blob: 19bdf0a140eb32862551af95bc839d9bd5e476e2 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_ENCODER_H_
#define AOM_AV1_ENCODER_ENCODER_H_
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "aom/aomcx.h"
#include "av1/common/alloccommon.h"
#include "av1/common/entropymode.h"
#include "av1/common/thread_common.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "av1/common/timing.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/level.h"
#include "av1/encoder/lookahead.h"
#include "av1/encoder/mbgraph.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/block.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "aom_dsp/variance.h"
#if CONFIG_DENOISE
#include "aom_dsp/noise_model.h"
#endif
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#ifdef __cplusplus
extern "C" {
#endif
// Number of frames required to test for scene cut detection
#define SCENE_CUT_KEY_TEST_INTERVAL 16
// Rational number with an int64 numerator
// This structure holds a fractional value
typedef struct aom_rational64 {
int64_t num; // fraction numerator
int den; // fraction denominator
} aom_rational64_t; // alias for struct aom_rational
typedef struct {
int nmv_vec_cost[MV_JOINTS];
int nmv_costs[MV_SUBPEL_PRECISIONS][2][MV_VALS];
FRAME_CONTEXT fc;
} CODING_CONTEXT;
enum {
REGULAR_FRAME, // regular inter frame
ARF_FRAME, // alternate reference frame
OVERLAY_FRAME, // overlay frame
GLD_FRAME, // golden frame
BRF_FRAME, // backward reference frame
INTERNAL_ARF_FRAME, // internal alternate reference frame
FRAME_CONTEXT_INDEXES
} UENUM1BYTE(FRAME_CONTEXT_INDEX);
enum {
NORMAL = 0,
FOURFIVE = 1,
THREEFIVE = 2,
ONETWO = 3
} UENUM1BYTE(AOM_SCALING);
enum {
// Good Quality Fast Encoding. The encoder balances quality with the amount of
// time it takes to encode the output. Speed setting controls how fast.
GOOD,
// Realtime Fast Encoding. Will force some restrictions on bitrate
// constraints.
REALTIME
} UENUM1BYTE(MODE);
enum {
FRAMEFLAGS_KEY = 1 << 0,
FRAMEFLAGS_GOLDEN = 1 << 1,
FRAMEFLAGS_BWDREF = 1 << 2,
// TODO(zoeliu): To determine whether a frame flag is needed for ALTREF2_FRAME
FRAMEFLAGS_ALTREF = 1 << 3,
FRAMEFLAGS_INTRAONLY = 1 << 4,
FRAMEFLAGS_SWITCH = 1 << 5,
FRAMEFLAGS_ERROR_RESILIENT = 1 << 6,
} UENUM1BYTE(FRAMETYPE_FLAGS);
enum {
NO_DELTA_Q = 0,
DELTA_Q_OBJECTIVE = 1, // Modulation to improve objective quality
DELTA_Q_PERCEPTUAL = 2, // Modulation to improve perceptual quality
DELTA_Q_MODE_COUNT // This should always be the last member of the enum
} UENUM1BYTE(DELTAQ_MODE);
enum {
RESIZE_NONE = 0, // No frame resizing allowed.
RESIZE_FIXED = 1, // All frames are coded at the specified scale.
RESIZE_RANDOM = 2, // All frames are coded at a random scale.
RESIZE_MODES
} UENUM1BYTE(RESIZE_MODE);
enum {
SUPERRES_NONE, // No frame superres allowed.
SUPERRES_FIXED, // All frames are coded at the specified scale,
// and super-resolved.
SUPERRES_RANDOM, // All frames are coded at a random scale,
// and super-resolved.
SUPERRES_QTHRESH, // Superres scale for a frame is determined based on
// q_index.
SUPERRES_AUTO, // Automatically select superres for appropriate frames.
SUPERRES_MODES
} UENUM1BYTE(SUPERRES_MODE);
typedef enum {
kInvalid = 0,
kLowSadLowSumdiff = 1,
kLowSadHighSumdiff = 2,
kHighSadLowSumdiff = 3,
kHighSadHighSumdiff = 4,
kLowVarHighSumdiff = 5,
kVeryHighSad = 6,
} CONTENT_STATE_SB;
enum {
SS_CFG_SRC = 0,
SS_CFG_LOOKAHEAD = 1,
SS_CFG_FPF = 2,
SS_CFG_TOTAL = 3
} UENUM1BYTE(SS_CFG_OFFSET);
#define MAX_LENGTH_TPL_FRAME_STATS (27 + 9)
typedef struct TplDepStats {
int64_t intra_cost;
int64_t inter_cost;
int64_t mc_flow;
int64_t mc_dep_cost;
int64_t srcrf_dist;
int64_t recrf_dist;
int64_t srcrf_rate;
int64_t recrf_rate;
int64_t mc_dep_delta;
int64_t mc_dep_rate;
int64_t mc_dep_dist;
int64_t src_rdcost;
int64_t rec_rdcost;
int_mv mv;
int ref_frame_index;
double quant_ratio;
int64_t mc_count;
int64_t mc_saved;
} TplDepStats;
typedef struct TplDepFrame {
uint8_t is_valid;
TplDepStats *tpl_stats_ptr;
const YV12_BUFFER_CONFIG *gf_picture;
YV12_BUFFER_CONFIG rec_picture_buf;
YV12_BUFFER_CONFIG *rec_picture;
int ref_map_index[REF_FRAMES];
int stride;
int width;
int height;
int mi_rows;
int mi_cols;
unsigned int frame_display_index;
int base_rdmult;
} TplDepFrame;
typedef enum {
COST_UPD_SB,
COST_UPD_SBROW,
COST_UPD_TILE,
} COST_UPDATE_TYPE;
#define TPL_DEP_COST_SCALE_LOG2 4
typedef struct AV1EncoderConfig {
BITSTREAM_PROFILE profile;
aom_bit_depth_t bit_depth; // Codec bit-depth.
int width; // width of data passed to the compressor
int height; // height of data passed to the compressor
int forced_max_frame_width; // forced maximum width of frame (if != 0)
int forced_max_frame_height; // forced maximum height of frame (if != 0)
unsigned int input_bit_depth; // Input bit depth.
double init_framerate; // set to passed in framerate
int64_t target_bandwidth; // bandwidth to be used in bits per second
int noise_sensitivity; // pre processing blur: recommendation 0
int sharpness; // sharpening output: recommendation 0:
int speed;
// maximum allowed bitrate for any intra frame in % of bitrate target.
unsigned int rc_max_intra_bitrate_pct;
// maximum allowed bitrate for any inter frame in % of bitrate target.
unsigned int rc_max_inter_bitrate_pct;
// percent of rate boost for golden frame in CBR mode.
unsigned int gf_cbr_boost_pct;
MODE mode;
int pass;
// Key Framing Operations
int auto_key; // autodetect cut scenes and set the keyframes
int key_freq; // maximum distance to key frame.
int sframe_dist;
int sframe_mode;
int sframe_enabled;
int lag_in_frames; // how many frames lag before we start encoding
int fwd_kf_enabled;
// ----------------------------------------------------------------
// DATARATE CONTROL OPTIONS
// vbr, cbr, constrained quality or constant quality
enum aom_rc_mode rc_mode;
// buffer targeting aggressiveness
int under_shoot_pct;
int over_shoot_pct;
// buffering parameters
int64_t starting_buffer_level_ms;
int64_t optimal_buffer_level_ms;
int64_t maximum_buffer_size_ms;
// Frame drop threshold.
int drop_frames_water_mark;
// controlling quality
int fixed_q;
int worst_allowed_q;
int best_allowed_q;
int cq_level;
int enable_chroma_deltaq;
AQ_MODE aq_mode; // Adaptive Quantization mode
DELTAQ_MODE deltaq_mode;
int deltalf_mode;
int enable_cdef;
int enable_restoration;
int enable_obmc;
int disable_trellis_quant;
int using_qm;
int qm_y;
int qm_u;
int qm_v;
int qm_minlevel;
int qm_maxlevel;
#if CONFIG_DIST_8X8
int using_dist_8x8;
#endif
unsigned int num_tile_groups;
unsigned int mtu;
// Internal frame size scaling.
RESIZE_MODE resize_mode;
uint8_t resize_scale_denominator;
uint8_t resize_kf_scale_denominator;
// Frame Super-Resolution size scaling.
SUPERRES_MODE superres_mode;
uint8_t superres_scale_denominator;
uint8_t superres_kf_scale_denominator;
int superres_qthresh;
int superres_kf_qthresh;
// Enable feature to reduce the frame quantization every x frames.
int frame_periodic_boost;
// two pass datarate control
int two_pass_vbrbias; // two pass datarate control tweaks
int two_pass_vbrmin_section;
int two_pass_vbrmax_section;
// END DATARATE CONTROL OPTIONS
// ----------------------------------------------------------------
int enable_auto_arf;
int enable_auto_brf; // (b)ackward (r)ef (f)rame
/* Bitfield defining the error resiliency features to enable.
* Can provide decodable frames after losses in previous
* frames and decodable partitions after losses in the same frame.
*/
unsigned int error_resilient_mode;
unsigned int s_frame_mode;
/* Bitfield defining the parallel decoding mode where the
* decoding in successive frames may be conducted in parallel
* just by decoding the frame headers.
*/
unsigned int frame_parallel_decoding_mode;
unsigned int limit;
int arnr_max_frames;
int arnr_strength;
int min_gf_interval;
int max_gf_interval;
int gf_min_pyr_height;
int gf_max_pyr_height;
int row_mt;
int tile_columns;
int tile_rows;
int tile_width_count;
int tile_height_count;
int tile_widths[MAX_TILE_COLS];
int tile_heights[MAX_TILE_ROWS];
int enable_tpl_model;
int enable_keyframe_filtering;
int max_threads;
aom_fixed_buf_t two_pass_stats_in;
aom_tune_metric tuning;
aom_tune_content content;
int use_highbitdepth;
aom_color_primaries_t color_primaries;
aom_transfer_characteristics_t transfer_characteristics;
aom_matrix_coefficients_t matrix_coefficients;
aom_chroma_sample_position_t chroma_sample_position;
int color_range;
int render_width;
int render_height;
int timing_info_present;
aom_timing_info_t timing_info;
int decoder_model_info_present_flag;
int display_model_info_present_flag;
int buffer_removal_time_present;
aom_dec_model_info_t buffer_model;
int film_grain_test_vector;
const char *film_grain_table_filename;
uint8_t cdf_update_mode;
aom_superblock_size_t superblock_size;
unsigned int large_scale_tile;
unsigned int single_tile_decoding;
uint8_t monochrome;
unsigned int full_still_picture_hdr;
int enable_dual_filter;
unsigned int motion_vector_unit_test;
unsigned int sb_multipass_unit_test;
int disable_ml_partition_speed_features;
int enable_rect_partitions;
int enable_ab_partitions;
#if CONFIG_EXT_RECUR_PARTITIONS
int enable_1to3_partitions;
#else
int enable_1to4_partitions;
#endif // CONFIG_EXT_RECUR_PARTITIONS
int min_partition_size;
int max_partition_size;
int enable_intra_edge_filter;
int enable_tx64;
int tx_size_search_method;
int enable_flip_idtx;
int enable_order_hint;
int enable_dist_wtd_comp;
int enable_ref_frame_mvs;
unsigned int max_reference_frames;
int enable_reduced_reference_set;
unsigned int allow_ref_frame_mvs;
int enable_masked_comp;
int enable_onesided_comp;
int enable_interintra_comp;
int enable_smooth_interintra;
int enable_diff_wtd_comp;
int enable_interinter_wedge;
int enable_interintra_wedge;
int enable_global_motion;
int enable_warped_motion;
int allow_warped_motion;
int enable_filter_intra;
int enable_smooth_intra;
int enable_paeth_intra;
int enable_cfl_intra;
int enable_superres;
int enable_overlay;
int enable_palette;
int enable_intrabc;
int enable_angle_delta;
unsigned int save_as_annexb;
#if CONFIG_DENOISE
float noise_level;
int noise_block_size;
#endif
unsigned int chroma_subsampling_x;
unsigned int chroma_subsampling_y;
int reduced_tx_type_set;
int use_intra_dct_only;
int use_inter_dct_only;
int use_intra_default_tx_only;
int quant_b_adapt;
COST_UPDATE_TYPE coeff_cost_upd_freq;
COST_UPDATE_TYPE mode_cost_upd_freq;
COST_UPDATE_TYPE mv_cost_upd_freq;
int border_in_pixels;
AV1_LEVEL target_seq_level_idx[MAX_NUM_OPERATING_POINTS];
// Bit mask to specify which tier each of the 32 possible operating points
// conforms to.
unsigned int tier_mask;
// If true, encoder will use fixed QP offsets, that are either:
// - Given by the user, and stored in 'fixed_qp_offsets' array, OR
// - Picked automatically from cq_level.
int use_fixed_qp_offsets;
// List of QP offsets for: keyframe, ALTREF, and 3 levels of internal ARFs.
// If any of these values are negative, fixed offsets are disabled.
// Uses internal q range.
double fixed_qp_offsets[FIXED_QP_OFFSET_COUNT];
// min_cr / 100 is the target minimum compression ratio for each frame.
unsigned int min_cr;
#if CONFIG_FILEOPTIONS
const cfg_options_t *encoder_cfg;
#endif
} AV1EncoderConfig;
static INLINE int is_lossless_requested(const AV1EncoderConfig *cfg) {
return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
}
typedef struct FRAME_COUNTS {
// Note: This structure should only contain 'unsigned int' fields, or
// aggregates built solely from 'unsigned int' fields/elements
#if CONFIG_ENTROPY_STATS
unsigned int kf_y_mode[KF_MODE_CONTEXTS][KF_MODE_CONTEXTS][INTRA_MODES];
unsigned int angle_delta[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1];
unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES];
unsigned int uv_mode[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES];
unsigned int cfl_sign[CFL_JOINT_SIGNS];
unsigned int cfl_alpha[CFL_ALPHA_CONTEXTS][CFL_ALPHABET_SIZE];
unsigned int palette_y_mode[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2];
unsigned int palette_uv_mode[PALETTE_UV_MODE_CONTEXTS][2];
unsigned int palette_y_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_uv_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_y_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
unsigned int palette_uv_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
unsigned int partition[PARTITION_CONTEXTS][EXT_PARTITION_TYPES];
#if CONFIG_EXT_RECUR_PARTITIONS
unsigned int partition_rec[PARTITION_CONTEXTS_REC][PARTITION_TYPES_REC];
#endif // CONFIG_EXT_RECUR_PARTITIONS
unsigned int txb_skip[TOKEN_CDF_Q_CTXS][TX_SIZES][TXB_SKIP_CONTEXTS][2];
unsigned int eob_extra[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[EOB_COEF_CONTEXTS][2];
unsigned int dc_sign[PLANE_TYPES][DC_SIGN_CONTEXTS][2];
unsigned int coeff_lps[TX_SIZES][PLANE_TYPES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS]
[2];
unsigned int eob_flag[TX_SIZES][PLANE_TYPES][EOB_COEF_CONTEXTS][2];
unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][5];
unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][6];
unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][7];
unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][8];
unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][9];
unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][10];
unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][11];
unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[LEVEL_CONTEXTS][BR_CDF_SIZE];
unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS][NUM_BASE_LEVELS + 2];
unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1];
unsigned int newmv_mode[NEWMV_MODE_CONTEXTS][2];
unsigned int zeromv_mode[GLOBALMV_MODE_CONTEXTS][2];
#if CONFIG_NEW_INTER_MODES
unsigned int drl0_mode[DRL_MODE_CONTEXTS][2];
unsigned int drl1_mode[DRL_MODE_CONTEXTS][2];
unsigned int drl2_mode[DRL_MODE_CONTEXTS][2];
#else
unsigned int refmv_mode[REFMV_MODE_CONTEXTS][2];
unsigned int drl_mode[DRL_MODE_CONTEXTS][2];
#endif // CONFIG_NEW_INTER_MODES
unsigned int inter_compound_mode[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES];
unsigned int wedge_idx[BLOCK_SIZES_ALL][16];
unsigned int interintra[BLOCK_SIZE_GROUPS][2];
unsigned int interintra_mode[BLOCK_SIZE_GROUPS][INTERINTRA_MODES];
unsigned int wedge_interintra[BLOCK_SIZES_ALL][2];
unsigned int compound_type[BLOCK_SIZES_ALL][MASKED_COMPOUND_TYPES];
unsigned int motion_mode[BLOCK_SIZES_ALL][MOTION_MODES];
unsigned int obmc[BLOCK_SIZES_ALL][2];
unsigned int intra_inter[INTRA_INTER_CONTEXTS][2];
unsigned int comp_inter[COMP_INTER_CONTEXTS][2];
unsigned int comp_ref_type[COMP_REF_TYPE_CONTEXTS][2];
unsigned int uni_comp_ref[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1][2];
unsigned int single_ref[REF_CONTEXTS][SINGLE_REFS - 1][2];
unsigned int comp_ref[REF_CONTEXTS][FWD_REFS - 1][2];
unsigned int comp_bwdref[REF_CONTEXTS][BWD_REFS - 1][2];
unsigned int intrabc[2];
#if CONFIG_NEW_TX_PARTITION
unsigned int intra_tx_size[2][TX_SIZE_CONTEXTS][TX_PARTITION_TYPES_INTRA];
unsigned int txfm_partition[2][TXFM_PARTITION_CONTEXTS][TX_PARTITION_TYPES];
#else // CONFIG_NEW_TX_PARTITION
unsigned int txfm_partition[TXFM_PARTITION_CONTEXTS][2];
unsigned int intra_tx_size[MAX_TX_CATS][TX_SIZE_CONTEXTS][MAX_TX_DEPTH + 1];
#endif // CONFIG_NEW_TX_PARTITION
unsigned int skip_mode[SKIP_MODE_CONTEXTS][2];
unsigned int skip[SKIP_CONTEXTS][2];
#if CONFIG_DSPL_RESIDUAL
unsigned int dspl_type[DSPL_END];
#endif // CONFIG_DSPL_RESIDUAL
unsigned int compound_index[COMP_INDEX_CONTEXTS][2];
unsigned int comp_group_idx[COMP_GROUP_IDX_CONTEXTS][2];
unsigned int delta_q[DELTA_Q_PROBS][2];
unsigned int delta_lf_multi[FRAME_LF_COUNT][DELTA_LF_PROBS][2];
unsigned int delta_lf[DELTA_LF_PROBS][2];
#if CONFIG_MODE_DEP_INTRA_TX || CONFIG_MODE_DEP_INTER_TX
#if CONFIG_MODE_DEP_INTER_TX
unsigned int use_mdtx_inter[EXT_TX_SIZES][2];
unsigned int mdtx_type_inter[EXT_TX_SIZES][MDTX_TYPES_INTER];
#endif
#if CONFIG_MODE_DEP_INTRA_TX
unsigned int use_mdtx_intra[EXT_TX_SIZES][INTRA_MODES][2];
unsigned int mdtx_type_intra[EXT_TX_SIZES][INTRA_MODES][MDTX_TYPES_INTRA];
#endif
unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES_NOMDTX];
unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
[TX_TYPES_NOMDTX];
#else
unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES];
unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
[TX_TYPES];
#endif // CONFIG_MODE_DEP_INTRA_TX || CONFIG_MODE_DEP_INTER_TX
unsigned int filter_intra_mode[FILTER_INTRA_MODES];
unsigned int filter_intra[BLOCK_SIZES_ALL][2];
#if CONFIG_ADAPT_FILTER_INTRA
unsigned int adapt_filter_intra_mode[USED_ADAPT_FILTER_INTRA_MODES];
unsigned int adapt_filter_intra[BLOCK_SIZES_ALL][2];
#endif // CONFIG_ADAPT_FILTER_INTRA
#if CONFIG_LOOP_RESTORE_CNN
unsigned int switchable_restore[2][RESTORE_SWITCHABLE_TYPES];
#else
unsigned int switchable_restore[RESTORE_SWITCHABLE_TYPES];
#endif // CONFIG_LOOP_RESTORE_CNN
unsigned int wiener_restore[2];
unsigned int sgrproj_restore[2];
#if CONFIG_LOOP_RESTORE_CNN
unsigned int cnn_restore[2];
#endif // CONFIG_LOOP_RESTORE_CNN
#if CONFIG_WIENER_NONSEP
unsigned int wiener_nonsep_restore[2];
#endif // CONFIG_WIENER_NONSEP
#endif // CONFIG_ENTROPY_STATS
unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS];
} FRAME_COUNTS;
#define INTER_MODE_RD_DATA_OVERALL_SIZE 6400
typedef struct {
int ready;
double a;
double b;
double dist_mean;
double ld_mean;
double sse_mean;
double sse_sse_mean;
double sse_ld_mean;
int num;
double dist_sum;
double ld_sum;
double sse_sum;
double sse_sse_sum;
double sse_ld_sum;
} InterModeRdModel;
typedef struct {
int idx;
int64_t rd;
} RdIdxPair;
// TODO(angiebird): This is an estimated size. We still need to figure what is
// the maximum number of modes.
#if CONFIG_OPTFLOW_REFINEMENT
#define MAX_INTER_MODES 1536
#else
#define MAX_INTER_MODES 1024
#endif // CONFIG_OPTFLOW_REFINEMENT
typedef struct inter_modes_info {
int num;
MB_MODE_INFO mbmi_arr[MAX_INTER_MODES];
int mode_rate_arr[MAX_INTER_MODES];
int64_t sse_arr[MAX_INTER_MODES];
int64_t est_rd_arr[MAX_INTER_MODES];
RdIdxPair rd_idx_pair_arr[MAX_INTER_MODES];
bool true_rd_arr[MAX_INTER_MODES];
uint8_t blk_skip_arr[MAX_INTER_MODES][MAX_MIB_SIZE * MAX_MIB_SIZE];
RD_STATS rd_cost_arr[MAX_INTER_MODES];
RD_STATS rd_cost_y_arr[MAX_INTER_MODES];
RD_STATS rd_cost_uv_arr[MAX_INTER_MODES];
} InterModesInfo;
// Encoder row synchronization
typedef struct AV1RowMTSyncData {
#if CONFIG_MULTITHREAD
pthread_mutex_t *mutex_;
pthread_cond_t *cond_;
#endif
// Allocate memory to store the sb/mb block index in each row.
int *cur_col;
int sync_range;
int rows;
} AV1RowMTSync;
typedef struct AV1RowMTInfo {
int current_mi_row;
int num_threads_working;
} AV1RowMTInfo;
// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
typedef struct TileDataEnc {
TileInfo tile_info;
CFL_CTX cfl;
DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx);
FRAME_CONTEXT *row_ctx;
uint8_t allow_update_cdf;
InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL];
AV1RowMTSync row_mt_sync;
AV1RowMTInfo row_mt_info;
} TileDataEnc;
typedef struct {
TOKENEXTRA *start;
TOKENEXTRA *stop;
unsigned int count;
} TOKENLIST;
typedef struct MultiThreadHandle {
int allocated_tile_rows;
int allocated_tile_cols;
int allocated_sb_rows;
int thread_id_to_tile_id[MAX_NUM_THREADS]; // Mapping of threads to tiles
} MultiThreadHandle;
typedef struct RD_COUNTS {
int64_t comp_pred_diff[REFERENCE_MODES];
// Stores number of 4x4 blocks using global motion per reference frame.
int global_motion_used[REF_FRAMES];
int compound_ref_used_flag;
int skip_mode_used_flag;
#if CONFIG_FLEX_MVRES
int reduced_mv_precision_used[MV_SUBPEL_PRECISIONS];
#endif // CONFIG_FLEX_MVRES
} RD_COUNTS;
typedef struct ThreadData {
MACROBLOCK mb;
RD_COUNTS rd_counts;
FRAME_COUNTS *counts;
PC_TREE_SHARED_BUFFERS shared_coeff_buf;
SIMPLE_MOTION_DATA_TREE *sms_tree;
SIMPLE_MOTION_DATA_TREE *sms_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2 + 1];
struct SimpleMotionDataBufs *sms_bufs;
InterModesInfo *inter_modes_info;
uint32_t *hash_value_buffer[2][2];
int32_t *wsrc_buf;
int32_t *mask_buf;
uint8_t *above_pred_buf;
uint8_t *left_pred_buf;
PALETTE_BUFFER *palette_buffer;
CompoundTypeRdBuffers comp_rd_buffer;
CONV_BUF_TYPE *tmp_conv_dst;
uint8_t *tmp_obmc_bufs[2];
int intrabc_used;
int deltaq_used;
FRAME_CONTEXT *tctx;
#if CONFIG_REF_MV_BANK
// TODO(huisu): the ref_mv_bank experiment does not support multi thread yet.
REF_MV_BANK ref_mv_bank_left;
REF_MV_BANK ref_mv_bank_above[32];
#endif // CONFIG_REF_MV_BANK
} ThreadData;
struct EncWorkerData;
typedef struct ActiveMap {
int enabled;
int update;
unsigned char *map;
} ActiveMap;
#if CONFIG_INTERNAL_STATS
// types of stats
enum {
STAT_Y,
STAT_U,
STAT_V,
STAT_ALL,
NUM_STAT_TYPES // This should always be the last member of the enum
} UENUM1BYTE(StatType);
typedef struct IMAGE_STAT {
double stat[NUM_STAT_TYPES];
double worst;
} ImageStat;
#endif // CONFIG_INTERNAL_STATS
typedef struct {
int ref_count;
YV12_BUFFER_CONFIG buf;
} EncRefCntBuffer;
#if CONFIG_COLLECT_PARTITION_STATS == 2
typedef struct PartitionStats {
int partition_decisions[6][EXT_PARTITION_TYPES];
int partition_attempts[6][EXT_PARTITION_TYPES];
int64_t partition_times[6][EXT_PARTITION_TYPES];
int partition_redo;
} PartitionStats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
#include "aom_ports/aom_timer.h"
// Adjust the following to add new components.
enum {
encode_frame_to_data_rate_time,
encode_with_recode_loop_time,
loop_filter_time,
cdef_time,
loop_restoration_time,
av1_pack_bitstream_final_time,
av1_encode_frame_time,
av1_compute_global_motion_time,
av1_setup_motion_field_time,
encode_sb_time,
rd_pick_partition_time,
rd_pick_sb_modes_time,
av1_rd_pick_intra_mode_sb_time,
av1_rd_pick_inter_mode_sb_time,
handle_intra_mode_time,
do_tx_search_time,
handle_newmv_time,
compound_type_rd_time,
interpolation_filter_search_time,
motion_mode_rd_time,
kTimingComponents,
} UENUM1BYTE(TIMING_COMPONENT);
static INLINE char const *get_component_name(int index) {
switch (index) {
case encode_frame_to_data_rate_time:
return "encode_frame_to_data_rate_time";
case encode_with_recode_loop_time: return "encode_with_recode_loop_time";
case loop_filter_time: return "loop_filter_time";
case cdef_time: return "cdef_time";
case loop_restoration_time: return "loop_restoration_time";
case av1_pack_bitstream_final_time: return "av1_pack_bitstream_final_time";
case av1_encode_frame_time: return "av1_encode_frame_time";
case av1_compute_global_motion_time:
return "av1_compute_global_motion_time";
case av1_setup_motion_field_time: return "av1_setup_motion_field_time";
case encode_sb_time: return "encode_sb_time";
case rd_pick_partition_time: return "rd_pick_partition_time";
case rd_pick_sb_modes_time: return "rd_pick_sb_modes_time";
case av1_rd_pick_intra_mode_sb_time:
return "av1_rd_pick_intra_mode_sb_time";
case av1_rd_pick_inter_mode_sb_time:
return "av1_rd_pick_inter_mode_sb_time";
case handle_intra_mode_time: return "handle_intra_mode_time";
case do_tx_search_time: return "do_tx_search_time";
case handle_newmv_time: return "handle_newmv_time";
case compound_type_rd_time: return "compound_type_rd_time";
case interpolation_filter_search_time:
return "interpolation_filter_search_time";
case motion_mode_rd_time: return "motion_mode_rd_time";
default: assert(0);
}
return "error";
}
#endif
// The maximum number of internal ARFs except ALTREF_FRAME
#define MAX_INTERNAL_ARFS (REF_FRAMES - BWDREF_FRAME - 1)
typedef struct {
int arf_stack[FRAME_BUFFERS];
int arf_stack_size;
int lst_stack[FRAME_BUFFERS];
int lst_stack_size;
int gld_stack[FRAME_BUFFERS];
int gld_stack_size;
} RefBufferStack;
typedef struct {
// Some misc info
int high_prec;
int q;
int order;
// MV counters
int inter_count;
int intra_count;
int default_mvs;
int mv_joint_count[4];
int last_bit_zero;
int last_bit_nonzero;
// Keep track of the rates
int total_mv_rate;
int hp_total_mv_rate;
int lp_total_mv_rate;
// Texture info
int horz_text;
int vert_text;
int diag_text;
// Whether the current struct contains valid data
int valid;
} MV_STATS;
typedef struct AV1_COMP {
QUANTS quants;
ThreadData td;
FRAME_COUNTS counts;
MB_MODE_INFO_EXT *mbmi_ext_base;
CB_COEFF_BUFFER *coeff_buffer_base;
Dequants dequants;
AV1_COMMON common;
AV1EncoderConfig oxcf;
struct lookahead_ctx *lookahead;
struct lookahead_entry *alt_ref_source;
int no_show_kf;
TRELLIS_OPT_TYPE optimize_seg_arr[MAX_SEGMENTS];
YV12_BUFFER_CONFIG *source;
YV12_BUFFER_CONFIG *last_source; // NULL for first frame and alt_ref frames
YV12_BUFFER_CONFIG *unscaled_source;
YV12_BUFFER_CONFIG scaled_source;
YV12_BUFFER_CONFIG *unscaled_last_source;
YV12_BUFFER_CONFIG scaled_last_source;
uint8_t tpl_stats_block_mis_log2; // block granularity of tpl score storage
TplDepFrame tpl_stats_buffer[MAX_LENGTH_TPL_FRAME_STATS];
TplDepFrame *tpl_frame;
// For a still frame, this flag is set to 1 to skip partition search.
int partition_search_skippable_frame;
double csm_rate_array[32];
double m_rate_array[32];
int rate_size;
int rate_index;
hash_table *previous_hash_table;
int need_to_clear_prev_hash_table;
int previous_index;
unsigned int row_mt;
RefCntBuffer *scaled_ref_buf[INTER_REFS_PER_FRAME];
RefCntBuffer *last_show_frame_buf; // last show frame buffer
// refresh_*_frame are boolean flags. If 'refresh_xyz_frame' is true, then
// after the current frame is encoded, the XYZ reference frame gets refreshed
// (updated) to be the current frame.
//
// Special case: 'refresh_last_frame' specifies that:
// - LAST_FRAME reference should be updated to be the current frame (as usual)
// - Also, LAST2_FRAME and LAST3_FRAME references are implicitly updated to be
// the two past reference frames just before LAST_FRAME that are available.
//
// Note: Usually at most one of these refresh flags is true at a time.
// But a key-frame is special, for which all the flags are true at once.
int refresh_last_frame;
int refresh_golden_frame;
int refresh_bwd_ref_frame;
int refresh_alt2_ref_frame;
int refresh_alt_ref_frame;
// For each type of reference frame, this contains the index of a reference
// frame buffer for a reference frame of the same type. We use this to
// choose our primary reference frame (which is the most recent reference
// frame of the same type as the current frame).
int fb_of_context_type[REF_FRAMES];
int ext_refresh_frame_flags_pending;
int ext_refresh_last_frame;
int ext_refresh_golden_frame;
int ext_refresh_bwd_ref_frame;
int ext_refresh_alt2_ref_frame;
int ext_refresh_alt_ref_frame;
int ext_refresh_frame_context_pending;
int ext_refresh_frame_context;
int ext_use_ref_frame_mvs;
int ext_use_error_resilient;
int ext_use_s_frame;
int ext_use_primary_ref_none;
YV12_BUFFER_CONFIG last_frame_uf;
YV12_BUFFER_CONFIG trial_frame_rst;
#if CONFIG_CNN_RESTORATION
YV12_BUFFER_CONFIG cnn_buffer;
#endif // CONFIG_CNN_RESTORATION
// Ambient reconstruction err target for force key frames
int64_t ambient_err;
RD_OPT rd;
CODING_CONTEXT coding_context;
int gmtype_cost[TRANS_TYPES];
int gmparams_cost[REF_FRAMES];
int64_t last_time_stamp_seen;
int64_t last_end_time_stamp_seen;
int64_t first_time_stamp_ever;
RATE_CONTROL rc;
double framerate;
struct aom_codec_pkt_list *output_pkt_list;
MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
int mbgraph_n_frames; // number of frames filled in the above
int static_mb_pct; // % forced skip mbs by segmentation
int ref_frame_flags;
int ext_ref_frame_flags;
// speed is passed as a per-frame parameter into the encoder
int speed;
// sf contains fine-grained config set internally based on speed
SPEED_FEATURES sf;
unsigned int max_mv_magnitude;
int mv_step_param;
int all_one_sided_refs;
uint8_t *segmentation_map;
CYCLIC_REFRESH *cyclic_refresh;
ActiveMap active_map;
fractional_mv_step_fp *find_fractional_mv_step;
av1_diamond_search_fn_t diamond_search_sad;
aom_variance_fn_ptr_t fn_ptr[BLOCK_SIZES_ALL];
#if CONFIG_INTERNAL_STATS
uint64_t time_receive_data;
uint64_t time_compress_data;
#endif
// number of show frames encoded in current gf_group
int num_gf_group_show_frames;
// when two pass tpl model is used, set to 1 for the
// first pass, then 0 for the final pass.
int tpl_model_pass;
// Number of gf_group frames for tpl stats
int tpl_gf_group_frames;
TWO_PASS twopass;
GF_GROUP gf_group;
// To control the reference frame buffer and selection.
RefBufferStack ref_buffer_stack;
YV12_BUFFER_CONFIG alt_ref_buffer;
YV12_BUFFER_CONFIG source_kf_buffer;
// Tell if OVERLAY frame shows existing alt_ref frame.
int show_existing_alt_ref;
#if CONFIG_INTERNAL_STATS
unsigned int mode_chosen_counts[MAX_MODES];
int count;
uint64_t total_sq_error;
uint64_t total_samples;
ImageStat psnr;
double total_blockiness;
double worst_blockiness;
int bytes;
double summed_quality;
double summed_weights;
unsigned int tot_recode_hits;
double worst_ssim;
ImageStat fastssim;
ImageStat psnrhvs;
int b_calculate_blockiness;
int b_calculate_consistency;
double total_inconsistency;
double worst_consistency;
Ssimv *ssim_vars;
Metrics metrics;
#endif
int b_calculate_psnr;
#if CONFIG_SPEED_STATS
unsigned int tx_search_count;
#endif // CONFIG_SPEED_STATS
int droppable;
FRAME_INFO frame_info;
int initial_width;
int initial_height;
int initial_mbs; // Number of MBs in the full-size frame; to be used to
// normalize the firstpass stats. This will differ from the
// number of MBs in the current frame when the frame is
// scaled.
// When resize is triggered through external control, the desired width/height
// are stored here until use in the next frame coded. They are effective only
// for
// one frame and are reset after use.
int resize_pending_width;
int resize_pending_height;
// ss_cfg[SS_CFG_LOOKAHEAD] : used in following cases
// -> temporal filtering
// -> intrabc
// ss_cfg[SS_CFG_SRC] : used everywhere except above mentioned cases
search_site_config ss_cfg[SS_CFG_TOTAL];
TileDataEnc *tile_data;
int allocated_tiles; // Keep track of memory allocated for tiles.
TOKENEXTRA *tile_tok[MAX_TILE_ROWS][MAX_TILE_COLS];
TOKENLIST *tplist[MAX_TILE_ROWS][MAX_TILE_COLS];
int resize_state;
int resize_avg_qp;
int resize_buffer_underflow;
// Sequence parameters have been transmitted already and locked
// or not. Once locked av1_change_config cannot change the seq
// parameters.
int seq_params_locked;
// VARIANCE_AQ segment map refresh
int vaq_refresh;
// VAR_BASED_PARTITION thresholds
// 0 - threshold_128x128; 1 - threshold_64x64;
// 2 - threshold_32x32; 3 - threshold_16x16;
// 4 - vbp_threshold_8x8;
int64_t vbp_thresholds[5];
int64_t vbp_threshold_minmax;
int64_t vbp_threshold_sad;
int64_t vbp_threshold_copy;
BLOCK_SIZE vbp_bsize_min;
// Multi-threading
int num_workers;
AVxWorker *workers;
struct EncWorkerData *tile_thr_data;
int existing_fb_idx_to_show;
int is_arf_filter_off[MAX_INTERNAL_ARFS + 1];
int global_motion_search_done;
int internal_altref_allowed;
// A flag to indicate if intrabc is ever used in current frame.
int intrabc_used;
int dv_cost[2][MV_VALS];
// TODO(huisu@google.com): we can update dv_joint_cost per SB.
int dv_joint_cost[MV_JOINTS];
int has_lossless_segment;
// Factors to control gating of compound type selection based on best
// approximate rd so far
int max_comp_type_rd_threshold_mul;
int max_comp_type_rd_threshold_div;
unsigned int tx_domain_dist_threshold;
// Factor to control R-D optimization of coeffs based on block
// mse.
// Index 0 corresponds to the modes where winner mode processing is not
// applicable (Eg : IntraBc). Index 1 corresponds to the mode evaluation and
// is applicable when enable_winner_mode_for_coeff_opt speed feature is ON
unsigned int coeff_opt_dist_threshold[2];
AV1LfSync lf_row_sync;
AV1LrSync lr_row_sync;
AV1LrStruct lr_ctxt;
aom_film_grain_table_t *film_grain_table;
#if CONFIG_DENOISE
struct aom_denoise_and_model_t *denoise_and_model;
#endif
// Stores the default value of skip flag depending on chroma format
// Set as 1 for monochrome and 3 for other color formats
int default_interp_skip_flags;
MultiThreadHandle multi_thread_ctxt;
void (*row_mt_sync_read_ptr)(AV1RowMTSync *const, int, int);
void (*row_mt_sync_write_ptr)(AV1RowMTSync *const, int, int, const int);
#if CONFIG_MULTITHREAD
pthread_mutex_t *row_mt_mutex_;
#endif
// Set if screen content is set or relevant tools are enabled
int is_screen_content_type;
#if CONFIG_COLLECT_PARTITION_STATS == 2
PartitionStats partition_stats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
// component_time[] are initialized to zero while encoder starts.
uint64_t component_time[kTimingComponents];
struct aom_usec_timer component_timer[kTimingComponents];
// frame_component_time[] are initialized to zero at beginning of each frame.
uint64_t frame_component_time[kTimingComponents];
#endif
// The following data are for AV1 bitstream levels.
AV1_LEVEL target_seq_level_idx[MAX_NUM_OPERATING_POINTS];
// Bit mask to indicate whether to keep level stats for corresponding
// operating points.
uint32_t keep_level_stats;
AV1LevelInfo *level_info[MAX_NUM_OPERATING_POINTS];
// Count the number of OBU_FRAME and OBU_FRAME_HEADER for level calculation.
int frame_header_count;
// whether any no-zero delta_q was actually used
int deltaq_used;
// Indicates the true relative distance of ref frame w.r.t. current frame
int8_t ref_relative_dist[INTER_REFS_PER_FRAME];
// TODO(sdeng): consider merge the following arrays.
double *tpl_rdmult_scaling_factors;
double *tpl_sb_rdmult_scaling_factors;
double *ssim_rdmult_scaling_factors;
// Whether writing to bitstream. It allows us to encode one frame multiple
// times without writing to bitstream and thus provides flexibility for
// experiments, for example, temporal filtering on key frames.
int pack_bitstream;
int lap_enabled;
COMPRESSOR_STAGE compressor_stage;
// Some motion vector stats from the last encoded frame to help us decide what
// precision to use to encode the current frame.
MV_STATS mv_stats;
} AV1_COMP;
typedef struct {
YV12_BUFFER_CONFIG *source;
YV12_BUFFER_CONFIG *last_source;
int64_t ts_duration;
} EncodeFrameInput;
// EncodeFrameParams contains per-frame encoding parameters decided upon by
// av1_encode_strategy() and passed down to av1_encode()
struct EncodeFrameParams {
int error_resilient_mode;
FRAME_TYPE frame_type;
int primary_ref_frame;
int order_offset;
int show_frame;
int refresh_frame_flags;
int show_existing_frame;
int existing_fb_idx_to_show;
// Bitmask of which reference buffers may be referenced by this frame
int ref_frame_flags;
// Reference buffer assignment for this frame.
int remapped_ref_idx[REF_FRAMES];
// Flags which determine which reference buffers are refreshed by this frame
int refresh_last_frame;
int refresh_golden_frame;
int refresh_bwd_ref_frame;
int refresh_alt2_ref_frame;
int refresh_alt_ref_frame;
// Speed level to use for this frame: Bigger number means faster.
int speed;
};
typedef struct EncodeFrameParams EncodeFrameParams;
// EncodeFrameResults contains information about the result of encoding a
// single frame
typedef struct {
size_t size; // Size of resulting bitstream
} EncodeFrameResults;
#if CONFIG_EXT_IBC_MODES
/*
FILE *IBCStats;
#define FILE_NAME_LEN 100
*/
/*
uint16_t regular_ibc;
uint16_t ibc_rotation90;
uint16_t ibc_rotation180;
uint16_t ibc_rotation270;
uint16_t ibc_mirror0;
uint16_t ibc_mirror45;
uint16_t ibc_mirror90;
uint16_t ibc_mirror135;
*/
/*
uint16_t regular_ibc;
uint16_t ibc_plus;
uint16_t ibc_blk128x;
uint16_t ibc_blk64x;
uint16_t ibc_blk32x;
uint16_t ibc_blk16x;
uint16_t ibc_blk8x;
uint16_t ibc_blk4x;
*/
#endif // CONFIG_EXT_IBC_MODES
// Must not be called more than once.
void av1_initialize_enc(void);
// Checks to see if the current frame is a displayed forward keyframe
static INLINE int is_show_existing_fwd_kf(const AV1_COMP *const cpi) {
const GF_GROUP *const gf_group = &cpi->gf_group;
return (cpi->oxcf.fwd_kf_enabled && (gf_group->index == gf_group->size) &&
gf_group->update_type[1] == ARF_UPDATE && cpi->rc.frames_to_key == 0);
}
struct AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool,
FIRSTPASS_STATS *frame_stats_buf,
COMPRESSOR_STAGE stage,
int num_lap_buffers,
int lap_lag_in_frames,
STATS_BUFFER_CTX *stats_buf_context);
void av1_remove_compressor(AV1_COMP *cpi);
void av1_change_config(AV1_COMP *cpi, const AV1EncoderConfig *oxcf);
void av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth,
int subsampling_x, int subsampling_y);
// receive a frames worth of data. caller can assume that a copy of this
// frame is made and not just a copy of the pointer..
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time_stamp);
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush,
const aom_rational64_t *timebase);
int av1_encode(AV1_COMP *const cpi, uint8_t *const dest,
const EncodeFrameInput *const frame_input,
const EncodeFrameParams *const frame_params,
EncodeFrameResults *const frame_results);
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest);
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame);
aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *new_frame,
YV12_BUFFER_CONFIG *sd);
int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags);
int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
void av1_set_frame_size(AV1_COMP *cpi, int width, int height);
int av1_update_entropy(AV1_COMP *cpi, int update);
int av1_set_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_get_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode,
AOM_SCALING vert_mode);
int av1_get_quantizer(struct AV1_COMP *cpi);
int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *input_size);
void av1_alloc_compound_type_rd_buffers(AV1_COMMON *const cm,
CompoundTypeRdBuffers *const bufs);
void av1_release_compound_type_rd_buffers(CompoundTypeRdBuffers *const bufs);
// TODO(jingning): Move these functions as primitive members for the new cpi
// class.
static INLINE void stack_push(int *stack, int *stack_size, int item) {
for (int i = *stack_size - 1; i >= 0; --i) stack[i + 1] = stack[i];
stack[0] = item;
++*stack_size;
}
static INLINE int stack_pop(int *stack, int *stack_size) {
if (*stack_size <= 0) return -1;
int item = stack[0];
for (int i = 0; i < *stack_size; ++i) stack[i] = stack[i + 1];
--*stack_size;
return item;
}
static INLINE int stack_pop_end(int *stack, int *stack_size) {
int item = stack[*stack_size - 1];
stack[*stack_size - 1] = -1;
--*stack_size;
return item;
}
static INLINE void stack_reset(int *stack, int *stack_size) {
for (int i = 0; i < *stack_size; ++i) stack[i] = INVALID_IDX;
*stack_size = 0;
}
// av1 uses 10,000,000 ticks/second as time stamp
#define TICKS_PER_SEC 10000000LL
static INLINE int64_t
timebase_units_to_ticks(const aom_rational64_t *timestamp_ratio, int64_t n) {
return n * timestamp_ratio->num / timestamp_ratio->den;
}
static INLINE int64_t
ticks_to_timebase_units(const aom_rational64_t *timestamp_ratio, int64_t n) {
int64_t round = timestamp_ratio->num / 2;
if (round > 0) --round;
return (n * timestamp_ratio->den + round) / timestamp_ratio->num;
}
static INLINE int frame_is_kf_gf_arf(const AV1_COMP *cpi) {
return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref);
}
// TODO(huisu@google.com, youzhou@microsoft.com): enable hash-me for HBD.
static INLINE int av1_use_hash_me(const AV1_COMMON *const cm) {
return cm->allow_screen_content_tools;
}
static INLINE hash_table *av1_get_ref_frame_hash_map(
const AV1_COMMON *cm, MV_REFERENCE_FRAME ref_frame) {
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
RefCntBuffer *buf =
(map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
return buf ? &buf->hash_table : NULL;
}
static INLINE const YV12_BUFFER_CONFIG *get_ref_frame_yv12_buf(
const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
return buf != NULL ? &buf->buf : NULL;
}
static INLINE int enc_is_ref_frame_buf(const AV1_COMMON *const cm,
const RefCntBuffer *const frame_buf) {
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (buf == NULL) continue;
if (frame_buf == buf) break;
}
return (ref_frame <= ALTREF_FRAME);
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, RefCntBuffer *buf) {
assert(buf != NULL);
ensure_mv_buffer(buf, cm);
buf->width = cm->width;
buf->height = cm->height;
}
// Token buffer is only used for palette tokens.
static INLINE unsigned int get_token_alloc(int mb_rows, int mb_cols,
int sb_size_log2,
const int num_planes) {
// Calculate the maximum number of max superblocks in the image.
const int shift = sb_size_log2 - 4;
const int sb_size = 1 << sb_size_log2;
const int sb_size_square = sb_size * sb_size;
const int sb_rows = ALIGN_POWER_OF_TWO(mb_rows, shift) >> shift;
const int sb_cols = ALIGN_POWER_OF_TWO(mb_cols, shift) >> shift;
// One palette token for each pixel. There can be palettes on two planes.
const int sb_palette_toks = AOMMIN(2, num_planes) * sb_size_square;
return sb_rows * sb_cols * sb_palette_toks;
}
// Get the allocated token size for a tile. It does the same calculation as in
// the frame token allocation.
static INLINE unsigned int allocated_tokens(TileInfo tile, int sb_size_log2,
int num_planes) {
int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 2) >> 2;
int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 2) >> 2;
return get_token_alloc(tile_mb_rows, tile_mb_cols, sb_size_log2, num_planes);
}
static INLINE void get_start_tok(AV1_COMP *cpi, int tile_row, int tile_col,
int mi_row, TOKENEXTRA **tok, int sb_size_log2,
int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int tile_mb_row = (mi_row - tile_info->mi_row_start + 2) >> 2;
*tok = cpi->tile_tok[tile_row][tile_col] +
get_token_alloc(tile_mb_row, tile_mb_cols, sb_size_log2, num_planes);
}
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags);
#define ALT_MIN_LAG 3
static INLINE int is_altref_enabled(const AV1_COMP *const cpi) {
return cpi->oxcf.lag_in_frames >= ALT_MIN_LAG && cpi->oxcf.enable_auto_arf;
}
// Check if statistics generation stage
static INLINE int is_stat_generation_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(cpi->compressor_stage == LAP_STAGE,
cpi->oxcf.pass == 0 && cpi->lap_enabled));
return (cpi->oxcf.pass == 1 || (cpi->compressor_stage == LAP_STAGE));
}
// Check if statistics consumption stage of the two pass mode.
static INLINE int is_stat_consumption_stage_twopass(const AV1_COMP *const cpi) {
return (cpi->oxcf.pass == 2);
}
// Check if statistics consumption stage (generic)
static INLINE int is_stat_consumption_stage(const AV1_COMP *const cpi) {
return (is_stat_consumption_stage_twopass(cpi) ||
(cpi->oxcf.pass == 0 && (cpi->compressor_stage == ENCODE_STAGE) &&
cpi->lap_enabled));
}
// Check if the current stage has statistics
static INLINE int has_no_stats_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(!cpi->lap_enabled, cpi->compressor_stage == ENCODE_STAGE));
return (cpi->oxcf.pass == 0 && !cpi->lap_enabled);
}
// Function return size of frame stats buffer
static INLINE unsigned int get_stats_buf_size(int num_lap_buffer,
int num_lag_buffer) {
/* if lookahead is enabled return num_lap_buffers else num_lag_buffers */
return (num_lap_buffer > 0 ? num_lap_buffer + 1 : num_lag_buffer);
}
// TODO(zoeliu): To set up cpi->oxcf.enable_auto_brf
static INLINE void set_ref_ptrs(const AV1_COMMON *cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {
xd->block_ref_scale_factors[0] =
get_ref_scale_factors_const(cm, ref0 >= LAST_FRAME ? ref0 : 1);
xd->block_ref_scale_factors[1] =
get_ref_scale_factors_const(cm, ref1 >= LAST_FRAME ? ref1 : 1);
}
static INLINE int get_chessboard_index(int frame_index) {
return frame_index & 0x1;
}
static INLINE int *cond_cost_list(const struct AV1_COMP *cpi, int *cost_list) {
return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL;
}
// Compression ratio of current frame.
double av1_get_compression_ratio(const AV1_COMMON *const cm,
size_t encoded_frame_size);
void av1_new_framerate(AV1_COMP *cpi, double framerate);
void av1_setup_frame_size(AV1_COMP *cpi);
#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
// Returns 1 if a frame is scaled and 0 otherwise.
static INLINE int av1_resize_scaled(const AV1_COMMON *cm) {
return !(cm->superres_upscaled_width == cm->render_width &&
cm->superres_upscaled_height == cm->render_height);
}
static INLINE int av1_frame_scaled(const AV1_COMMON *cm) {
return !av1_superres_scaled(cm) && av1_resize_scaled(cm);
}
// Don't allow a show_existing_frame to coincide with an error resilient
// frame. An exception can be made for a forward keyframe since it has no
// previous dependencies.
static INLINE int encode_show_existing_frame(const AV1_COMMON *cm) {
return cm->show_existing_frame && (!cm->error_resilient_mode ||
cm->current_frame.frame_type == KEY_FRAME);
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_mode_info_offsets(const AV1_COMP *const cpi,
MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row,
int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_base + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static INLINE BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
int int_size = (int)bsize;
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; int_size > 0; int_size -= 3) {
*bh = mi_size_high[int_size];
*bw = mi_size_wide[int_size];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return (BLOCK_SIZE)int_size;
}
static const uint8_t av1_ref_frame_flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
// When more than 'max_allowed_refs' are available, we reduce the number of
// reference frames one at a time based on this order.
static const MV_REFERENCE_FRAME disable_order[] = {
LAST3_FRAME,
LAST2_FRAME,
ALTREF2_FRAME,
GOLDEN_FRAME,
};
static INLINE int get_max_allowed_ref_frames(const AV1_COMP *cpi) {
const unsigned int max_allowed_refs_for_given_speed =
(cpi->sf.selective_ref_frame >= 3) ? INTER_REFS_PER_FRAME - 1
: INTER_REFS_PER_FRAME;
return AOMMIN(max_allowed_refs_for_given_speed,
cpi->oxcf.max_reference_frames);
}
// Returns a Sequence Header OBU stored in an aom_fixed_buf_t, or NULL upon
// failure. When a non-NULL aom_fixed_buf_t pointer is returned by this
// function, the memory must be freed by the caller. Both the buf member of the
// aom_fixed_buf_t, and the aom_fixed_buf_t pointer itself must be freed. Memory
// returned must be freed via call to free().
//
// Note: The OBU returned is in Low Overhead Bitstream Format. Specifically,
// the obu_has_size_field bit is set, and the buffer contains the obu_size
// field.
aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi);
#define MAX_GFUBOOST_FACTOR 10.0
#define MIN_GFUBOOST_FACTOR 4.0
double av1_get_gfu_boost_projection_factor(double min_factor, double max_factor,
int frame_count);
double av1_get_kf_boost_projection_factor(int frame_count);
#define ENABLE_KF_TPL 1
#define MAX_PYR_LEVEL_FROMTOP_DELTAQ 0
static INLINE int is_frame_kf_and_tpl_eligible(AV1_COMP *const cpi) {
AV1_COMMON *cm = &cpi->common;
return (cm->current_frame.frame_type == KEY_FRAME) && cm->show_frame &&
(cpi->rc.frames_to_key > 1);
}
static INLINE int is_frame_arf_and_tpl_eligible(const GF_GROUP *gf_group) {
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
return update_type == ARF_UPDATE || update_type == GF_UPDATE;
}
static INLINE int is_frame_tpl_eligible(AV1_COMP *const cpi) {
#if ENABLE_KF_TPL
return is_frame_kf_and_tpl_eligible(cpi) ||
is_frame_arf_and_tpl_eligible(&cpi->gf_group);
#else
return is_frame_arf_and_tpl_eligible(&cpi->gf_group);
#endif // ENABLE_KF_TPL
}
#if CONFIG_COLLECT_PARTITION_STATS == 2
static INLINE void av1_print_partition_stats(PartitionStats *part_stats) {
FILE *f = fopen("partition_stats.csv", "w");
if (!f) {
return;
}
fprintf(f, "bsize,redo,");
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "decision_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "attempt_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "time_%d,", part);
}
fprintf(f, "\n");
const int bsizes[6] = { 128, 64, 32, 16, 8, 4 };
for (int bsize_idx = 0; bsize_idx < 6; bsize_idx++) {
fprintf(f, "%d,%d,", bsizes[bsize_idx], part_stats->partition_redo);
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_decisions[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_attempts[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%ld,", part_stats->partition_times[bsize_idx][part]);
}
fprintf(f, "\n");
}
fclose(f);
}
static INLINE int av1_get_bsize_idx_for_part_stats(BLOCK_SIZE bsize) {
assert(bsize == BLOCK_128X128 || bsize == BLOCK_64X64 ||
bsize == BLOCK_32X32 || bsize == BLOCK_16X16 || bsize == BLOCK_8X8 ||
bsize == BLOCK_4X4);
switch (bsize) {
case BLOCK_128X128: return 0;
case BLOCK_64X64: return 1;
case BLOCK_32X32: return 2;
case BLOCK_16X16: return 3;
case BLOCK_8X8: return 4;
case BLOCK_4X4: return 5;
default: assert(0 && "Invalid bsize for partition_stats."); return -1;
}
}
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
static INLINE void start_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_start(&cpi->component_timer[component]);
}
static INLINE void end_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_mark(&cpi->component_timer[component]);
cpi->frame_component_time[component] +=
aom_usec_timer_elapsed(&cpi->component_timer[component]);
}
static INLINE char const *get_frame_type_enum(int type) {
switch (type) {
case 0: return "KEY_FRAME";
case 1: return "INTER_FRAME";
case 2: return "INTRA_ONLY_FRAME";
case 3: return "S_FRAME";
default: assert(0);
}
return "error";
}
#endif
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_ENCODER_H_