| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/blend.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| |
| extern int g_pick_inter_mode_cnt; |
| typedef struct { |
| uint8_t *data; |
| int stride; |
| int in_use; |
| } PRED_BUFFER; |
| |
| typedef struct { |
| PRED_BUFFER *best_pred; |
| PREDICTION_MODE best_mode; |
| TX_SIZE best_tx_size; |
| TX_SIZE best_intra_tx_size; |
| MV_REFERENCE_FRAME best_ref_frame; |
| MV_REFERENCE_FRAME best_second_ref_frame; |
| uint8_t best_mode_skip_txfm; |
| int_interpfilters best_pred_filter; |
| } BEST_PICKMODE; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame; |
| PREDICTION_MODE pred_mode; |
| } REF_MODE; |
| |
| #if CONFIG_NEW_INTER_MODES |
| #define RT_INTER_MODES 6 |
| static const REF_MODE ref_mode_set[RT_INTER_MODES] = { |
| { LAST_FRAME, NEARMV }, { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARMV }, |
| { GOLDEN_FRAME, NEWMV }, { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, NEWMV } |
| }; |
| |
| static const THR_MODES mode_idx[REF_FRAMES][4] = { |
| { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH }, |
| { THR_NEARMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV }, |
| { THR_NEARG, THR_NEARG, THR_GLOBALMV, THR_NEWG }, |
| { THR_NEARA, THR_NEARA, THR_GLOBALMV, THR_NEWA }, |
| }; |
| #else |
| #define RT_INTER_MODES 9 |
| static const REF_MODE ref_mode_set[RT_INTER_MODES] = { |
| { LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV }, |
| { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, |
| { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }, |
| { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV }, |
| { ALTREF_FRAME, NEWMV } |
| }; |
| |
| static const THR_MODES mode_idx[REF_FRAMES][4] = { |
| { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH }, |
| { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV }, |
| { THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG }, |
| { THR_NEARESTA, THR_NEARA, THR_GLOBALMV, THR_NEWA }, |
| }; |
| #endif // CONFIG_NEW_INTER_MODES |
| |
| static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, |
| SMOOTH_PRED }; |
| |
| static INLINE int mode_offset(const PREDICTION_MODE mode) { |
| if (mode >= SINGLE_INTER_MODE_START) { |
| return INTER_OFFSET(mode); |
| } else { |
| switch (mode) { |
| case DC_PRED: return 0; |
| case V_PRED: return 1; |
| case H_PRED: return 2; |
| case SMOOTH_PRED: return 3; |
| default: assert(0); return -1; |
| } |
| } |
| } |
| |
| typedef struct { |
| PREDICTION_MODE mode; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MODE_DEFINITION; |
| |
| #if CONFIG_NEW_INTER_MODES |
| enum { |
| INTER_NEW = (1 << NEWMV), |
| INTER_NEAR = (1 << NEARMV), |
| INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), |
| }; |
| #else |
| enum { |
| INTER_NEAREST = (1 << NEARESTMV), |
| INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), |
| INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV), |
| INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), |
| }; |
| #endif // CONFIG_NEW_INTER_MODES |
| |
| static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { |
| #if CONFIG_NEW_INTER_MODES |
| bp->best_mode = NEARMV; |
| #else |
| bp->best_mode = NEARESTMV; |
| #endif // CONFIG_NEW_INTER_MODES |
| bp->best_ref_frame = LAST_FRAME; |
| bp->best_tx_size = TX_8X8; |
| bp->best_intra_tx_size = TX_8X8; |
| bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| bp->best_mode_skip_txfm = 0; |
| bp->best_second_ref_frame = NONE_FRAME; |
| bp->best_pred = NULL; |
| } |
| |
| static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv, |
| int64_t best_rd_sofar, int use_base_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; |
| int step_param = cpi->mv_step_param; |
| const int sadpb = x->sadperbit16; |
| MV mvp_full; |
| const int ref = mi->ref_frame[0]; |
| const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv; |
| MV center_mv; |
| int dis; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| int rv = 0; |
| int cost_list[5]; |
| int search_subpel = 1; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; |
| av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes, &mi->chroma_ref_info); |
| } |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv); |
| |
| mvp_full = ref_mv; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| if (!use_base_mv) |
| center_mv = ref_mv; |
| else |
| center_mv = tmp_mv->as_mv; |
| |
| av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, 1, |
| cpi->sf.mv.search_method, 0, sadpb, |
| cond_cost_list(cpi, cost_list), ¢er_mv, INT_MAX, 0, |
| (MI_SIZE * mi_col), (MI_SIZE * mi_row), 0, |
| #if CONFIG_EXT_IBC_MODES |
| 0, |
| #endif // CONFIG_EXT_IBC_MODES |
| &cpi->ss_cfg[SS_CFG_SRC]); |
| |
| x->mv_limits = tmp_mv_limits; |
| *tmp_mv = x->best_mv; |
| // calculate the bit cost on motion vector |
| mvp_full.row = tmp_mv->as_mv.row * 8; |
| mvp_full.col = tmp_mv->as_mv.col * 8; |
| |
| const MvSubpelPrecision max_mv_precision = mi->max_mv_precision; |
| #if CONFIG_FLEX_MVRES |
| const int use_flex_mv = |
| is_pb_mv_precision_active(cm, mi->mode, max_mv_precision); |
| const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); |
| int(*mv_precision_cost)[FLEX_MV_COSTS_SIZE] = |
| use_flex_mv ? x->pb_mv_precision_costs[down_ctx] : NULL; |
| #endif // CONFIG_FLEX_MVRES |
| |
| *rate_mv = av1_mv_bit_cost_gen(&mvp_full, &ref_mv, max_mv_precision, |
| x->nmv_vec_cost, x->nmvcost, |
| #if CONFIG_FLEX_MVRES |
| mv_precision_cost, |
| #endif // CONFIG_FLEX_MVRES |
| MV_COST_WEIGHT); |
| |
| // TODO(kyslov) Account for Rate Mode! |
| rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar); |
| |
| if (rv && search_subpel) { |
| SUBPEL_FORCE_STOP subpel_force_stop = cpi->sf.mv.subpel_force_stop; |
| cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv, max_mv_precision, x->errorperbit, |
| &cpi->fn_ptr[bsize], subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmv_vec_cost, x->nmvcost, |
| #if CONFIG_FLEX_MVRES |
| mv_precision_cost, MV_SUBPEL_NONE, |
| #endif // CONFIG_FLEX_MVRES |
| &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, 0, 0, 0, 1); |
| *tmp_mv = x->best_mv; |
| *rate_mv = av1_mv_bit_cost_gen(&tmp_mv->as_mv, &ref_mv, max_mv_precision, |
| x->nmv_vec_cost, x->nmvcost, |
| #if CONFIG_FLEX_MVRES |
| mv_precision_cost, |
| #endif // CONFIG_FLEX_MVRES |
| MV_COST_WEIGHT); |
| } |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| return rv; |
| } |
| |
| static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x, |
| int_mv frame_mv[][REF_FRAMES], |
| MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int best_pred_sad, int *rate_mv, |
| int64_t best_sse_sofar, RD_STATS *best_rdc) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| AV1_COMMON *cm = &cpi->common; |
| (void)best_sse_sofar; |
| if (ref_frame > LAST_FRAME && gf_temporal_ref && |
| cpi->oxcf.rc_mode == AOM_CBR) { |
| int tmp_sad; |
| int dis; |
| int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX }; |
| |
| if (bsize < BLOCK_16X16) return -1; |
| |
| tmp_sad = av1_int_pro_motion_estimation( |
| cpi, x, bsize, mi_row, mi_col, |
| &x->mbmi_ext->ref_mv_info.ref_mv_stack[ref_frame][0].this_mv.as_mv); |
| |
| if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; |
| if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) return -1; |
| |
| frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; |
| x->best_mv.as_int = mi->mv[0].as_int; |
| x->best_mv.as_mv.row >>= 3; |
| x->best_mv.as_mv.col >>= 3; |
| MV ref_mv = av1_get_ref_mv(x, 0).as_mv; |
| |
| const MvSubpelPrecision max_mv_precision = mi->max_mv_precision; |
| #if CONFIG_FLEX_MVRES |
| const int use_flex_mv = |
| is_pb_mv_precision_active(cm, mi->mode, max_mv_precision); |
| const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); |
| int(*mv_precision_cost)[FLEX_MV_COSTS_SIZE] = |
| use_flex_mv ? x->pb_mv_precision_costs[down_ctx] : NULL; |
| #endif // CONFIG_FLEX_MVRES |
| *rate_mv = |
| av1_mv_bit_cost_gen(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv, |
| max_mv_precision, x->nmv_vec_cost, x->nmvcost, |
| #if CONFIG_FLEX_MVRES |
| mv_precision_cost, |
| #endif // CONFIG_FLEX_MVRES |
| MV_COST_WEIGHT); |
| frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; |
| frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; |
| |
| cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv, max_mv_precision, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmv_vec_cost, x->nmvcost, |
| #if CONFIG_FLEX_MVRES |
| mv_precision_cost, MV_SUBPEL_NONE, |
| #endif // CONFIG_FLEX_MVRES |
| &dis, &x->pred_sse[ref_frame], NULL, NULL, 0, 0, 0, 0, 0, 1); |
| frame_mv[NEWMV][ref_frame].as_int = x->best_mv.as_int; |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void find_predictors( |
| AV1_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int const_motion[REF_FRAMES], |
| int *ref_frame_skip_mask, const int flag_list[4], TileDataEnc *tile_data, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], BLOCK_SIZE bsize, |
| int force_skip_low_temp_var, int comp_pred_allowed) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); |
| const int num_planes = av1_num_planes(cm); |
| (void)tile_data; |
| (void)const_motion; |
| (void)comp_pred_allowed; |
| |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| // TODO(kyslov) this needs various further optimizations. to be continued.. |
| if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, ref_frame); |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, &mbmi_ext->ref_mv_info, NULL, |
| mbmi_ext->global_mvs, mbmi_ext->mode_context); |
| #if CONFIG_NEW_INTER_MODES |
| frame_mv[NEARMV][ref_frame] = av1_find_best_ref_mv_from_stack( |
| cm->fr_mv_precision, mbmi_ext, ref_frame); |
| #else |
| av1_find_best_ref_mvs_from_stack(cm->fr_mv_precision, mbmi_ext, ref_frame, |
| &frame_mv[NEARESTMV][ref_frame], |
| &frame_mv[NEARMV][ref_frame]); |
| #endif // CONFIG_NEW_INTER_MODES |
| |
| // Early exit for golden frame if force_skip_low_temp_var is set. |
| if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 && |
| !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) { |
| av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, |
| bsize); |
| } |
| } else { |
| *ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| av1_count_overlappable_neighbors(cm, xd); |
| mbmi->num_proj_ref = 1; |
| } |
| |
| static void estimate_single_ref_frame_costs(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MACROBLOCK *x, int segment_id, |
| unsigned int *ref_costs_single) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; |
| |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) |
| ref_costs_single[i] = base_cost; |
| |
| const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); |
| const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); |
| const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); |
| const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); |
| const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); |
| const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); |
| |
| // Determine cost of a single ref frame, where frame types are represented |
| // by a tree: |
| // Level 0: add cost whether this ref is a forward or backward ref |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| |
| // Level 1: if this ref is forward ref, |
| // add cost whether it is last/last2 or last3/golden |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| |
| // Level 1: if this ref is backward ref |
| // then add cost whether this ref is altref or backward ref |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1]; |
| |
| // Level 2: further add cost whether this ref is last or last2 |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1]; |
| |
| // Level 2: last3 or golden |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1]; |
| |
| // Level 2: bwdref or altref2 |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1]; |
| } |
| } |
| |
| static void estimate_comp_ref_frame_costs( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x, |
| int segment_id, unsigned int (*ref_costs_comp)[REF_FRAMES]) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) |
| memset(ref_costs_comp[ref_frame], 0, |
| REF_FRAMES * sizeof((*ref_costs_comp)[0])); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; |
| |
| if (cm->current_frame.reference_mode != SINGLE_REFERENCE) { |
| // Similar to single ref, determine cost of compound ref frames. |
| // cost_compound_refs = cost_first_ref + cost_second_ref |
| const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); |
| const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); |
| const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); |
| const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); |
| const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); |
| |
| const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); |
| unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; |
| |
| ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = |
| ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1]; |
| ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; |
| ref_bicomp_costs[ALTREF_FRAME] = 0; |
| |
| // cost of first ref frame |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; |
| |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; |
| |
| // cost of second ref frame |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; |
| |
| // cost: if one ref frame is forward ref, the other ref is backward ref |
| for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { |
| ref_costs_comp[ref0][ref1] = |
| ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; |
| } |
| } |
| |
| // cost: if both ref frames are the same side. |
| const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); |
| const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); |
| const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; |
| } else { |
| for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) |
| ref_costs_comp[ref0][ref1] = 512; |
| } |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; |
| } |
| } |
| } |
| |
| static void model_rd_with_curvfit(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist) { |
| (void)cpi; |
| (void)plane_bsize; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int qstep = AOMMAX( |
| ROUND_POWER_OF_TWO(p->dequant_QTX[1], QUANT_TABLE_BITS) >> dequant_shift, |
| 1); |
| |
| if (sse == 0) { |
| if (rate) *rate = 0; |
| if (dist) *dist = 0; |
| return; |
| } |
| aom_clear_system_state(); |
| const double sse_norm = (double)sse / num_samples; |
| const double qstepsqr = (double)qstep * qstep; |
| const double xqr = log2(sse_norm / qstepsqr); |
| |
| double rate_f, dist_by_sse_norm_f; |
| av1_model_rd_curvfit(plane_bsize, sse_norm, xqr, &rate_f, |
| &dist_by_sse_norm_f); |
| // 9.0 gives the best quality gain on a test video |
| // but it likely shall be qstep dependent |
| if (rate_f < 9.0) rate_f = 0.0; |
| const double dist_f = dist_by_sse_norm_f * sse_norm; |
| int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); |
| int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); |
| aom_clear_system_state(); |
| |
| // Check if skip is better |
| if (rate_i == 0) { |
| dist_i = sse << 4; |
| } else if (RDCOST(x->rdmult, rate_i, dist_i) >= |
| RDCOST(x->rdmult, 0, sse << 4)) { |
| rate_i = 0; |
| dist_i = sse << 4; |
| } |
| |
| if (rate) *rate = rate_i; |
| if (dist) *dist = dist_i; |
| } |
| |
| static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCKD *const xd, unsigned int var, |
| unsigned int sse) { |
| TX_SIZE tx_size; |
| if (cpi->common.tx_mode == TX_MODE_SELECT) { |
| if (sse > (var << 2)) |
| tx_size = AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| else |
| tx_size = TX_8X8; |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) |
| tx_size = TX_8X8; |
| else if (tx_size > TX_16X16) |
| tx_size = TX_16X16; |
| } else { |
| tx_size = AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| } |
| if (bsize > BLOCK_32X32) tx_size = TX_16X16; |
| return AOMMIN(tx_size, TX_16X16); |
| } |
| |
| static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, |
| 2, 2, 3, 3, 3, 4, |
| 4, 4, 5, 5 }; |
| static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, |
| 2, 3, 2, 3, 4, 3, |
| 4, 5, 4, 5 }; |
| |
| static void block_variance(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int w, int h, |
| unsigned int *sse, int *sum, int block_size, |
| uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { |
| int i, j, k = 0; |
| |
| *sse = 0; |
| *sum = 0; |
| |
| for (i = 0; i < h; i += block_size) { |
| for (j = 0; j < w; j += block_size) { |
| aom_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, &sse8x8[k], |
| &sum8x8[k]); |
| *sse += sse8x8[k]; |
| *sum += sum8x8[k]; |
| var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6); |
| k++; |
| } |
| } |
| } |
| |
| static void calculate_variance(int bw, int bh, TX_SIZE tx_size, |
| unsigned int *sse_i, int *sum_i, |
| unsigned int *var_o, unsigned int *sse_o, |
| int *sum_o) { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; |
| const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); |
| const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); |
| int i, j, k = 0; |
| |
| for (i = 0; i < nh; i += 2) { |
| for (j = 0; j < nw; j += 2) { |
| sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + |
| sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; |
| sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + |
| sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; |
| var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> |
| (b_width_log2_lookup[unit_size] + |
| b_height_log2_lookup[unit_size] + 6)); |
| k++; |
| } |
| } |
| } |
| |
| // Adjust the ac_thr according to speed, width, height and normalized sum |
| static int ac_thr_factor(const int speed, const int width, const int height, |
| const int norm_sum) { |
| if (speed >= 8 && norm_sum < 5) { |
| if (width <= 640 && height <= 480) |
| return 4; |
| else |
| return 2; |
| } |
| return 1; |
| } |
| |
| static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| unsigned int *var_y, unsigned int *sse_y, |
| int *early_term) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const uint32_t dc_quant = |
| ROUND_POWER_OF_TWO(p->dequant_QTX[0], QUANT_TABLE_BITS); |
| const uint32_t ac_quant = |
| ROUND_POWER_OF_TWO(p->dequant_QTX[1], QUANT_TABLE_BITS); |
| const int64_t dc_thr = dc_quant * dc_quant >> 6; |
| int64_t ac_thr = ac_quant * ac_quant >> 6; |
| unsigned int var; |
| int sum; |
| |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| const int num8x8 = 1 << (bw + bh - 2); |
| unsigned int sse8x8[256] = { 0 }; |
| int sum8x8[256] = { 0 }; |
| unsigned int var8x8[256] = { 0 }; |
| TX_SIZE tx_size; |
| int k; |
| // Calculate variance for whole partition, and also save 8x8 blocks' variance |
| // to be used in following transform skipping test. |
| block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); |
| var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); |
| |
| *var_y = var; |
| *sse_y = sse; |
| |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, |
| cpi->common.height, abs(sum) >> (bw + bh)); |
| |
| tx_size = calculate_tx_size(cpi, bsize, xd, var, sse); |
| // The code below for setting skip flag assumes tranform size of at least 8x8, |
| // so force this lower limit on transform. |
| if (tx_size < TX_8X8) tx_size = TX_8X8; |
| xd->mi[0]->tx_size = tx_size; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| { |
| unsigned int sse16x16[64] = { 0 }; |
| int sum16x16[64] = { 0 }; |
| unsigned int var16x16[64] = { 0 }; |
| const int num16x16 = num8x8 >> 2; |
| |
| unsigned int sse32x32[16] = { 0 }; |
| int sum32x32[16] = { 0 }; |
| unsigned int var32x32[16] = { 0 }; |
| const int num32x32 = num8x8 >> 4; |
| |
| int ac_test = 1; |
| int dc_test = 1; |
| const int num = (tx_size == TX_8X8) |
| ? num8x8 |
| : ((tx_size == TX_16X16) ? num16x16 : num32x32); |
| const unsigned int *sse_tx = |
| (tx_size == TX_8X8) ? sse8x8 |
| : ((tx_size == TX_16X16) ? sse16x16 : sse32x32); |
| const unsigned int *var_tx = |
| (tx_size == TX_8X8) ? var8x8 |
| : ((tx_size == TX_16X16) ? var16x16 : var32x32); |
| |
| // Calculate variance if tx_size > TX_8X8 |
| if (tx_size >= TX_16X16) |
| calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, |
| sum16x16); |
| if (tx_size == TX_32X32) |
| calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, |
| sse32x32, sum32x32); |
| |
| // Skipping test |
| *early_term = 0; |
| for (k = 0; k < num; k++) |
| // Check if all ac coefficients can be quantized to zero. |
| if (!(var_tx[k] < ac_thr || var == 0)) { |
| ac_test = 0; |
| break; |
| } |
| |
| for (k = 0; k < num; k++) |
| // Check if dc coefficient can be quantized to zero. |
| if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { |
| dc_test = 0; |
| break; |
| } |
| |
| if (ac_test && dc_test) { |
| *early_term = 1; |
| } |
| } |
| } |
| |
| static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, |
| int64_t *skip_sse_sb, unsigned int *var_y, |
| unsigned int *sse_y) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| |
| unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, xd, var, sse); |
| |
| if (cpi->sf.use_modeled_non_rd_cost) { |
| const int bwide = block_size_wide[bsize]; |
| const int bhigh = block_size_high[bsize]; |
| model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate, |
| &dist); |
| } else { |
| rate = INT_MAX; // this will be overwritten later with block_yrd |
| dist = INT_MAX; |
| } |
| *var_y = var; |
| *sse_y = sse; |
| x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| assert(rate >= 0); |
| |
| if (skip_txfm_sb) *skip_txfm_sb = rate == 0; |
| if (skip_sse_sb) *skip_sse_sb = sse << 4; |
| rate = AOMMIN(rate, INT_MAX); |
| *out_rate_sum = (int)rate; |
| *out_dist_sum = dist; |
| } |
| |
| static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, |
| RD_STATS *this_rdc, int *skippable, int64_t *sse, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblockd_plane *pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| int block = 0; |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| |
| assert(tx_size > 0 && tx_size <= 4); |
| |
| (void)mi_row; |
| (void)mi_col; |
| (void)cpi; |
| |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| *skippable = 1; |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size]; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| const int diff_stride = bw; |
| const int16_t *src_diff; |
| src_diff = &p->src_diff[(r * diff_stride + c) << 2]; |
| |
| switch (tx_size) { |
| case TX_64X64: |
| assert(0); // Not implemented |
| break; |
| case TX_32X32: |
| aom_hadamard_32x32(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 32 * 32, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| case TX_16X16: |
| aom_hadamard_16x16(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| case TX_8X8: |
| aom_hadamard_8x8(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| break; |
| default: assert(0); break; |
| } |
| *skippable &= (*eob == 0); |
| eob_cost += 1; |
| } |
| block += step; |
| } |
| } |
| this_rdc->skip = *skippable; |
| this_rdc->rate = 0; |
| if (*sse < INT64_MAX) { |
| *sse = (*sse << 6) >> 2; |
| if (*skippable) { |
| this_rdc->dist = *sse; |
| return; |
| } |
| } |
| |
| block = 0; |
| this_rdc->dist = 0; |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| int64_t dummy; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| |
| if (*eob == 1) |
| this_rdc->rate += (int)abs(qcoeff[0]); |
| else if (*eob > 1) |
| this_rdc->rate += aom_satd(qcoeff, step << 4); |
| |
| this_rdc->dist += |
| av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2; |
| } |
| block += step; |
| } |
| } |
| |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode, |
| MV_REFERENCE_FRAME ref_frame0, |
| MV_REFERENCE_FRAME ref_frame1, |
| const AV1_COMMON *cm) { |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| mbmi->ref_mv_idx = 0; |
| mbmi->mode = pred_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame0; |
| mbmi->ref_frame[1] = ref_frame1; |
| pmi->palette_size[0] = 0; |
| pmi->palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->num_proj_ref = 1; |
| mbmi->interintra_mode = 0; |
| #if CONFIG_DSPL_RESIDUAL |
| mbmi->dspl_type = DSPL_NONE; |
| #endif // CONFIG_DSPL_RESIDUAL |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->rd_stats.skip = x->skip; |
| memcpy(ctx->blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| ctx->skippable = x->skip; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->comp_pred_diff = 0; |
| ctx->hybrid_pred_diff = 0; |
| ctx->single_pred_diff = 0; |
| } |
| |
| static int get_pred_buffer(PRED_BUFFER *p, int len) { |
| for (int i = 0; i < len; i++) { |
| if (!p[i].in_use) { |
| p[i].in_use = 1; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static void free_pred_buffer(PRED_BUFFER *p) { |
| if (p != NULL) p->in_use = 0; |
| } |
| |
| static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return x |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = x->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = x->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| #if !CONFIG_NEW_INTER_MODES |
| // We no longer need to write this bit with NEARESTMV gone. |
| |
| mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| #endif // !CONFIG_NEW_INTER_MODES |
| return mode_cost; |
| } |
| } |
| } |
| |
| static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode, |
| RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row, |
| int mv_col) { |
| // Bias against MVs associated with NEWMV mode that are very different from |
| // top/left neighbors. |
| if (this_mode == NEWMV) { |
| int al_mv_average_row; |
| int al_mv_average_col; |
| int left_row, left_col; |
| int row_diff, col_diff; |
| int above_mv_valid = 0; |
| int left_mv_valid = 0; |
| int above_row = 0; |
| int above_col = 0; |
| |
| if (xd->above_mbmi) { |
| above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV; |
| above_row = xd->above_mbmi->mv[0].as_mv.row; |
| above_col = xd->above_mbmi->mv[0].as_mv.col; |
| } |
| if (xd->left_mbmi) { |
| left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV; |
| left_row = xd->left_mbmi->mv[0].as_mv.row; |
| left_col = xd->left_mbmi->mv[0].as_mv.col; |
| } |
| if (above_mv_valid && left_mv_valid) { |
| al_mv_average_row = (above_row + left_row + 1) >> 1; |
| al_mv_average_col = (above_col + left_col + 1) >> 1; |
| } else if (above_mv_valid) { |
| al_mv_average_row = above_row; |
| al_mv_average_col = above_col; |
| } else if (left_mv_valid) { |
| al_mv_average_row = left_row; |
| al_mv_average_col = left_col; |
| } else { |
| al_mv_average_row = al_mv_average_col = 0; |
| } |
| row_diff = al_mv_average_row - mv_row; |
| col_diff = al_mv_average_col - mv_col; |
| if (row_diff > 48 || row_diff < -48 || col_diff > 48 || col_diff < -48) { |
| if (bsize > BLOCK_32X32) |
| this_rdc->rdcost = this_rdc->rdcost << 1; |
| else |
| this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; |
| } |
| } |
| } |
| |
| struct estimate_block_intra_args { |
| AV1_COMP *cpi; |
| MACROBLOCK *x; |
| PREDICTION_MODE mode; |
| int skippable; |
| RD_STATS *rdc; |
| }; |
| |
| static void estimate_block_intra(int plane, int block, int row, int col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct estimate_block_intra_args *const args = arg; |
| AV1_COMP *const cpi = args->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int64_t src_stride = p->src.stride; |
| const int64_t dst_stride = pd->dst.stride; |
| RD_STATS this_rdc; |
| |
| (void)block; |
| (void)plane_bsize; |
| assert(plane == 0); |
| |
| p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; |
| |
| av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size); |
| |
| if (plane == 0) { |
| int64_t this_sse = INT64_MAX; |
| block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, &this_sse, bsize_tx, |
| AOMMIN(tx_size, TX_16X16)); |
| } else { |
| return; |
| } |
| |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| args->rdc->rate += this_rdc.rate; |
| args->rdc->dist += this_rdc.dist; |
| } |
| |
| void av1_fast_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, RD_STATS *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| |
| BEST_PICKMODE best_pickmode; |
| int inter_mode_mask[BLOCK_SIZES]; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame; |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; |
| uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES]; |
| struct buf_2d yv12_mb[6][MAX_MB_PLANE]; |
| static const int flag_list[5] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, AOM_GOLD_FLAG }; |
| RD_STATS this_rdc, best_rdc; |
| // var_y and sse_y are saved to be used in skipping checking |
| unsigned int sse_y = UINT_MAX; |
| unsigned int var_y = UINT_MAX; |
| const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; |
| |
| InterpFilter filter_ref; |
| int const_motion[REF_FRAMES] = { 0 }; |
| int ref_frame_skip_mask = 0; |
| int best_pred_sad = INT_MAX; |
| int best_early_term = 0; |
| unsigned int ref_costs_single[REF_FRAMES], |
| ref_costs_comp[REF_FRAMES][REF_FRAMES]; |
| int use_golden_nonzeromv = 1; |
| int force_skip_low_temp_var = 0; |
| int skip_ref_find_pred[5] = { 0 }; |
| unsigned int sse_zeromv_norm = UINT_MAX; |
| const unsigned int thresh_skip_golden = 500; |
| int64_t best_sse_sofar = INT64_MAX; |
| int gf_temporal_ref = 0; |
| const struct segmentation *const seg = &cm->seg; |
| int comp_modes = 0; |
| int num_inter_modes = RT_INTER_MODES; |
| unsigned char segment_id = mi->segment_id; |
| InterpFilter best_filter = EIGHTTAP_REGULAR; |
| PRED_BUFFER tmp[4]; |
| DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]); |
| PRED_BUFFER *this_mode_pred = NULL; |
| const int reuse_inter_pred = cpi->sf.reuse_inter_pred_nonrd; |
| const int bh = block_size_high[bsize]; |
| const int bw = block_size_wide[bsize]; |
| const int pixels_in_block = bh * bw; |
| struct buf_2d orig_dst = pd->dst; |
| |
| const int intra_cost_penalty = |
| av1_get_intra_cost_penalty(cm->base_qindex, cm->y_dc_delta_q, |
| #if CONFIG_EXTQUANT |
| cm->seq_params.base_y_dc_delta_q, |
| #endif // CONFIG_EXTQUANT |
| cm->seq_params.bit_depth); |
| const int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0); |
| const int perform_intra_pred = cpi->sf.check_intra_pred_nonrd; |
| |
| (void)best_rd_so_far; |
| |
| init_best_pickmode(&best_pickmode); |
| |
| for (int i = 0; i < BLOCK_SIZES; ++i) inter_mode_mask[i] = INTER_ALL; |
| |
| // TODO(kyslov) Move this to Speed Features |
| #if CONFIG_NEW_INTER_MODES |
| inter_mode_mask[BLOCK_128X128] = INTER_NEAR; |
| #else |
| inter_mode_mask[BLOCK_128X128] = INTER_NEAREST_NEAR; |
| #endif // CONFIG_NEW_INTER_MODES |
| |
| x->source_variance = UINT_MAX; |
| |
| struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME); |
| struct scale_factors *const sf_golden = |
| get_ref_scale_factors(cm, GOLDEN_FRAME); |
| gf_temporal_ref = 1; |
| // For temporal long term prediction, check that the golden reference |
| // is same scale as last reference, otherwise disable. |
| if ((sf_last->x_scale_fp != sf_golden->x_scale_fp) || |
| (sf_last->y_scale_fp != sf_golden->y_scale_fp)) { |
| gf_temporal_ref = 0; |
| } |
| |
| av1_collect_neighbors_ref_counts(xd); |
| av1_count_overlappable_neighbors(cm, xd); |
| |
| estimate_single_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single); |
| if (cpi->sf.use_comp_ref_nonrd) |
| estimate_comp_ref_frame_costs(cm, xd, x, segment_id, ref_costs_comp); |
| |
| memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES); |
| if (reuse_inter_pred) { |
| for (int i = 0; i < 3; i++) { |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| tmp[i].stride = bw; |
| tmp[i].in_use = 0; |
| } |
| tmp[3].data = pd->dst.buf; |
| tmp[3].stride = pd->dst.stride; |
| tmp[3].in_use = 0; |
| } |
| |
| x->skip = 0; |
| |
| // Instead of using av1_get_pred_context_switchable_interp(xd) to assign |
| // filter_ref, we use a less strict condition on assigning filter_ref. |
| // This is to reduce the probabily of entering the flow of not assigning |
| // filter_ref and then skip filter search. |
| filter_ref = cm->interp_filter; |
| |
| // initialize mode decisions |
| av1_invalid_rd_stats(&best_rdc); |
| av1_invalid_rd_stats(&this_rdc); |
| av1_invalid_rd_stats(rd_cost); |
| mi->sb_type = bsize; |
| mi->ref_frame[0] = NONE_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) { |
| usable_ref_frame = LAST_FRAME; |
| } else { |
| usable_ref_frame = GOLDEN_FRAME; |
| } |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| if (!(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME])) |
| use_golden_nonzeromv = 0; |
| |
| // If the segment reference frame feature is enabled and it's set to GOLDEN |
| // reference, then make sure we don't skip checking GOLDEN, this is to |
| // prevent possibility of not picking any mode. |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { |
| usable_ref_frame = GOLDEN_FRAME; |
| skip_ref_find_pred[GOLDEN_FRAME] = 0; |
| } |
| |
| for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME; |
| ref_frame_iter <= usable_ref_frame; ++ref_frame_iter) { |
| // Skip find_predictor if the reference frame is not in the |
| // ref_frame_flags (i.e., not used as a reference for this frame). |
| skip_ref_find_pred[ref_frame_iter] = |
| !(cpi->ref_frame_flags & flag_list[ref_frame_iter]); |
| if (!skip_ref_find_pred[ref_frame_iter]) { |
| find_predictors(cpi, x, ref_frame_iter, frame_mv, const_motion, |
| &ref_frame_skip_mask, flag_list, tile_data, yv12_mb, |
| bsize, force_skip_low_temp_var, comp_modes > 0); |
| } |
| } |
| const int large_block = bsize >= BLOCK_32X32; |
| const int use_model_yrd_large = |
| cpi->oxcf.rc_mode == AOM_CBR && large_block && |
| !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && |
| cm->base_qindex; |
| for (int idx = 0; idx < num_inter_modes; ++idx) { |
| int rate_mv = 0; |
| int mode_rd_thresh; |
| int mode_index; |
| int64_t this_sse; |
| int is_skippable; |
| int this_early_term = 0; |
| int skip_this_mv = 0; |
| int comp_pred = 0; |
| int force_mv_inter_layer = 0; |
| PREDICTION_MODE this_mode; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| second_ref_frame = NONE_FRAME; |
| |
| this_mode = ref_mode_set[idx].pred_mode; |
| ref_frame = ref_mode_set[idx].ref_frame; |
| init_mbmi(mi, this_mode, ref_frame, NONE_FRAME, cm); |
| |
| mi->tx_size = AOMMIN(AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cm->tx_mode]), |
| TX_16X16); |
| memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size)); |
| memset(mi->txk_type, DCT_DCT, sizeof(mi->txk_type[0]) * TXK_TYPE_BUF_LEN); |
| av1_zero(x->blk_skip); |
| |
| if (ref_frame > usable_ref_frame) continue; |
| if (skip_ref_find_pred[ref_frame]) continue; |
| |
| // If the segment reference frame feature is enabled then do nothing if the |
| // current ref frame is not allowed. |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) |
| continue; |
| |
| if (ref_frame == GOLDEN_FRAME && cpi->oxcf.rc_mode == AOM_CBR && |
| sse_zeromv_norm < thresh_skip_golden && this_mode == NEWMV) |
| continue; |
| |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue; |
| |
| if (!(inter_mode_mask[bsize] & (1 << this_mode))) continue; |
| |
| if (const_motion[ref_frame] && this_mode == NEARMV) continue; |
| |
| if (ref_frame == GOLDEN_FRAME && bsize > BLOCK_16X16) continue; |
| |
| if (ref_frame == GOLDEN_FRAME && this_mode == NEARMV) continue; |
| |
| // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var |
| // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped |
| // later. |
| if (!force_mv_inter_layer && force_skip_low_temp_var && |
| ref_frame == GOLDEN_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) { |
| continue; |
| } |
| |
| // TODO(kyslov) Refine logic of pruning reference . |
| #if 0 |
| if (x->content_state_sb != kVeryHighSad && |
| (cpi->sf.short_circuit_low_temp_var >= 2 || |
| (cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64)) |
| && force_skip_low_temp_var && ref_frame == LAST_FRAME && this_mode == |
| NEWMV) { |
| continue; |
| } |
| |
| // Disable this drop out case if the ref frame segment level feature is |
| // enabled for this segment. This is to prevent the possibility that we |
| // end up unable to pick any mode. |
| if (!segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) { |
| if (sf->reference_masking && |
| !(frame_mv[this_mode][ref_frame].as_int == 0 && |
| ref_frame == LAST_FRAME)) { |
| if (usable_ref_frame < ALTREF_FRAME) { |
| if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) { |
| i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; |
| if ((cpi->ref_frame_flags & flag_list[i])) |
| if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } else if (!cpi->rc.is_src_frame_alt_ref && |
| !(frame_mv[this_mode][ref_frame].as_int == 0 && |
| ref_frame == ALTREF_FRAME)) { |
| int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME : |
| GOLDEN_FRAME; int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME : |
| ALTREF_FRAME; if (((cpi->ref_frame_flags & flag_list[ref1]) && |
| (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) || |
| ((cpi->ref_frame_flags & flag_list[ref2]) && |
| (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1)))) |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } |
| if (ref_frame_skip_mask & (1 << ref_frame)) continue; |
| } |
| #endif |
| |
| // Select prediction reference frames. |
| for (int i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| } |
| |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = second_ref_frame; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; |
| mode_rd_thresh = best_pickmode.best_mode_skip_txfm |
| ? rd_threshes[mode_index] << 1 |
| : rd_threshes[mode_index]; |
| |
| // Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding |
| // speed |
| if (ref_frame == GOLDEN_FRAME && cpi->rc.frames_since_golden > 4) |
| mode_rd_thresh = mode_rd_thresh << 3; |
| |
| if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) |
| if (frame_mv[this_mode][ref_frame].as_int != 0) continue; |
| |
| if (this_mode == NEWMV && !force_mv_inter_layer) { |
| if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize, |
| mi_row, mi_col, best_pred_sad, &rate_mv, best_sse_sofar, |
| &best_rdc)) |
| continue; |
| } |
| |
| for (PREDICTION_MODE inter_mv_mode = SINGLE_INTER_MODE_START; |
| inter_mv_mode < SINGLE_INTER_MODE_END; inter_mv_mode++) { |
| if (inter_mv_mode == this_mode || comp_pred) continue; |
| if (mode_checked[inter_mv_mode][ref_frame] && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[inter_mv_mode][ref_frame].as_int && |
| frame_mv[inter_mv_mode][ref_frame].as_int == 0) { |
| skip_this_mv = 1; |
| break; |
| } |
| } |
| |
| if (skip_this_mv) continue; |
| |
| // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no |
| // need to compute best_pred_sad which is only used to skip golden NEWMV. |
| if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME && |
| frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { |
| const int pre_stride = xd->plane[0].pre[0].stride; |
| const uint8_t *const pre_buf = |
| xd->plane[0].pre[0].buf + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); |
| best_pred_sad = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride); |
| x->pred_mv_sad[LAST_FRAME] = best_pred_sad; |
| } |
| |
| #if !CONFIG_NEW_INTER_MODES |
| if (this_mode != NEARESTMV && !comp_pred && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[NEARESTMV][ref_frame].as_int) |
| continue; |
| #endif // !CONFIG_NEW_INTER_MODES |
| |
| mi->mode = this_mode; |
| mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; |
| mi->mv[1].as_int = 0; |
| if (reuse_inter_pred) { |
| if (!this_mode_pred) { |
| this_mode_pred = &tmp[3]; |
| } else { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| |
| // TODO(kyslov) bring back filter search |
| mi->interp_filters = (filter_ref == SWITCHABLE) |
| ? av1_broadcast_interp_filter(EIGHTTAP_REGULAR) |
| : av1_broadcast_interp_filter(filter_ref); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| if (cpi->sf.use_modeled_non_rd_cost) { |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, |
| &this_rdc.skip, NULL, &var_y, &sse_y); |
| |
| } else { |
| if (use_model_yrd_large) { |
| model_skip_for_sb_y_large(cpi, bsize, x, xd, &var_y, &sse_y, |
| &this_early_term); |
| } else { |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, |
| &this_rdc.skip, NULL, &var_y, &sse_y); |
| } |
| } |
| |
| if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) { |
| sse_zeromv_norm = |
| sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| } |
| |
| if (sse_y < best_sse_sofar) best_sse_sofar = sse_y; |
| |
| const int skip_ctx = av1_get_skip_context(xd); |
| const int skip_cost = x->skip_cost[skip_ctx][1]; |
| const int no_skip_cost = x->skip_cost[skip_ctx][0]; |
| if (!this_early_term) { |
| if (cpi->sf.use_modeled_non_rd_cost) { |
| x->skip = this_rdc.skip; |
| if (this_rdc.skip) { |
| this_rdc.rate = skip_cost; |
| } else { |
| this_rdc.rate += no_skip_cost; |
| } |
| } else { |
| this_sse = (int64_t)sse_y; |
| block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, &this_sse, |
| bsize, mi->tx_size); |
| x->skip = this_rdc.skip; |
| if (this_rdc.skip) { |
| this_rdc.rate = skip_cost; |
| } else { |
| if (RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >= |
| RDCOST(x->rdmult, 0, |
| this_sse)) { // this_sse already multiplied by 16 in |
| // block_yrd |
| x->skip = 1; |
| this_rdc.rate = skip_cost; |
| this_rdc.dist = this_sse; |
| } else { |
| this_rdc.rate += no_skip_cost; |
| } |
| } |
| } |
| } else { |
| x->skip = 1; |
| this_rdc.rate = skip_cost; |
| this_rdc.dist = sse_y << 4; |
| } |
| |
| // TODO(kyslov) account for UV prediction cost |
| this_rdc.rate += rate_mv; |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); |
| this_rdc.rate += cost_mv_ref(x, this_mode, mode_ctx); |
| |
| this_rdc.rate += ref_costs_single[ref_frame]; |
| |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| if (cpi->oxcf.rc_mode == AOM_CBR && cpi->oxcf.speed >= 8) { |
| newmv_diff_bias(xd, this_mode, &this_rdc, bsize, |
| frame_mv[this_mode][ref_frame].as_mv.row, |
| frame_mv[this_mode][ref_frame].as_mv.col); |
| } |
| |
| mode_checked[this_mode][ref_frame] = 1; |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_early_term = this_early_term; |
| best_pickmode.best_mode = this_mode; |
| best_pickmode.best_pred_filter = mi->interp_filters; |
| best_pickmode.best_tx_size = mi->tx_size; |
| best_pickmode.best_ref_frame = ref_frame; |
| best_pickmode.best_mode_skip_txfm = x->skip; |
| best_pickmode.best_second_ref_frame = second_ref_frame; |
| if (reuse_inter_pred) { |
| free_pred_buffer(best_pickmode.best_pred); |
| best_pickmode.best_pred = this_mode_pred; |
| } |
| } else { |
| if (reuse_inter_pred) free_pred_buffer(this_mode_pred); |
| } |
| if (best_early_term && idx > 0) { |
| x->skip = 1; |
| break; |
| } |
| } |
| |
| mi->mode = best_pickmode.best_mode; |
| mi->interp_filters = av1_broadcast_interp_filter(best_filter); |
| mi->max_mv_precision = cm->fr_mv_precision; |
| mi->pb_mv_precision = cm->fr_mv_precision; |
| mi->tx_size = best_pickmode.best_tx_size; |
| memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size)); |
| mi->ref_frame[0] = best_pickmode.best_ref_frame; |
| mi->mv[0].as_int = |
| frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int; |
| mi->ref_frame[1] = best_pickmode.best_second_ref_frame; |
| |
| // Perform intra prediction search, if the best SAD is above a certain |
| // threshold. |
| mi->angle_delta[PLANE_TYPE_Y] = 0; |
| mi->angle_delta[PLANE_TYPE_UV] = 0; |
| mi->filter_intra_mode_info.use_filter_intra = 0; |
| // TODO(kyslov@) Need to adjust inter_mode_thresh |
| if (best_rdc.rdcost == INT64_MAX || |
| (perform_intra_pred && !x->skip && best_rdc.rdcost > inter_mode_thresh && |
| bsize <= cpi->sf.max_intra_bsize)) { |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| PRED_BUFFER *const best_pred = best_pickmode.best_pred; |
| TX_SIZE intra_tx_size = |
| AOMMIN(AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]), |
| TX_16X16); |
| |
| if (reuse_inter_pred && best_pred != NULL) { |
| if (best_pred->data == orig_dst.buf) { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| aom_convolve_copy(best_pred->data, best_pred->stride, |
| this_mode_pred->data, this_mode_pred->stride, bw, bh); |
| best_pickmode.best_pred = this_mode_pred; |
| } |
| } |
| pd->dst = orig_dst; |
| |
| for (int i = 0; i < 4; ++i) { |
| const PREDICTION_MODE this_mode = intra_mode_list[i]; |
| const THR_MODES mode_index = |
| mode_idx[INTRA_FRAME][mode_offset(this_mode)]; |
| const int mode_rd_thresh = rd_threshes[mode_index]; |
| |
| if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) { |
| continue; |
| } |
| |
| mi->mode = this_mode; |
| mi->ref_frame[0] = INTRA_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, |
| &args); |
| // TODO(kyslov@) Need to account for skippable |
| int mode_cost = 0; |
| if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { |
| mode_cost += x->angle_delta_cost[this_mode - V_PRED] |
| [MAX_ANGLE_DELTA + |
| mi->angle_delta[PLANE_TYPE_Y]]; |
| } |
| if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
| mode_cost += x->filter_intra_cost[bsize][0]; |
| } |
| this_rdc.rate += ref_costs_single[INTRA_FRAME]; |
| this_rdc.rate += intra_cost_penalty; |
| this_rdc.rate += mode_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_pickmode.best_mode = this_mode; |
| best_pickmode.best_intra_tx_size = mi->tx_size; |
| best_pickmode.best_ref_frame = INTRA_FRAME; |
| best_pickmode.best_second_ref_frame = NONE_FRAME; |
| mi->uv_mode = this_mode; |
| mi->mv[0].as_int = INVALID_MV; |
| mi->mv[1].as_int = INVALID_MV; |
| } |
| } |
| |
| // Reset mb_mode_info to the best inter mode. |
| if (best_pickmode.best_ref_frame != INTRA_FRAME) { |
| mi->tx_size = best_pickmode.best_tx_size; |
| } else { |
| mi->tx_size = best_pickmode.best_intra_tx_size; |
| } |
| } |
| |
| pd->dst = orig_dst; |
| mi->mode = best_pickmode.best_mode; |
| mi->ref_frame[0] = best_pickmode.best_ref_frame; |
| mi->ref_frame[1] = best_pickmode.best_second_ref_frame; |
| |
| if (!is_inter_block(mi)) { |
| mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS); |
| } |
| |
| if (reuse_inter_pred && best_pickmode.best_pred != NULL) { |
| PRED_BUFFER *const best_pred = best_pickmode.best_pred; |
| if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { |
| aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } |
| } |
| |
| store_coding_context(x, ctx, mi->mode); |
| *rd_cost = best_rdc; |
| } |