blob: f900c210ef49b280138a3deb20faf663a59ac0e7 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mv.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/bitops.h"
static void update_mv_component_stats(int comp, int ref, nmv_component *mvcomp,
MvSubpelPrecision precision) {
(void)ref;
assert(comp != 0);
int offset;
const int sign = comp < 0;
const int mag = sign ? -comp : comp;
const int mv_class = av1_get_mv_class(mag - 1, &offset);
const int d = offset >> 3; // int mv data
const int fr = (offset >> 1) & 3; // fractional mv data
const int hp = offset & 1; // high precision mv data
// Sign
update_cdf(mvcomp->sign_cdf, sign, 2);
// Class
update_cdf(mvcomp->classes_cdf, mv_class, MV_CLASSES);
// Integer bits
if (mv_class == MV_CLASS_0) {
update_cdf(mvcomp->class0_cdf, d, CLASS0_SIZE);
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (int i = 0; i < n; ++i)
update_cdf(mvcomp->bits_cdf[i], (d >> i) & 1, 2);
}
#if CONFIG_COMPANDED_MV
precision = AOMMIN(get_companded_mv_precision(comp, ref), precision);
#endif // CONFIG_COMPANDED_MV
// Fractional bits
if (precision > MV_SUBPEL_NONE) {
#if CONFIG_FLEX_MVRES
aom_cdf_prob *fp_cdf = mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d][0]
: mvcomp->fp_cdf[0];
update_cdf(fp_cdf, fr >> 1, 2);
if (precision > MV_SUBPEL_HALF_PRECISION) {
fp_cdf = mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d][1 + (fr >> 1)]
: mvcomp->fp_cdf[1 + (fr >> 1)];
update_cdf(fp_cdf, fr & 1, 2);
}
#else
aom_cdf_prob *fp_cdf =
mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf;
update_cdf(fp_cdf, fr, MV_FP_SIZE);
#endif // CONFIG_FLEX_MVRES
}
// High precision bit
if (precision > MV_SUBPEL_QTR_PRECISION) {
aom_cdf_prob *hp_cdf =
mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf;
update_cdf(hp_cdf, hp, 2);
}
}
void av1_update_mv_stats(const MV *mv, const MV *ref, nmv_context *mvctx,
MvSubpelPrecision precision) {
MV ref_ = *ref;
#if CONFIG_FLEX_MVRES
lower_mv_precision(&ref_, precision);
#endif // CONFIG_FLEX_MVRES
const MV diff = { mv->row - ref_.row, mv->col - ref_.col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
update_cdf(mvctx->joints_cdf, j - NO_NEW_INTER_MODES_JOINT_ZERO,
MV_JOINTS - NO_NEW_INTER_MODES_JOINT_ZERO);
if (mv_joint_vertical(j))
update_mv_component_stats(diff.row, ref_.row, &mvctx->comps[0], precision);
if (mv_joint_horizontal(j))
update_mv_component_stats(diff.col, ref_.col, &mvctx->comps[1], precision);
}
static void encode_mv_component(aom_writer *w, int comp, int ref,
nmv_component *mvcomp,
MvSubpelPrecision precision) {
(void)ref;
assert(comp != 0);
int offset;
const int sign = comp < 0;
const int mag = sign ? -comp : comp;
const int mv_class = av1_get_mv_class(mag - 1, &offset);
const int d = offset >> 3; // int mv data
const int fr = (offset >> 1) & 3; // fractional mv data
const int hp = offset & 1; // high precision mv data
// Sign
aom_write_symbol(w, sign, mvcomp->sign_cdf, 2);
// Class
aom_write_symbol(w, mv_class, mvcomp->classes_cdf, MV_CLASSES);
// Integer bits
if (mv_class == MV_CLASS_0) {
aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (i = 0; i < n; ++i)
aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2);
}
#if CONFIG_COMPANDED_MV
precision = AOMMIN(get_companded_mv_precision(comp, ref), precision);
#endif // CONFIG_COMPANDED_MV
// Fractional bits
if (precision > MV_SUBPEL_NONE) {
#if CONFIG_FLEX_MVRES
aom_write_symbol(w, fr >> 1,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d][0]
: mvcomp->fp_cdf[0],
2);
if (precision > MV_SUBPEL_HALF_PRECISION)
aom_write_symbol(w, fr & 1,
mv_class == MV_CLASS_0
? mvcomp->class0_fp_cdf[d][1 + (fr >> 1)]
: mvcomp->fp_cdf[1 + (fr >> 1)],
2);
#else
aom_write_symbol(
w, fr,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE);
#endif
}
// High precision bit
if (precision > MV_SUBPEL_QTR_PRECISION)
aom_write_symbol(
w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf,
2);
}
static void build_nmv_component_cost_table(int *mvcost,
const nmv_component *const mvcomp,
MvSubpelPrecision precision) {
int i, v;
int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
int bits_cost[MV_OFFSET_BITS][2];
#if CONFIG_FLEX_MVRES
int class0_fp_cost[CLASS0_SIZE][3][2], fp_cost[3][2];
#else
int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
#endif // CONFIG_FLEX_MVRES
int class0_hp_cost[2], hp_cost[2];
av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL);
av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL);
av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL);
for (i = 0; i < MV_OFFSET_BITS; ++i) {
av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL);
}
#if CONFIG_FLEX_MVRES
for (i = 0; i < CLASS0_SIZE; ++i) {
for (int j = 0; j < 3; ++j)
av1_cost_tokens_from_cdf(class0_fp_cost[i][j],
mvcomp->class0_fp_cdf[i][j], NULL);
}
for (int j = 0; j < 3; ++j)
av1_cost_tokens_from_cdf(fp_cost[j], mvcomp->fp_cdf[j], NULL);
#else
for (i = 0; i < CLASS0_SIZE; ++i)
av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], NULL);
av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL);
#endif // CONFIG_FLEX_MVRES
if (precision > MV_SUBPEL_QTR_PRECISION) {
av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL);
av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL);
}
mvcost[0] = 0;
for (v = 1; v <= MV_MAX; ++v) {
int z, c, o, d, e, f, cost = 0;
#if CONFIG_DEBUG && CONFIG_FLEX_MVRES
// We are gating these debug statements under experiment flag because this
// exposes a bug in av1_find_best_sub_pixel_tree_pruned_more, where we might
// search precision higher than what is specified.
const int round = MV_SUBPEL_EIGHTH_PRECISION - precision;
int v_reduced = (v >> round) << round;
if (v != v_reduced) {
mvcost[v] = mvcost[-v] = INT_MAX;
continue;
}
#endif // CONFIG_DEBUG && CONFIG_FLEX_MVRES
z = v - 1;
c = av1_get_mv_class(z, &o);
cost += class_cost[c];
d = (o >> 3); /* int mv data */
f = (o >> 1) & 3; /* fractional pel mv data */
e = (o & 1); /* high precision mv data */
if (c == MV_CLASS_0) {
cost += class0_cost[d];
} else {
const int b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)];
}
if (precision > MV_SUBPEL_NONE) {
#if CONFIG_FLEX_MVRES
if (c == MV_CLASS_0) {
cost += class0_fp_cost[d][0][f >> 1];
if (precision > MV_SUBPEL_HALF_PRECISION)
cost += class0_fp_cost[d][1 + (f >> 1)][f & 1];
} else {
cost += fp_cost[0][f >> 1];
if (precision > MV_SUBPEL_HALF_PRECISION)
cost += fp_cost[1 + (f >> 1)][f & 1];
}
#else
if (c == MV_CLASS_0) {
cost += class0_fp_cost[d][f];
} else {
cost += fp_cost[f];
}
#endif // CONFIG_FLEX_MVRES
if (precision > MV_SUBPEL_QTR_PRECISION) {
if (c == MV_CLASS_0) {
cost += class0_hp_cost[e];
} else {
cost += hp_cost[e];
}
}
}
mvcost[v] = cost + sign_cost[0];
mvcost[-v] = cost + sign_cost[1];
}
}
void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref,
nmv_context *mvctx, MvSubpelPrecision precision) {
MV ref_ = *ref;
#if CONFIG_FLEX_MVRES
lower_mv_precision(&ref_, precision);
#endif // CONFIG_FLEX_MVRES
const MV diff = { mv->row - ref_.row, mv->col - ref_.col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
// If the mv_diff is zero, then we should have used near or nearest instead.
#if CONFIG_NEW_INTER_MODES && DISABLE_NEW_INTER_MODES_JOINT_ZERO
assert(j != MV_JOINT_ZERO);
#endif // CONFIG_NEW_INTER_MODES && DISABLE_NEW_INTER_MODES_JOINT_ZERO
#if CONFIG_FLEX_MVRES
assert((diff.row & ((1 << (MV_SUBPEL_EIGHTH_PRECISION - precision)) - 1)) ==
0);
assert((diff.col & ((1 << (MV_SUBPEL_EIGHTH_PRECISION - precision)) - 1)) ==
0);
#endif // CONFIG_FLEX_MVRES
aom_write_symbol(w, j - NO_NEW_INTER_MODES_JOINT_ZERO, mvctx->joints_cdf,
MV_JOINTS - NO_NEW_INTER_MODES_JOINT_ZERO);
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, ref_.row, &mvctx->comps[0], precision);
if (mv_joint_horizontal(j))
encode_mv_component(w, diff.col, ref_.col, &mvctx->comps[1], precision);
// If auto_mv_step_size is enabled then keep track of the largest
// motion vector component used.
if (cpi->sf.mv.auto_mv_step_size) {
unsigned int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3;
cpi->max_mv_magnitude = AOMMAX(maxv, cpi->max_mv_magnitude);
}
}
void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref,
nmv_context *mvctx) {
// DV and ref DV should not have sub-pel.
assert((mv->col & 7) == 0);
assert((mv->row & 7) == 0);
assert((ref->col & 7) == 0);
assert((ref->row & 7) == 0);
const MV diff = { mv->row - ref->row, mv->col - ref->col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS);
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, ref->row, &mvctx->comps[0],
MV_SUBPEL_NONE);
if (mv_joint_horizontal(j))
encode_mv_component(w, diff.col, ref->col, &mvctx->comps[1],
MV_SUBPEL_NONE);
}
void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
const nmv_context *ctx,
MvSubpelPrecision precision) {
#if CONFIG_NEW_INTER_MODES && DISABLE_NEW_INTER_MODES_JOINT_ZERO
av1_cost_tokens_from_cdf(mvjoint + 1, ctx->joints_cdf, NULL);
mvjoint[MV_JOINT_ZERO] = mvjoint[MV_JOINT_HZVNZ];
#else
av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL);
#endif // CONFIG_NEW_INTER_MODES
build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision);
build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision);
}
void av1_build_dmv_cost_table(int *mvjoint, int *mvcost[2],
const nmv_context *ctx,
MvSubpelPrecision precision) {
av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL);
build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision);
build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision);
}
int_mv av1_get_ref_mv_from_stack(int ref_idx,
const MV_REFERENCE_FRAME *ref_frame,
int ref_mv_idx,
const MB_MODE_INFO_EXT *mbmi_ext) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const CANDIDATE_MV *curr_ref_mv_stack =
mbmi_ext->ref_mv_info.ref_mv_stack[ref_frame_type];
if (ref_frame[1] > INTRA_FRAME) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
return ref_mv_idx < mbmi_ext->ref_mv_info.ref_mv_count[ref_frame_type]
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext->global_mvs[ref_frame_type];
}
int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int ref_mv_idx = mbmi->ref_mv_idx;
if (mbmi->mode == NEAR_NEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mbmi->mode == NEAR_NEWMV_OPTFLOW || mbmi->mode == NEW_NEARMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mbmi->mode == NEW_NEARMV) {
assert(has_second_ref(mbmi));
#if !CONFIG_NEW_INTER_MODES
ref_mv_idx += 1;
#endif // !CONFIG_NEW_INTER_MODES
}
return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
x->mbmi_ext);
}
#if CONFIG_NEW_INTER_MODES
/**
* Get the best reference MV (for use with intrabc) from the refmv stack.
* This function will search all available references and return the first one
* that is not zero or invalid.
*
* @param precision The MV precision to use. The returned MV will be reduced to
* match.
* @param mbmi_ext The MB ext struct. Used in get_ref_mv_from_stack.
* @param ref_frame The reference frame to find motion vectors from.
* @return The best MV, or INVALID_MV if none exists.
*/
int_mv av1_find_best_ref_mv_from_stack(MvSubpelPrecision precision,
const MB_MODE_INFO_EXT *mbmi_ext,
MV_REFERENCE_FRAME ref_frame) {
int_mv mv;
bool found_ref_mv = false;
MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
int range = AOMMIN(mbmi_ext->ref_mv_info.ref_mv_count[ref_frame],
MAX_REF_MV_STACK_SIZE);
for (int i = 0; i < range; i++) {
mv = av1_get_ref_mv_from_stack(0, ref_frames, i, mbmi_ext);
if (mv.as_int != 0 && mv.as_int != INVALID_MV) {
found_ref_mv = true;
break;
}
}
lower_mv_precision(&mv.as_mv, precision);
if (!found_ref_mv) mv.as_int = INVALID_MV;
return mv;
}
#else
void av1_find_best_ref_mvs_from_stack(MvSubpelPrecision precision,
const MB_MODE_INFO_EXT *mbmi_ext,
MV_REFERENCE_FRAME ref_frame,
int_mv *nearest_mv, int_mv *near_mv) {
const int ref_idx = 0;
MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
*nearest_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext);
lower_mv_precision(&nearest_mv->as_mv, precision);
*near_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 1, mbmi_ext);
lower_mv_precision(&near_mv->as_mv, precision);
}
#endif // CONFIG_NEW_INTER_MODES