blob: aa25b3fa1acd2ca11a7a74002f77966f3b3caf13 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/alloccommon.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/common/quant_common.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/gop_structure.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#define USE_UNRESTRICTED_Q_IN_CQ_MODE 0
// Max rate target for 1080P and below encodes under normal circumstances
// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
#define MAX_MB_RATE 250
#define MAXRATE_1080P 2025000
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
#define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0
#define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2
#define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0
#define FRAME_OVERHEAD_BITS 200
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
switch (bit_depth) { \
case AOM_BITS_8: name = name##_8; break; \
case AOM_BITS_10: name = name##_10; break; \
case AOM_BITS_12: name = name##_12; break; \
default: \
assert(0 && \
"bit_depth should be AOM_BITS_8, AOM_BITS_10" \
" or AOM_BITS_12"); \
name = NULL; \
} \
} while (0)
// Tables relating active max Q to active min Q
static int kf_low_motion_minq_8[QINDEX_RANGE];
static int kf_high_motion_minq_8[QINDEX_RANGE];
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
static int inter_minq_8[QINDEX_RANGE];
static int rtc_minq_8[QINDEX_RANGE];
static int kf_low_motion_minq_10[QINDEX_RANGE];
static int kf_high_motion_minq_10[QINDEX_RANGE];
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
static int inter_minq_10[QINDEX_RANGE];
static int rtc_minq_10[QINDEX_RANGE];
static int kf_low_motion_minq_12[QINDEX_RANGE];
static int kf_high_motion_minq_12[QINDEX_RANGE];
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
static int inter_minq_12[QINDEX_RANGE];
static int rtc_minq_12[QINDEX_RANGE];
static int gf_high = 2400;
static int gf_low = 300;
static int kf_high = 5000;
static int kf_low = 400;
// How many times less pixels there are to encode given the current scaling.
// Temporary replacement for rcf_mult and rate_thresh_mult.
static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) {
return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height);
}
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int get_minq_index(double maxq, double x3, double x2, double x1,
aom_bit_depth_t bit_depth) {
const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0) return 0;
#if CONFIG_EXTQUANT
return av1_find_qindex(minqtarget, bit_depth, 0,
bit_depth == AOM_BITS_8
? QINDEX_RANGE_8_BITS - 1
: bit_depth == AOM_BITS_10
? QINDEX_RANGE_10_BITS - 1
: QINDEX_RANGE - 1);
#else
return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
#endif
}
static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
int *arfgf_high, int *inter, int *rtc,
aom_bit_depth_t bit_depth) {
int i;
#if CONFIG_EXTQUANT
for (i = 0; i < (bit_depth == AOM_BITS_8
? QINDEX_RANGE_8_BITS
: bit_depth == AOM_BITS_10 ? QINDEX_RANGE_10_BITS
: QINDEX_RANGE);
i++) {
#else
for (i = 0; i < QINDEX_RANGE; i++) {
#endif
const double maxq = av1_convert_qindex_to_q(i, bit_depth);
kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
}
}
void av1_rc_init_minq_luts(void) {
init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
inter_minq_8, rtc_minq_8, AOM_BITS_8);
init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
inter_minq_10, rtc_minq_10, AOM_BITS_10);
init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
inter_minq_12, rtc_minq_12, AOM_BITS_12);
}
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
// Convert the index to a real Q value (scaled down to match old Q values)
switch (bit_depth) {
case AOM_BITS_8:
return av1_ac_quant_QTX(qindex, 0, bit_depth) /
(4.0 * (1 << QUANT_TABLE_BITS));
case AOM_BITS_10:
return av1_ac_quant_QTX(qindex, 0, bit_depth) /
(16.0 * (1 << QUANT_TABLE_BITS));
case AOM_BITS_12:
return av1_ac_quant_QTX(qindex, 0, bit_depth) /
(64.0 * (1 << QUANT_TABLE_BITS));
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1.0;
}
}
int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor, aom_bit_depth_t bit_depth) {
const double q = av1_convert_qindex_to_q(qindex, bit_depth);
int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
assert(correction_factor <= MAX_BPB_FACTOR &&
correction_factor >= MIN_BPB_FACTOR);
// q based adjustment to baseline enumerator
enumerator += (int)(enumerator * q) >> 12;
return (int)(enumerator * correction_factor / q);
}
int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
double correction_factor,
aom_bit_depth_t bit_depth) {
const int bpm =
(int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
return AOMMAX(FRAME_OVERHEAD_BITS,
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
}
int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
FRAME_UPDATE_TYPE frame_update_type) {
const RATE_CONTROL *rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const int min_frame_target =
AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
// Clip the frame target to the minimum setup value.
if (frame_update_type == OVERLAY_UPDATE ||
frame_update_type == INTNL_OVERLAY_UPDATE) {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
target = min_frame_target;
} else if (target < min_frame_target) {
target = min_frame_target;
}
// Clip the frame target to the maximum allowed value.
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
if (oxcf->rc_max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return target;
}
int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (oxcf->rc_max_intra_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
return target;
}
// Update the buffer level: leaky bucket model.
static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
rc->bits_off_target -= encoded_frame_size;
else
rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
// Clip the buffer level to the maximum specified buffer size.
rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = rc->bits_off_target;
}
int av1_rc_get_default_min_gf_interval(int width, int height,
double framerate) {
// Assume we do not need any constraint lower than 4K 20 fps
static const double factor_safe = 3840 * 2160 * 20.0;
const double factor = width * height * framerate;
const int default_interval =
clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
if (factor <= factor_safe)
return default_interval;
else
return AOMMAX(default_interval,
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
// Note this logic makes:
// 4K24: 5
// 4K30: 6
// 4K60: 12
}
int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
interval += (interval & 0x01); // Round to even value
interval = AOMMAX(MAX_GF_INTERVAL, interval);
return AOMMAX(interval, min_gf_interval);
}
void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
int i;
if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
} else {
rc->avg_frame_qindex[KEY_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
rc->avg_frame_qindex[INTER_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
}
rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
rc->buffer_level = rc->starting_buffer_level;
rc->bits_off_target = rc->starting_buffer_level;
rc->rolling_target_bits = rc->avg_frame_bandwidth;
rc->rolling_actual_bits = rc->avg_frame_bandwidth;
rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
rc->total_actual_bits = 0;
rc->total_target_bits = 0;
rc->total_target_vs_actual = 0;
rc->frames_since_key = 8; // Sensible default for first frame.
rc->this_key_frame_forced = 0;
rc->next_key_frame_forced = 0;
rc->source_alt_ref_pending = 0;
rc->source_alt_ref_active = 0;
rc->frames_till_gf_update_due = 0;
rc->ni_av_qi = oxcf->worst_allowed_q;
rc->ni_tot_qi = 0;
rc->ni_frames = 0;
rc->tot_q = 0.0;
rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
rc->rate_correction_factors[i] = 0.7;
}
rc->rate_correction_factors[KF_STD] = 1.0;
rc->min_gf_interval = oxcf->min_gf_interval;
rc->max_gf_interval = oxcf->max_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, oxcf->init_framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
oxcf->init_framerate, rc->min_gf_interval);
rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
}
int av1_rc_drop_frame(AV1_COMP *cpi) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
if (!oxcf->drop_frames_water_mark) {
return 0;
} else {
if (rc->buffer_level < 0) {
// Always drop if buffer is below 0.
return 1;
} else {
// If buffer is below drop_mark, for now just drop every other frame
// (starting with the next frame) until it increases back over drop_mark.
int drop_mark =
(int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
--rc->decimation_factor;
} else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
rc->decimation_factor = 1;
}
if (rc->decimation_factor > 0) {
if (rc->decimation_count > 0) {
--rc->decimation_count;
return 1;
} else {
rc->decimation_count = rc->decimation_factor;
return 0;
}
} else {
rc->decimation_count = 0;
return 0;
}
}
}
}
static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
KF_STD, // KF_UPDATE
INTER_NORMAL, // LF_UPDATE
GF_ARF_STD, // GF_UPDATE
GF_ARF_STD, // ARF_UPDATE
INTER_NORMAL, // OVERLAY_UPDATE
INTER_NORMAL, // INTNL_OVERLAY_UPDATE
GF_ARF_LOW, // INTNL_ARF_UPDATE
};
static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group) {
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
assert(update_type < FRAME_UPDATE_TYPES);
return rate_factor_levels[update_type];
}
static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
int height) {
const RATE_CONTROL *const rc = &cpi->rc;
double rcf;
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
rcf = rc->rate_correction_factors[KF_STD];
} else if (is_stat_consumption_stage(cpi)) {
const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
rcf = rc->rate_correction_factors[rf_lvl];
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rcf = rc->rate_correction_factors[GF_ARF_STD];
else
rcf = rc->rate_correction_factors[INTER_NORMAL];
}
rcf *= resize_rate_factor(cpi, width, height);
return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
}
static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width,
int height) {
RATE_CONTROL *const rc = &cpi->rc;
// Normalize RCF to account for the size-dependent scaling factor.
factor /= resize_rate_factor(cpi, width, height);
factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
rc->rate_correction_factors[KF_STD] = factor;
} else if (is_stat_consumption_stage(cpi)) {
const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rc->rate_correction_factors[GF_ARF_STD] = factor;
else
rc->rate_correction_factors[INTER_NORMAL] = factor;
}
}
void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width,
int height) {
const AV1_COMMON *const cm = &cpi->common;
int correction_factor = 100;
double rate_correction_factor =
get_rate_correction_factor(cpi, width, height);
double adjustment_limit;
const int MBs = av1_get_MBs(width, height);
int projected_size_based_on_q = 0;
// Do not update the rate factors for arf overlay frames.
if (cpi->rc.is_src_frame_alt_ref) return;
// Clear down mmx registers to allow floating point in what follows
aom_clear_system_state();
// Work out how big we would have expected the frame to be at this Q given
// the current correction factor.
// Stay in double to avoid int overflow when values are large
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
projected_size_based_on_q =
av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
} else {
projected_size_based_on_q = av1_estimate_bits_at_q(
cpi->common.current_frame.frame_type, cm->base_qindex, MBs,
rate_correction_factor, cm->seq_params.bit_depth);
}
// Work out a size correction factor.
if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
projected_size_based_on_q);
// More heavily damped adjustment used if we have been oscillating either side
// of target.
if (correction_factor > 0) {
adjustment_limit =
0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
} else {
adjustment_limit = 0.75;
}
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
cpi->rc.q_1_frame = cm->base_qindex;
cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
if (correction_factor > 110)
cpi->rc.rc_1_frame = -1;
else if (correction_factor < 90)
cpi->rc.rc_1_frame = 1;
else
cpi->rc.rc_1_frame = 0;
if (correction_factor > 102) {
// We are not already at the worst allowable quality
correction_factor =
(int)(100 + ((correction_factor - 100) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
} else if (correction_factor < 99) {
// We are not already at the best allowable quality
correction_factor =
(int)(100 - ((100 - correction_factor) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
set_rate_correction_factor(cpi, rate_correction_factor, width, height);
}
// Calculate rate for the given 'q'.
static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
double correction_factor, int q) {
const AV1_COMMON *const cm = &cpi->common;
return use_cyclic_refresh
? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
: av1_rc_bits_per_mb(cm->current_frame.frame_type, q,
correction_factor, cm->seq_params.bit_depth);
}
// Similar to find_qindex_by_rate() function in ratectrl.c, but returns the q
// index with rate just above or below the desired rate, depending on which of
// the two rates is closer to the desired rate.
// Also, respects the selected aq_mode when computing the rate.
static int find_closest_qindex_by_rate(int desired_bits_per_mb,
const AV1_COMP *cpi,
double correction_factor,
int best_qindex, int worst_qindex) {
const int use_cyclic_refresh =
cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled;
// Find 'qindex' based on 'desired_bits_per_mb'.
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const int mid_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
if (mid_bits_per_mb > desired_bits_per_mb) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
// Calculate rate difference of this q index from the desired rate.
const int curr_q = low;
const int curr_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
? desired_bits_per_mb - curr_bits_per_mb
: INT_MAX;
assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
curr_q == worst_qindex);
// Calculate rate difference for previous q index too.
const int prev_q = curr_q - 1;
int prev_bit_diff;
if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
prev_bit_diff = INT_MAX;
} else {
const int prev_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
assert(prev_bits_per_mb > desired_bits_per_mb);
prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
}
// Pick one of the two q indices, depending on which one has rate closer to
// the desired rate.
return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
}
int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
int active_best_quality, int active_worst_quality,
int width, int height) {
const int MBs = av1_get_MBs(width, height);
const double correction_factor =
get_rate_correction_factor(cpi, width, height);
const int target_bits_per_mb =
(int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs);
int q =
find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
active_best_quality, active_worst_quality);
// In CBR mode, this makes sure q is between oscillating Qs to prevent
// resonance.
if (cpi->oxcf.rc_mode == AOM_CBR &&
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
}
return q;
}
static int get_active_quality(int q, int gfu_boost, int low, int high,
int *low_motion_minq, int *high_motion_minq) {
if (gfu_boost > high) {
return low_motion_minq[q];
} else if (gfu_boost < low) {
return high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - gfu_boost;
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
return low_motion_minq[q] + adjustment;
}
}
static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
aom_bit_depth_t bit_depth) {
int *kf_low_motion_minq;
int *kf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
kf_low_motion_minq, kf_high_motion_minq);
}
static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
aom_bit_depth_t bit_depth) {
int *arfgf_low_motion_minq;
int *arfgf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
arfgf_low_motion_minq, arfgf_high_motion_minq);
}
static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
int *arfgf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return arfgf_high_motion_minq[q];
}
static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const unsigned int curr_frame = cpi->common.current_frame.frame_number;
int active_worst_quality;
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
active_worst_quality =
curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
} else {
if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame)) {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
: rc->last_q[INTER_FRAME];
} else {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
: rc->last_q[INTER_FRAME] * 2;
}
}
return AOMMIN(active_worst_quality, rc->worst_quality);
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *rc = &cpi->rc;
// Buffer level below which we push active_worst to worst_quality.
int64_t critical_level = rc->optimal_buffer_level >> 3;
int64_t buff_lvl_step = 0;
int adjustment = 0;
int active_worst_quality;
int ambient_qp;
if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
// For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
// for the first few frames following key frame. These are both initialized
// to worst_quality and updated with (3/4, 1/4) average in postencode_update.
// So for first few frames following key, the qp of that key frame is weighted
// into the active_worst_quality setting.
ambient_qp = (cm->current_frame.frame_number < 5)
? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
rc->avg_frame_qindex[KEY_FRAME])
: rc->avg_frame_qindex[INTER_FRAME];
active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
if (rc->buffer_level > rc->optimal_buffer_level) {
// Adjust down.
// Maximum limit for down adjustment, ~30%.
int max_adjustment_down = active_worst_quality / 3;
if (max_adjustment_down) {
buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
if (critical_level) {
buff_lvl_step = (rc->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (int)((rc->worst_quality - ambient_qp) *
(rc->optimal_buffer_level - rc->buffer_level) /
buff_lvl_step);
}
active_worst_quality = ambient_qp + adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const CurrentFrame *const current_frame = &cm->current_frame;
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
int q;
int *rtc_minq;
const int bit_depth = cm->seq_params.bit_depth;
ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
if (frame_is_intra_only(cm)) {
active_best_quality = rc->best_quality;
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (rc->this_key_frame_forced) {
int qindex = rc->last_boosted_qindex;
double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
(last_boosted_q * 0.75), bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else if (current_frame->frame_number > 0) {
// not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
double q_val;
active_best_quality =
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
} else {
// Use the lower of active_worst_quality and recent/average Q.
if (current_frame->frame_number > 1) {
if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
} else {
if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
!(current_frame->frame_number == 0)) {
int qdelta = 0;
aom_clear_system_state();
qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
active_worst_quality, 2.0, bit_depth);
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
// Special case code to try and match quality with forced key frames
if (current_frame->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) {
return gf_group->layer_depth[gf_index];
}
static int get_active_cq_level(const RATE_CONTROL *rc,
const AV1EncoderConfig *const oxcf,
int intra_only, int superres_denom) {
static const double cq_adjust_threshold = 0.1;
int active_cq_level = oxcf->cq_level;
(void)intra_only;
if (oxcf->rc_mode == AOM_CQ || oxcf->rc_mode == AOM_Q) {
// printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
// rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
if ((oxcf->superres_mode == SUPERRES_QTHRESH ||
oxcf->superres_mode == SUPERRES_AUTO) &&
superres_denom != SCALE_NUMERATOR) {
int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO;
if (intra_only && rc->frames_to_key <= 1) {
mult = 0;
} else if (intra_only) {
mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME;
} else {
mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME;
}
active_cq_level = AOMMAX(
active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0);
}
}
if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
const double x = (double)rc->total_actual_bits / rc->total_target_bits;
if (x < cq_adjust_threshold) {
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
}
}
return active_cq_level;
}
static int get_q_using_fixed_offsets(const AV1EncoderConfig *const oxcf,
const RATE_CONTROL *const rc,
const GF_GROUP *const gf_group,
int gf_index, int cq_level,
int bit_depth) {
assert(oxcf->use_fixed_qp_offsets);
assert(oxcf->rc_mode == AOM_Q);
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_index];
int offset_idx = -1;
if (update_type == KF_UPDATE) {
if (rc->frames_to_key == 1) {
// Image / intra-only coding: ignore offsets.
return cq_level;
}
offset_idx = 0;
} else if (update_type == ARF_UPDATE || update_type == GF_UPDATE) {
offset_idx = 1;
} else if (update_type == INTNL_ARF_UPDATE) {
offset_idx =
AOMMIN(gf_group->layer_depth[gf_index], FIXED_QP_OFFSET_COUNT - 1);
} else { // Leaf level / overlay frame.
assert(update_type == LF_UPDATE || update_type == OVERLAY_UPDATE ||
update_type == INTNL_OVERLAY_UPDATE);
return cq_level; // Directly Return worst quality allowed.
}
assert(offset_idx >= 0 && offset_idx < FIXED_QP_OFFSET_COUNT);
assert(oxcf->fixed_qp_offsets[offset_idx] >= 0);
// Get qindex offset, by first converting to 'q' and then back.
const double q_val_orig = av1_convert_qindex_to_q(cq_level, bit_depth);
const double q_val_target =
AOMMAX(q_val_orig - oxcf->fixed_qp_offsets[offset_idx], 0.0);
const int delta_qindex =
av1_compute_qdelta(rc, q_val_orig, q_val_target, bit_depth);
return AOMMAX(cq_level + delta_qindex, 0);
}
static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const CurrentFrame *const current_frame = &cm->current_frame;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
cm->superres_scale_denominator);
const int bit_depth = cm->seq_params.bit_depth;
if (oxcf->use_fixed_qp_offsets) {
return get_q_using_fixed_offsets(oxcf, rc, &cpi->gf_group,
cpi->gf_group.index, cq_level, bit_depth);
}
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
int q;
int *inter_minq;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
if (frame_is_intra_only(cm)) {
if (oxcf->rc_mode == AOM_Q) {
assert(0 &&
"AOM_Q mode should not call "
"rc_pick_q_and_bounds_one_pass_vbr(), except for ALTREF frames.");
return -1;
} else if (rc->this_key_frame_forced) {
const int qindex = rc->last_boosted_qindex;
const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex = av1_compute_qdelta(
rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else { // not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
active_best_quality =
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta on active_best_quality.
{
const double q_val =
av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
q = (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
? rc->avg_frame_qindex[INTER_FRAME]
: rc->avg_frame_qindex[KEY_FRAME];
// For constrained quality dont allow Q less than the cq level
if (oxcf->rc_mode == AOM_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
} else if (oxcf->rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex =
(cpi->refresh_alt_ref_frame)
? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
: av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
}
} else {
if (oxcf->rc_mode == AOM_Q) {
assert(0 &&
"AOM_Q mode should not call "
"rc_pick_q_and_bounds_one_pass_vbr(), except for ALTREF frames.");
return -1;
} else {
// Use the lower of active_worst_quality and recent/average Q.
active_best_quality = (current_frame->frame_number > 1)
? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
: inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
{
int qdelta = 0;
aom_clear_system_state();
if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
!(current_frame->frame_number == 0)) {
qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
active_worst_quality, 2.0, bit_depth);
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
qdelta =
av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
active_worst_quality, 1.75, bit_depth);
}
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
if (oxcf->rc_mode == AOM_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames
} else if ((current_frame->frame_type == KEY_FRAME) &&
rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1.00, // INTER_NORMAL
1.25, // GF_ARF_LOW
2.00, // GF_ARF_STD
2.00, // KF_STD
};
int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
const FRAME_TYPE frame_type = (rf_lvl == KF_STD) ? KEY_FRAME : INTER_FRAME;
return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q,
rate_factor_deltas[rf_lvl],
cpi->common.seq_params.bit_depth);
}
// This unrestricted Q selection on CQ mode is useful when testing new features,
// but may lead to Q being out of range on current RC restrictions
#if USE_UNRESTRICTED_Q_IN_CQ_MODE
static int rc_pick_q_and_bounds_one_pass_cq(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
cm->superres_scale_denominator);
const int bit_depth = cm->seq_params.bit_depth;
const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth);
(void)width;
(void)height;
*top_index = q;
*bottom_index = q;
return q;
}
#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
#define STATIC_MOTION_THRESH 95
static void get_intra_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
int height, int *active_best,
int *active_worst, int *arf_q,
int cq_level, int is_fwd_kf) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
int active_best_quality;
int active_worst_quality = *active_worst;
const int bit_depth = cm->seq_params.bit_depth;
if (rc->frames_to_key == 1 && oxcf->rc_mode == AOM_Q) {
// If the next frame is also a key frame or the current frame is the
// only frame in the sequence in AOM_Q mode, just use the cq_level
// as q.
active_best_quality = cq_level;
active_worst_quality = cq_level;
} else if (is_fwd_kf) {
assert(oxcf->fwd_kf_enabled);
// Handle the special case for forward reference key frames.
// Increase the boost because this keyframe is used as a forward and
// backward reference.
const int qindex = rc->last_boosted_qindex;
const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex = av1_compute_qdelta(
rc, last_boosted_q, last_boosted_q * 0.25, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
// Update the arf_q since the forward keyframe is replacing the ALTREF
*arf_q = active_best_quality;
} else if (rc->this_key_frame_forced) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
double last_boosted_q;
int delta_qindex;
int qindex;
if (is_stat_consumption_stage_twopass(cpi) &&
cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
active_best_quality = qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 1.25, bit_depth);
active_worst_quality =
AOMMIN(qindex + delta_qindex, active_worst_quality);
} else {
qindex = rc->last_boosted_qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 0.50, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
}
} else {
// Not forced keyframe.
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from cpi->active_worst_quality and kf boost.
active_best_quality =
get_kf_active_quality(rc, active_worst_quality, bit_depth);
if (is_stat_consumption_stage_twopass(cpi) &&
cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
active_best_quality /= 3;
}
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
if (is_stat_consumption_stage_twopass(cpi))
q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
// Tweak active_best_quality for AOM_Q mode when superres is on, as this
// will be used directly as 'q' later.
if (oxcf->rc_mode == AOM_Q &&
(oxcf->superres_mode == SUPERRES_QTHRESH ||
oxcf->superres_mode == SUPERRES_AUTO) &&
cm->superres_scale_denominator != SCALE_NUMERATOR) {
active_best_quality =
AOMMAX(active_best_quality -
((cm->superres_scale_denominator - SCALE_NUMERATOR) *
SUPERRES_QADJ_PER_DENOM_KEYFRAME),
0);
}
}
*active_best = active_best_quality;
*active_worst = active_worst_quality;
}
// Does some final adjustments to the q value and bounds. This does not apply to
// AOM_Q mode unless it is an INTRA_ONLY_FRAME.
static void postprocess_q_and_bounds(const AV1_COMP *cpi, int width, int height,
int *active_worst, int *active_best,
int *q_out, int is_intrl_arf_boost) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const int bit_depth = cpi->common.seq_params.bit_depth;
int active_best_quality = *active_best;
int active_worst_quality = *active_worst;
int q;
// Extension to max or min Q if undershoot or overshoot is outside
// the permitted range.
if (cpi->oxcf.rc_mode != AOM_Q) {
if (frame_is_intra_only(cm) ||
(!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || is_intrl_arf_boost ||
cpi->refresh_alt_ref_frame))) {
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
active_worst_quality += (cpi->twopass.extend_maxq / 2);
} else {
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
active_worst_quality += cpi->twopass.extend_maxq;
}
}
aom_clear_system_state();
// Static forced key frames Q restrictions dealt with elsewhere.
if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
active_worst_quality =
AOMMAX(active_worst_quality + qdelta, active_best_quality);
}
// Modify active_best_quality for downscaled normal frames.
if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
int qdelta = av1_compute_qdelta_by_rate(
rc, cm->current_frame.frame_type, active_best_quality, 2.0, bit_depth);
active_best_quality =
AOMMAX(active_best_quality + qdelta, rc->best_quality);
}
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
if (oxcf->rc_mode == AOM_Q ||
(frame_is_intra_only(cm) && !rc->this_key_frame_forced &&
cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
rc->frames_to_key > 1)) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames.
} else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
// If static since last kf use better of last boosted and last kf q.
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
} else {
q = AOMMIN(rc->last_boosted_qindex,
(active_best_quality + active_worst_quality) / 2);
}
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > active_worst_quality) {
// Special case when we are targeting the max allowed rate.
if (rc->this_frame_target >= rc->max_frame_bandwidth)
active_worst_quality = q;
else
q = active_worst_quality;
}
}
clamp(q, active_best_quality, active_worst_quality);
*active_best = active_best_quality;
*active_worst = active_worst_quality;
*q_out = q;
}
static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
int height, int gf_index,
int *bottom_index, int *top_index,
int *arf_q) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const GF_GROUP *gf_group = &cpi->gf_group;
const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
cm->superres_scale_denominator);
const int bit_depth = cm->seq_params.bit_depth;
if (oxcf->use_fixed_qp_offsets) {
return get_q_using_fixed_offsets(oxcf, rc, gf_group, gf_group->index,
cq_level, bit_depth);
}
int active_best_quality = 0;
int active_worst_quality = rc->active_worst_quality;
int q;
int *inter_minq;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
const int is_intrl_arf_boost =
gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
if (frame_is_intra_only(cm)) {
const int is_fwd_kf =
cm->current_frame.frame_type == KEY_FRAME && cm->show_frame == 0;
get_intra_q_and_bounds_two_pass(cpi, width, height, &active_best_quality,
&active_worst_quality, arf_q, cq_level,
is_fwd_kf);
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || is_intrl_arf_boost ||
cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
// For constrained quality dont allow Q less than the cq level
if (oxcf->rc_mode == AOM_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
if (gf_group->update_type[gf_index] == ARF_UPDATE) {
const int min_boost = get_gf_high_motion_quality(q, bit_depth);
const int boost = min_boost - active_best_quality;
active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
*arf_q = active_best_quality;
} else if (is_intrl_arf_boost) {
assert(rc->arf_q >= 0); // Ensure it is set to a valid value.
active_best_quality = rc->arf_q;
int this_height = gf_group_pyramid_level(gf_group, gf_index);
while (this_height > 1) {
active_best_quality =
(active_best_quality + active_worst_quality + 1) / 2;
--this_height;
}
}
} else if (oxcf->rc_mode == AOM_Q) {
if (!cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) {
active_best_quality = cq_level;
} else {
if (gf_group->update_type[gf_index] == ARF_UPDATE) {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
const int min_boost = get_gf_high_motion_quality(q, bit_depth);
const int boost = min_boost - active_best_quality;
active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
*arf_q = active_best_quality;
} else {
assert(rc->arf_q >= 0); // Ensure it is set to a valid value.
assert(is_intrl_arf_boost);
active_best_quality = rc->arf_q;
int this_height = gf_group_pyramid_level(gf_group, gf_index);
while (this_height > 1) {
active_best_quality =
(active_best_quality + active_worst_quality + 1) / 2;
--this_height;
}
}
}
} else {
active_best_quality = get_gf_active_quality(rc, q, bit_depth);
const int min_boost = get_gf_high_motion_quality(q, bit_depth);
const int boost = min_boost - active_best_quality;
active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
if (is_intrl_arf_boost) {
int this_height = gf_group_pyramid_level(gf_group, gf_index);
while (this_height > 1) {
active_best_quality =
(active_best_quality + active_worst_quality + 1) / 2;
--this_height;
}
}
}
} else {
if (oxcf->rc_mode == AOM_Q) {
active_best_quality = cq_level;
} else {
active_best_quality = inter_minq[active_worst_quality];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
postprocess_q_and_bounds(cpi, width, height, &active_worst_quality,
&active_best_quality, &q, is_intrl_arf_boost);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, int gf_index,
int *bottom_index, int *top_index) {
int q;
// TODO(sarahparker) merge onepass vbr and altref q computation
// with two pass
GF_GROUP *gf_group = &cpi->gf_group;
if ((cpi->oxcf.rc_mode != AOM_Q ||
gf_group->update_type[gf_index] == ARF_UPDATE) &&
has_no_stats_stage(cpi)) {
if (cpi->oxcf.rc_mode == AOM_CBR)
q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index,
top_index);
#if USE_UNRESTRICTED_Q_IN_CQ_MODE
else if (cpi->oxcf.rc_mode == AOM_CQ)
q = rc_pick_q_and_bounds_one_pass_cq(cpi, width, height, bottom_index,
top_index);
#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
else
q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index,
top_index);
} else {
int arf_q = -1; // Initialize to invalid value, for sanity check later.
q = rc_pick_q_and_bounds_two_pass(cpi, width, height, gf_index,
bottom_index, top_index, &arf_q);
}
if (gf_group->update_type[gf_index] == ARF_UPDATE) cpi->rc.arf_q = q;
return q;
}
void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
int *frame_under_shoot_limit,
int *frame_over_shoot_limit) {
if (cpi->oxcf.rc_mode == AOM_Q) {
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
} else {
// For very small rate targets where the fractional adjustment
// may be tiny make sure there is at least a minimum range.
const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
*frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0);
*frame_over_shoot_limit =
AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
}
}
void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
rc->this_frame_target = target;
// Modify frame size target when down-scaled.
if (av1_frame_scaled(cm))
rc->this_frame_target =
(int)(rc->this_frame_target * resize_rate_factor(cpi, width, height));
// Target rate per SB64 (including partial SB64s.
rc->sb64_target_rate =
(int)(((int64_t)rc->this_frame_target << 12) / (width * height));
}
static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
RATE_CONTROL *const rc = &cpi->rc;
rc->frames_since_golden = 0;
// Mark the alt ref as done (setting to 0 means no further alt refs pending).
rc->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
rc->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
const GF_GROUP *const gf_group = &cpi->gf_group;
const int is_intrnl_arf =
is_stat_consumption_stage(cpi)
? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
: cpi->refresh_alt2_ref_frame;
// Update the Golden frame usage counts.
// NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame,
// only the virtual indices for the reference frame will be
// updated and cpi->refresh_golden_frame will still be zero.
if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
// We will not use internal overlay frames to replace the golden frame
if (!rc->is_src_frame_internal_arf) {
// this frame refreshes means next frames don't unless specified by user
rc->frames_since_golden = 0;
}
// If we are not using alt ref in the up and coming group clear the arf
// active flag. In multi arf group case, if the index is not 0 then
// we are overlaying a mid group arf so should not reset the flag.
if (!rc->source_alt_ref_pending && (cpi->gf_group.index == 0))
rc->source_alt_ref_active = 0;
} else if (!cpi->refresh_alt_ref_frame && !is_intrnl_arf) {
rc->frames_since_golden++;
}
}
void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
const AV1_COMMON *const cm = &cpi->common;
const CurrentFrame *const current_frame = &cm->current_frame;
RATE_CONTROL *const rc = &cpi->rc;
const GF_GROUP *const gf_group = &cpi->gf_group;
const int is_intrnl_arf =
is_stat_consumption_stage(cpi)
? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
: cpi->refresh_alt2_ref_frame;
const int qindex = cm->base_qindex;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
av1_cyclic_refresh_postencode(cpi);
}
// Update rate control heuristics
rc->projected_frame_size = (int)(bytes_used << 3);
// Post encode loop adjustment of Q prediction.
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
// Keep a record of last Q and ambient average Q.
if (current_frame->frame_type == KEY_FRAME) {
rc->last_q[KEY_FRAME] = qindex;
rc->avg_frame_qindex[KEY_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
} else {
if (!rc->is_src_frame_alt_ref &&
!(cpi->refresh_golden_frame || is_intrnl_arf ||
cpi->refresh_alt_ref_frame)) {
rc->last_q[INTER_FRAME] = qindex;
rc->avg_frame_qindex[INTER_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
rc->ni_frames++;
rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth);
rc->avg_q = rc->tot_q / rc->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
rc->ni_tot_qi += qindex;
rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
}
}
// Keep record of last boosted (KF/GF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((qindex < rc->last_boosted_qindex) ||
(current_frame->frame_type == KEY_FRAME) ||
(!rc->constrained_gf_group &&
(cpi->refresh_alt_ref_frame || is_intrnl_arf ||
(cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
rc->last_boosted_qindex = qindex;
}
if (current_frame->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
update_buffer_level(cpi, rc->projected_frame_size);
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (av1_frame_scaled(cm))
rc->this_frame_target =
(int)(rc->this_frame_target /
resize_rate_factor(cpi, cm->width, cm->height));
if (current_frame->frame_type != KEY_FRAME) {
rc->rolling_target_bits = ROUND_POWER_OF_TWO(
rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
}
// Actual bits spent
rc->total_actual_bits += rc->projected_frame_size;
rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
(current_frame->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
// if (current_frame->frame_number == 1 && cm->show_frame)
/*
rc->this_frame_target =
(int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width,
cm->height));
*/
}
void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
// Update buffer level with zero size, update frame counters, and return.
update_buffer_level(cpi, 0);
cpi->rc.frames_since_key++;
cpi->rc.frames_to_key--;
cpi->rc.rc_2_frame = 0;
cpi->rc.rc_1_frame = 0;
}
int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
int best_qindex, int worst_qindex) {
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
if (mid_q < desired_q) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
low == worst_qindex);
return low;
}
int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
aom_bit_depth_t bit_depth) {
const int start_index =
av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
const int target_index =
av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
return target_index - start_index;
}
// Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
// assuming 'correction_factor' is 1.0.
// To be precise, 'q_index' is the smallest integer, for which the corresponding
// bits per mb <= desired_bits_per_mb.
// If no such q index is found, returns 'worst_qindex'.
static int find_qindex_by_rate(int desired_bits_per_mb,
aom_bit_depth_t bit_depth, FRAME_TYPE frame_type,
int best_qindex, int worst_qindex) {
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const int mid_bits_per_mb =
av1_rc_bits_per_mb(frame_type, mid, 1.0, bit_depth);
if (mid_bits_per_mb > desired_bits_per_mb) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth) <=
desired_bits_per_mb ||
low == worst_qindex);
return low;
}
int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
int qindex, double rate_target_ratio,
aom_bit_depth_t bit_depth) {
// Look up the current projected bits per block for the base index
const int base_bits_per_mb =
av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
// Find the target bits per mb based on the base value and given ratio.
const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
const int target_index =
find_qindex_by_rate(target_bits_per_mb, bit_depth, frame_type,
rc->best_quality, rc->worst_quality);
return target_index - qindex;
}
void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
RATE_CONTROL *const rc) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
rc->max_gf_interval = oxcf->max_gf_interval;
rc->min_gf_interval = oxcf->min_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, cpi->framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval =
av1_rc_get_default_max_gf_interval(cpi->framerate, rc->min_gf_interval);
/*
* Extended max interval for genuinely static scenes like slide shows.
* The no.of.stats available in the case of LAP is limited,
* hence setting to max_gf_interval.
*/
if (cpi->lap_enabled)
rc->static_scene_max_gf_interval = rc->max_gf_interval + 1;
else
rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
rc->max_gf_interval = rc->static_scene_max_gf_interval;
// Clamp min to max
rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
}
void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
int vbr_max_bits;
const int MBs = av1_get_MBs(width, height);
rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
rc->min_frame_bandwidth =
(int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
rc->min_frame_bandwidth =
AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
// A maximum bitrate for a frame is defined.
// The baseline for this aligns with HW implementations that
// can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
// per 16x16 MB (averaged over a frame). However this limit is extended if
// a very high rate is given on the command line or the the rate cannnot
// be acheived because of a user specificed max q (e.g. when the user
// specifies lossless encode.
vbr_max_bits =
(int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
100);
rc->max_frame_bandwidth =
AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
av1_rc_set_gf_interval_range(cpi, rc);
}
#define VBR_PCT_ADJUSTMENT_LIMIT 50
// For VBR...adjustment to the frame target based on error from previous frames
static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
RATE_CONTROL *const rc = &cpi->rc;
int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
int max_delta;
double position_factor = 1.0;
double stats_count =
cpi->twopass.total_stats != NULL ? cpi->twopass.total_stats->count : 0.0;
// How far through the clip are we.
// This number is used to damp the per frame rate correction.
// Range 0 - 1.0
if (stats_count != 0.) {
position_factor =
sqrt((double)cpi->common.current_frame.frame_number / stats_count);
}
max_delta = (int)(position_factor *
((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
// vbr_bits_off_target > 0 means we have extra bits to spend
if (vbr_bits_off_target > 0) {
*this_frame_target += (vbr_bits_off_target > max_delta)
? max_delta
: (int)vbr_bits_off_target;
} else {
*this_frame_target -= (vbr_bits_off_target < -max_delta)
? max_delta
: (int)-vbr_bits_off_target;
}
// Fast redistribution of bits arising from massive local undershoot.
// Dont do it for kf,arf,gf or overlay frames.
if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
rc->vbr_bits_off_target_fast) {
int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
int fast_extra_bits;
fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
fast_extra_bits = (int)AOMMIN(
fast_extra_bits,
AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
*this_frame_target += (int)fast_extra_bits;
rc->vbr_bits_off_target_fast -= fast_extra_bits;
}
}
void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
RATE_CONTROL *const rc = &cpi->rc;
int target_rate = rc->base_frame_target;
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
vbr_rate_correction(cpi, &target_rate);
av1_rc_set_frame_target(cpi, target_rate, width, height);
}
int av1_calc_pframe_target_size_one_pass_vbr(
const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
static const int af_ratio = 10;
const RATE_CONTROL *const rc = &cpi->rc;
int target;
#if USE_ALTREF_FOR_ONE_PASS
if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
frame_update_type == ARF_UPDATE) {
target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
(rc->baseline_gf_interval + af_ratio - 1);
} else {
target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
(rc->baseline_gf_interval + af_ratio - 1);
}
#else
target = rc->avg_frame_bandwidth;
#endif
return av1_rc_clamp_pframe_target_size(cpi, target, frame_update_type);
}
int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
static const int kf_ratio = 25;
const RATE_CONTROL *rc = &cpi->rc;
const int target = rc->avg_frame_bandwidth * kf_ratio;
return av1_rc_clamp_iframe_target_size(cpi, target);
}
int av1_calc_pframe_target_size_one_pass_cbr(
const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
int min_frame_target =
AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
int target;
if (oxcf->gf_cbr_boost_pct) {
const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
target =
(rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
} else {
target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
}
} else {
target = rc->avg_frame_bandwidth;
}
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
target -= (target * pct_low) / 200;
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high =
(int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
target += (target * pct_high) / 200;
}
if (oxcf->rc_max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return AOMMAX(min_frame_target, target);
}
int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
const RATE_CONTROL *rc = &cpi->rc;
int target;
if (cpi->common.current_frame.frame_number == 0) {
target = ((rc->starting_buffer_level / 2) > INT_MAX)
? INT_MAX
: (int)(rc->starting_buffer_level / 2);
} else {
int kf_boost = 32;
double framerate = cpi->framerate;
kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
if (rc->frames_since_key < framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
}
target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
}
return av1_rc_clamp_iframe_target_size(cpi, target);
}
#define DEFAULT_KF_BOOST_RT 2300
#define DEFAULT_GF_BOOST_RT 2000
void av1_get_one_pass_rt_params(AV1_COMP *cpi,
EncodeFrameParams *const frame_params,
unsigned int frame_flags) {
RATE_CONTROL *const rc = &cpi->rc;
AV1_COMMON *const cm = &cpi->common;
FRAME_UPDATE_TYPE frame_update_type;
int target;
if (rc->frames_to_key == 0 || (frame_flags & FRAMEFLAGS_KEY)) {
frame_params->frame_type = KEY_FRAME;
rc->this_key_frame_forced =
cm->current_frame.frame_number != 0 && rc->frames_to_key == 0;
rc->frames_to_key = cpi->oxcf.key_freq;
rc->frames_to_key = AOMMAX(1, rc->frames_to_key);
rc->kf_boost = DEFAULT_KF_BOOST_RT;
rc->source_alt_ref_active = 0;
frame_update_type = KF_UPDATE;
} else {
frame_params->frame_type = INTER_FRAME;
frame_update_type = LF_UPDATE;
}
if (rc->frames_till_gf_update_due == 0) {
GF_GROUP *const gf_group = &cpi->gf_group;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
av1_cyclic_refresh_set_golden_update(cpi);
else
rc->baseline_gf_interval = MAX_GF_INTERVAL;
if (rc->baseline_gf_interval > rc->frames_to_key)
rc->baseline_gf_interval = rc->frames_to_key;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
rc->gfu_boost = DEFAULT_GF_BOOST_RT;
rc->constrained_gf_group =
(rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0;
frame_update_type = GF_UPDATE;
gf_group->index = 0;
gf_group->size = rc->baseline_gf_interval;
gf_group->update_type[0] =
(frame_params->frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE;
for (int i = 1; i < rc->baseline_gf_interval; i++)
gf_group->update_type[i] = LF_UPDATE;
}
if (cpi->oxcf.rc_mode == AOM_CBR) {
if (frame_params->frame_type == KEY_FRAME) {
target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
} else {
target = av1_calc_pframe_target_size_one_pass_cbr(cpi, frame_update_type);
}
} else {
if (frame_params->frame_type == KEY_FRAME) {
target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
} else {
target = av1_calc_pframe_target_size_one_pass_vbr(cpi, frame_update_type);
}
}
av1_rc_set_frame_target(cpi, target, cpi->common.width, cpi->common.height);
rc->base_frame_target = target;
}