blob: ef870a7a2b25090d01967cc1a30c6b75767d33f4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/av1_rtcd.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/x86/av1_txfm_sse2.h"
#include "av1/common/x86/highbd_txfm_utility_sse4.h"
#include "av1/encoder/av1_fwd_txfm1d_cfg.h"
#include "av1/encoder/x86/av1_txfm1d_sse4.h"
#include "av1/encoder/x86/av1_fwd_txfm_sse2.h"
static INLINE void int16_array_with_stride_to_int32_array_without_stride(
const int16_t *input, int stride, int32_t *output, int txfm1d_size) {
int r, c;
for (r = 0; r < txfm1d_size; r++) {
for (c = 0; c < txfm1d_size; c++) {
output[r * txfm1d_size + c] = (int32_t)input[r * stride + c];
}
}
}
typedef void (*TxfmFuncSSE2)(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range);
static void fdct32_new_sse4_1(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range) {
const int txfm_size = 32;
const int num_per_128 = 4;
int col_num = txfm_size / num_per_128;
int col;
(void)stage_range;
for (col = 0; col < col_num; col++) {
av1_fdct32_new_sse4_1((input + col), (output + col), cos_bit, col_num);
}
}
static void fdct64_new_sse4_1(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range) {
const int txfm_size = 64;
const int num_per_128 = 4;
int col_num = txfm_size / num_per_128;
(void)stage_range;
for (int col = 0; col < col_num; col++) {
av1_fdct64_new_sse4_1((input + col), (output + col), cos_bit, col_num,
col_num);
}
}
static void idtx32x32_sse4_1(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range) {
(void)stage_range;
for (int i = 0; i < 8; i++) {
av1_idtx32_new_sse4_1(&input[i * 32], &output[i * 32], cos_bit, 1);
}
}
static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT32: return fdct32_new_sse4_1; break;
case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break;
case TXFM_TYPE_IDENTITY32: return idtx32x32_sse4_1; break;
default: assert(0);
}
return NULL;
}
static INLINE void fwd_txfm2d_sse4_1(const int16_t *input, int32_t *output,
const int stride,
const TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf) {
// TODO(sarahparker) This does not currently support rectangular transforms
// and will break without splitting txfm_size out into row and col size.
// Rectangular transforms use c code only, so it should be ok for now.
// It will be corrected when there are sse implementations for rectangular
// transforms.
assert(cfg->tx_size < TX_SIZES);
const int txfm_size = tx_size_wide[cfg->tx_size];
const int8_t *shift = cfg->shift;
const int8_t *stage_range_col = cfg->stage_range_col;
const int8_t *stage_range_row = cfg->stage_range_row;
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col);
const TxfmFuncSSE2 txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row);
__m128i *buf_128 = (__m128i *)txfm_buf;
__m128i *out_128 = (__m128i *)output;
int num_per_128 = 4;
int txfm2d_size_128 = txfm_size * txfm_size / num_per_128;
int16_array_with_stride_to_int32_array_without_stride(input, stride, txfm_buf,
txfm_size);
av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[0]);
txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col);
av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]);
transpose_32(txfm_size, out_128, buf_128);
txfm_func_row(buf_128, out_128, cos_bit_row, stage_range_row);
av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]);
transpose_32(txfm_size, buf_128, out_128);
}
static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input,
int32_t *output, const int stride,
const TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf) {
assert(cfg->tx_size < TX_SIZES);
const int txfm_size = tx_size_wide[cfg->tx_size];
const int8_t *shift = cfg->shift;
const int8_t *stage_range_col = cfg->stage_range_col;
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col);
__m128i *buf_128 = (__m128i *)txfm_buf;
__m128i *out_128 = (__m128i *)output;
const int num_per_128 = 4;
int txfm2d_size_128 = txfm_size * txfm_size / num_per_128;
int col_num = txfm_size / num_per_128;
int16_array_with_stride_to_int32_array_without_stride(input, stride, output,
txfm_size);
/*col wise transform*/
txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col);
av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]);
transpose_32(txfm_size, out_128, buf_128);
/*row wise transform*/
for (int col = 0; col < (col_num >> 1); col++) {
av1_fdct64_new_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row,
col_num, (col_num >> 1));
}
txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1);
av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]);
transpose_8nx8n(buf_128, out_128, 32, 32);
}
void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type,
PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(16, int32_t, txfm_buf[1024]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X32, mode, &cfg);
(void)bd;
fwd_txfm2d_sse4_1(input, output, stride, &cfg, txfm_buf);
}
void av1_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type,
PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(16, int32_t, txfm_buf[4096]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X64, mode, &cfg);
(void)bd;
fwd_txfm2d_64x64_sse4_1(input, output, stride, &cfg, txfm_buf);
}
static INLINE void transpose_32_4x4x2(int stride, const __m128i *inputA,
const __m128i *inputB, __m128i *output) {
__m128i temp0 = _mm_unpacklo_epi32(inputA[0], inputA[2]);
__m128i temp1 = _mm_unpackhi_epi32(inputA[0], inputA[2]);
__m128i temp2 = _mm_unpacklo_epi32(inputA[1], inputA[3]);
__m128i temp3 = _mm_unpackhi_epi32(inputA[1], inputA[3]);
output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2);
output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2);
output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3);
output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3);
temp0 = _mm_unpacklo_epi32(inputB[0], inputB[2]);
temp1 = _mm_unpackhi_epi32(inputB[0], inputB[2]);
temp2 = _mm_unpacklo_epi32(inputB[1], inputB[3]);
temp3 = _mm_unpackhi_epi32(inputB[1], inputB[3]);
output[4 * stride] = _mm_unpacklo_epi32(temp0, temp2);
output[5 * stride] = _mm_unpackhi_epi32(temp0, temp2);
output[6 * stride] = _mm_unpacklo_epi32(temp1, temp3);
output[7 * stride] = _mm_unpackhi_epi32(temp1, temp3);
}
static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type,
PREDICTION_MODE mode, int bd) {
(void)mode;
(void)bd;
(void)tx_type;
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_64X64;
__m128i buf0[64], buf1[512];
const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
for (int i = 0; i < width_div8; i++) {
load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height);
round_shift_16bit(buf0, height, shift[0]);
col_txfm(buf0, buf0, cos_bit_col);
round_shift_16bit(buf0, height, shift[1]);
for (int j = 0; j < AOMMIN(4, height_div8); ++j) {
transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i);
}
}
for (int i = 0; i < AOMMIN(4, height_div8); i++) {
__m128i bufA[64];
__m128i bufB[64];
__m128i *buf = buf1 + width * i;
for (int j = 0; j < width; ++j) {
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]);
av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]);
int32_t *output8 = output + 8 * 32 * i;
for (int j = 0; j < width_div8; ++j) {
__m128i *out = (__m128i *)(output8 + 4 * j);
transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out);
}
}
}
static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type,
PREDICTION_MODE mode, int bd) {
(void)mode;
(void)bd;
const TX_SIZE tx_size = TX_64X32;
__m128i buf0[64], buf1[256];
const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type];
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
for (int i = 0; i < width_div8; i++) {
load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height);
round_shift_16bit(buf0, height, shift[0]);
col_txfm(buf0, buf0, cos_bit_col);
round_shift_16bit(buf0, height, shift[1]);
for (int j = 0; j < AOMMIN(4, height_div8); ++j) {
transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i);
}
}
assert(tx_type == DCT_DCT);
for (int i = 0; i < AOMMIN(4, height_div8); i++) {
__m128i bufA[64];
__m128i bufB[64];
__m128i *buf = buf1 + width * i;
for (int j = 0; j < width; ++j) {
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2);
av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2);
int32_t *output8 = output + 8 * 32 * i;
for (int j = 0; j < width_div8; ++j) {
__m128i *out = (__m128i *)(output8 + 4 * j);
transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out);
}
}
}
static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type,
PREDICTION_MODE mode, int bd) {
(void)mode;
(void)bd;
(void)tx_type;
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_32X64;
__m128i buf0[64], buf1[256];
const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
for (int i = 0; i < width_div8; i++) {
load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height);
round_shift_16bit(buf0, height, shift[0]);
col_txfm(buf0, buf0, cos_bit_col);
round_shift_16bit(buf0, height, shift[1]);
for (int j = 0; j < AOMMIN(4, height_div8); ++j) {
transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i);
}
}
for (int i = 0; i < AOMMIN(4, height_div8); i++) {
__m128i bufA[32];
__m128i bufB[32];
__m128i *buf = buf1 + width * i;
for (int j = 0; j < width; ++j) {
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
av1_fdct32_new_sse4_1(bufA, bufA, cos_bit_row, 1);
av1_fdct32_new_sse4_1(bufB, bufB, cos_bit_row, 1);
av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2);
av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2);
int32_t *output8 = output + 8 * 32 * i;
for (int j = 0; j < (32 / 4); ++j) {
__m128i *out = (__m128i *)(output8 + 4 * j);
transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out);
}
}
}
static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = {
av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform
av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform
av1_lowbd_fwd_txfm2d_16x16_sse2, // 16x16 transform
av1_lowbd_fwd_txfm2d_32x32_sse2, // 32x32 transform
lowbd_fwd_txfm2d_64x64_sse4_1, // 64x64 transform
av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform
av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform
av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform
av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform
av1_lowbd_fwd_txfm2d_16x32_sse2, // 16x32 transform
av1_lowbd_fwd_txfm2d_32x16_sse2, // 32x16 transform
lowbd_fwd_txfm2d_32x64_sse4_1, // 32x64 transform
lowbd_fwd_txfm2d_64x32_sse4_1, // 64x32 transform
av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform
av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform
av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform
av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform
av1_lowbd_fwd_txfm2d_16x64_sse2, // 16x64 transform
av1_lowbd_fwd_txfm2d_64x16_sse2, // 64x16 transform
};
void av1_lowbd_fwd_txfm_sse4_1(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TxfmParam *txfm_param) {
FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size];
#if CONFIG_MODE_DEP_INTRA_TX || CONFIG_MODE_DEP_INTER_TX || CONFIG_LGT || \
CONFIG_DST7_16X16
(void)fwd_txfm2d_func; // this is added to silence a warning
av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param);
#else
if ((fwd_txfm2d_func == NULL) ||
(txfm_param->lossless && txfm_param->tx_size == TX_4X4)) {
av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param);
} else {
fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type,
txfm_param->mode, txfm_param->bd);
}
#endif
}