge_types_lookup(bsize);
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) {
ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize);
aom_highbd_comp_mask_pred_c(
CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h,
CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, inv);
test_impl(CONVERT_TO_BYTEPTR(comp_pred2_), CONVERT_TO_BYTEPTR(pred_), w, h,
CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, inv);
ASSERT_EQ(CheckResult(w, h), true)
<< " wedge " << wedge_index << " inv " << inv;
}
}
void AV1HighbdCompMaskPredTest::RunSpeedTest(
highbd_comp_mask_pred_func test_impl, BLOCK_SIZE bsize) {
int bd_ = GET_PARAM(2);
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int wedge_types = get_wedge_types_lookup(bsize);
int wedge_index = wedge_types / 2;
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) {
ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize);
const int num_loops = 1000000000 / (w + h);
highbd_comp_mask_pred_func funcs[2] = { aom_highbd_comp_mask_pred_c,
test_impl };
double elapsed_time[2] = { 0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
highbd_comp_mask_pred_func func = funcs[i];
for (int j = 0; j < num_loops; ++j) {
func(CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h,
CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, 0);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("compMask %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0],
elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdCompMaskPredTest);
TEST_P(AV1HighbdCompMaskPredTest, CheckOutput) {
// inv = 0, 1
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 0);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 1);
}
TEST_P(AV1HighbdCompMaskPredTest, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1HighbdCompMaskPredTest,
::testing::Combine(::testing::Values(&aom_highbd_comp_mask_pred_avx2),
::testing::ValuesIn(kCompMaskPredParams),
::testing::Range(8, 13, 2)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1HighbdCompMaskPredTest,
::testing::Combine(::testing::Values(&aom_highbd_comp_mask_pred_sse2),
::testing::ValuesIn(kCompMaskPredParams),
::testing::Range(8, 13, 2)));
#endif
typedef void (*highbd_upsampled_pred_func)(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred8, int width, int height,
int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride,
int bd, int subpel_search);
typedef std::tuple<highbd_upsampled_pred_func, BLOCK_SIZE, int>
HighbdUpsampledPredParam;
class AV1HighbdUpsampledPredTest
: public AV1HighbdCompMaskPredTestBase,
public ::testing::WithParamInterface<HighbdUpsampledPredParam> {
public:
~AV1HighbdUpsampledPredTest();
protected:
void RunCheckOutput(highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize);
void RunSpeedTest(highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize,
int havSub);
};
AV1HighbdUpsampledPredTest::~AV1HighbdUpsampledPredTest() {}
void AV1HighbdUpsampledPredTest::RunCheckOutput(
highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize) {
int bd_ = GET_PARAM(2);
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) {
ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int subpel_search = 1; subpel_search <= 2; ++subpel_search) {
// loop through subx and suby
for (int sub = 0; sub < 8 * 8; ++sub) {
int subx = sub & 0x7;
int suby = (sub >> 3);
aom_highbd_upsampled_pred_c(nullptr, nullptr, 0, 0, nullptr,
CONVERT_TO_BYTEPTR(comp_pred1_), w, h, subx,
suby, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE,
bd_, subpel_search);
test_impl(nullptr, nullptr, 0, 0, nullptr,
CONVERT_TO_BYTEPTR(comp_pred2_), w, h, subx, suby,
CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, bd_, subpel_search);
ASSERT_EQ(CheckResult(w, h), true)
<< "sub (" << subx << "," << suby << ")";
}
}
}
void AV1HighbdUpsampledPredTest::RunSpeedTest(
highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize, int havSub) {
int bd_ = GET_PARAM(2);
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int subx = havSub ? 3 : 0;
const int suby = havSub ? 4 : 0;
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) {
ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1);
}
const int num_loops = 1000000000 / (w + h);
highbd_upsampled_pred_func funcs[2] = { &aom_highbd_upsampled_pred_c,
test_impl };
double elapsed_time[2] = { 0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
highbd_upsampled_pred_func func = funcs[i];
int subpel_search = 2; // set to 1 to test 4-tap filter.
for (int j = 0; j < num_loops; ++j) {
func(nullptr, nullptr, 0, 0, nullptr, CONVERT_TO_BYTEPTR(comp_pred1_), w,
h, subx, suby, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, bd_,
subpel_search);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("CompMaskUp[%d] %3dx%-3d:%7.2f/%7.2fns", havSub, w, h, elapsed_time[0],
elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdUpsampledPredTest);
TEST_P(AV1HighbdUpsampledPredTest, CheckOutput) {
RunCheckOutput(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1HighbdUpsampledPredTest, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 1);
}
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1HighbdUpsampledPredTest,
::testing::Combine(::testing::Values(&aom_highbd_upsampled_pred_sse2),
::testing::ValuesIn(kValidBlockSize),
::testing::Range(8, 13, 2)));
#endif
#endif // CONFIG_AV1_HIGHBITDEPTH
} // namespace