| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_BLOCKD_H_ |
| #define AOM_AV1_COMMON_BLOCKD_H_ |
| |
| #include "config/aom_config.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_ports/mem.h" |
| #include "aom_scale/yv12config.h" |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/cdef_block.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/scale.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define USE_B_QUANT_NO_TRELLIS 1 |
| |
| #define MAX_MB_PLANE 3 |
| |
| #define MAX_DIFFWTD_MASK_BITS 1 |
| |
| #define INTERINTRA_WEDGE_SIGN 0 |
| |
| #define MAX_NUM_NEIGHBORS 2 |
| |
| /*!\cond */ |
| |
| // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS |
| enum { |
| DIFFWTD_38 = 0, |
| DIFFWTD_38_INV, |
| DIFFWTD_MASK_TYPES, |
| } UENUM1BYTE(DIFFWTD_MASK_TYPE); |
| |
| enum { |
| KEY_FRAME = 0, |
| INTER_FRAME = 1, |
| INTRA_ONLY_FRAME = 2, // replaces intra-only |
| S_FRAME = 3, |
| FRAME_TYPES, |
| } UENUM1BYTE(FRAME_TYPE); |
| |
| static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { |
| return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| } |
| |
| static INLINE int is_inter_mode(PREDICTION_MODE mode) { |
| return mode >= INTER_MODE_START && mode < INTER_MODE_END; |
| } |
| |
| typedef struct { |
| uint16_t *plane[MAX_MB_PLANE]; |
| int stride[MAX_MB_PLANE]; |
| } BUFFER_SET; |
| |
| static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { |
| return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END; |
| } |
| static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { |
| return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END; |
| } |
| |
| static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { |
| static const PREDICTION_MODE lut[] = { |
| DC_PRED, // DC_PRED |
| V_PRED, // V_PRED |
| H_PRED, // H_PRED |
| D45_PRED, // D45_PRED |
| D135_PRED, // D135_PRED |
| D113_PRED, // D113_PRED |
| D157_PRED, // D157_PRED |
| D203_PRED, // D203_PRED |
| D67_PRED, // D67_PRED |
| SMOOTH_PRED, // SMOOTH_PRED |
| SMOOTH_V_PRED, // SMOOTH_V_PRED |
| SMOOTH_H_PRED, // SMOOTH_H_PRED |
| PAETH_PRED, // PAETH_PRED |
| NEARMV, // NEARMV |
| GLOBALMV, // GLOBALMV |
| NEWMV, // NEWMV |
| #if IMPROVED_AMVD |
| NEWMV, // AMVDNEWMV |
| #endif // IMPROVED_AMVD |
| #if CONFIG_WARPMV |
| WARPMV, // WARPMV |
| #endif // CONFIG_WARPMV |
| NEARMV, // NEAR_NEARMV |
| NEARMV, // NEAR_NEWMV |
| NEWMV, // NEW_NEARMV |
| GLOBALMV, // GLOBAL_GLOBALMV |
| NEWMV, // NEW_NEWMV |
| #if CONFIG_JOINT_MVD |
| NEWMV, // JOINT_NEWMV |
| #endif // CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| NEWMV, // JOINT_AMVDNEWMV |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #if CONFIG_OPTFLOW_REFINEMENT |
| NEARMV, // NEAR_NEARMV_OPTFLOW |
| NEARMV, // NEAR_NEWMV_OPTFLOW |
| NEWMV, // NEW_NEARMV_OPTFLOW |
| NEWMV, // NEW_NEWMV_OPTFLOW |
| #if CONFIG_JOINT_MVD |
| NEWMV, // JOINT_NEWMV_OPTFLOW |
| #endif // CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| NEWMV, // JOINT_AMVDNEWMV_OPTFLOW |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| }; |
| assert(NELEMENTS(lut) == MB_MODE_COUNT); |
| assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode)); |
| return lut[mode]; |
| } |
| |
| static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { |
| static const PREDICTION_MODE lut[] = { |
| MB_MODE_COUNT, // DC_PRED |
| MB_MODE_COUNT, // V_PRED |
| MB_MODE_COUNT, // H_PRED |
| MB_MODE_COUNT, // D45_PRED |
| MB_MODE_COUNT, // D135_PRED |
| MB_MODE_COUNT, // D113_PRED |
| MB_MODE_COUNT, // D157_PRED |
| MB_MODE_COUNT, // D203_PRED |
| MB_MODE_COUNT, // D67_PRED |
| MB_MODE_COUNT, // SMOOTH_PRED |
| MB_MODE_COUNT, // SMOOTH_V_PRED |
| MB_MODE_COUNT, // SMOOTH_H_PRED |
| MB_MODE_COUNT, // PAETH_PRED |
| MB_MODE_COUNT, // NEARMV |
| MB_MODE_COUNT, // GLOBALMV |
| MB_MODE_COUNT, // NEWMV |
| #if IMPROVED_AMVD |
| MB_MODE_COUNT, // AMVDNEWMV |
| #endif // IMPROVED_AMVD |
| #if CONFIG_WARPMV |
| MB_MODE_COUNT, // WARPMV |
| #endif // CONFIG_WARPMV |
| NEARMV, // NEAR_NEARMV |
| NEWMV, // NEAR_NEWMV |
| NEARMV, // NEW_NEARMV |
| GLOBALMV, // GLOBAL_GLOBALMV |
| NEWMV, // NEW_NEWMV |
| #if CONFIG_JOINT_MVD |
| NEARMV, // JOINT_NEWMV |
| #endif // CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| NEARMV, // JOINT_AMVDNEWMV |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #if CONFIG_OPTFLOW_REFINEMENT |
| NEARMV, // NEAR_NEARMV_OPTFLOW |
| NEWMV, // NEAR_NEWMV_OPTFLOW |
| NEARMV, // NEW_NEARMV_OPTFLOW |
| NEWMV, // NEW_NEWMV_OPTFLOW |
| #if CONFIG_JOINT_MVD |
| NEARMV, // JOINT_NEWMV_OPTFLOW |
| #endif // CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| NEARMV, // JOINT_AMVDNEWMV_OPTFLOW |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| }; |
| assert(NELEMENTS(lut) == MB_MODE_COUNT); |
| assert(is_inter_compound_mode(mode)); |
| return lut[mode]; |
| } |
| |
| #if CONFIG_JOINT_MVD |
| // return whether current mode is joint MVD coding mode |
| static INLINE int is_joint_mvd_coding_mode(PREDICTION_MODE mode) { |
| return mode == JOINT_NEWMV |
| #if IMPROVED_AMVD |
| || mode == JOINT_AMVDNEWMV |
| #endif // IMPROVED_AMVD |
| #if CONFIG_OPTFLOW_REFINEMENT |
| || mode == JOINT_NEWMV_OPTFLOW |
| #if IMPROVED_AMVD |
| || mode == JOINT_AMVDNEWMV_OPTFLOW |
| #endif // IMPROVED_AMVD |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| ; |
| } |
| #endif // CONFIG_JOINT_MVD |
| |
| static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { |
| return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mode == NEAR_NEARMV_OPTFLOW || mode == NEAR_NEWMV_OPTFLOW || |
| mode == NEW_NEARMV_OPTFLOW || |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mode == NEW_NEARMV); |
| } |
| |
| static INLINE int have_nearmv_newmv_in_inter_mode(PREDICTION_MODE mode) { |
| return mode == NEAR_NEWMV || |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW || |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_JOINT_MVD |
| is_joint_mvd_coding_mode(mode) || |
| #endif // CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| mode == JOINT_AMVDNEWMV || |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD && CONFIG_OPTFLOW_REFINEMENT |
| mode == JOINT_AMVDNEWMV_OPTFLOW || |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD && CONFIG_OPTFLOW_REFINEMENT |
| mode == NEW_NEARMV; |
| } |
| |
| static INLINE int have_newmv_in_each_reference(PREDICTION_MODE mode) { |
| return mode == NEWMV || |
| #if IMPROVED_AMVD |
| mode == AMVDNEWMV || |
| #endif // IMPROVED_AMVD |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mode == NEW_NEWMV_OPTFLOW || |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mode == NEW_NEWMV; |
| } |
| |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| // return whether current mode is joint AMVD coding mode |
| static INLINE int is_joint_amvd_coding_mode(PREDICTION_MODE mode) { |
| return mode == JOINT_AMVDNEWMV |
| #if CONFIG_OPTFLOW_REFINEMENT |
| || mode == JOINT_AMVDNEWMV_OPTFLOW |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| ; |
| } |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| |
| #if CONFIG_IMPROVED_JMVD |
| // Scale the MVD for joint MVD coding mode based on the jmvd_scale_mode. |
| // The supported scale modes for JOINT_NEWMV mode is 0, 1, 2, 3, and 4. |
| // The supported scale modes for JOINT_AMVDNEWMV mode is 0, 1, and 2. |
| static INLINE void scale_other_mvd(MV *other_mvd, int jmvd_scaled_mode, |
| PREDICTION_MODE mode) { |
| // This scaling factor is only applied to joint mvd coding mode |
| if (!is_joint_mvd_coding_mode(mode)) return; |
| #if IMPROVED_AMVD |
| if (is_joint_amvd_coding_mode(mode)) { |
| if (jmvd_scaled_mode == 1) { |
| other_mvd->row = other_mvd->row * 2; |
| other_mvd->col = other_mvd->col * 2; |
| } else if (jmvd_scaled_mode == 2) { |
| other_mvd->row = other_mvd->row / 2; |
| other_mvd->col = other_mvd->col / 2; |
| } |
| assert(jmvd_scaled_mode < JOINT_AMVD_SCALE_FACTOR_CNT); |
| return; |
| } |
| #endif // IMPROVED_AMVD |
| if (is_joint_mvd_coding_mode(mode)) { |
| if (jmvd_scaled_mode == 1) { |
| other_mvd->row = other_mvd->row * 2; |
| } else if (jmvd_scaled_mode == 2) { |
| other_mvd->col = other_mvd->col * 2; |
| } else if (jmvd_scaled_mode == 3) { |
| other_mvd->row = other_mvd->row / 2; |
| } else if (jmvd_scaled_mode == 4) { |
| other_mvd->col = other_mvd->col / 2; |
| } |
| assert(jmvd_scaled_mode < JOINT_NEWMV_SCALE_FACTOR_CNT); |
| } |
| } |
| #endif // CONFIG_IMPROVED_JMVD |
| |
| static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { |
| return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAR_NEWMV || |
| #if IMPROVED_AMVD |
| mode == AMVDNEWMV || |
| #endif // IMPROVED_AMVD |
| #if CONFIG_JOINT_MVD |
| is_joint_mvd_coding_mode(mode) || |
| #endif // CONFIG_JOINT_MVD |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW || |
| mode == NEW_NEWMV_OPTFLOW || |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mode == NEW_NEARMV); |
| } |
| static INLINE int have_drl_index(PREDICTION_MODE mode) { |
| return have_nearmv_in_inter_mode(mode) || have_newmv_in_inter_mode(mode); |
| } |
| |
| static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { |
| return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); |
| } |
| |
| /* For keyframes, intra block modes are predicted by the (already decoded) |
| modes for the Y blocks to the left and above us; for interframes, there |
| is a single probability table. */ |
| |
| typedef struct { |
| // Value of base colors for Y, U, and V |
| uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; |
| // Number of base colors for Y (0) and UV (1) |
| uint8_t palette_size[2]; |
| } PALETTE_MODE_INFO; |
| |
| typedef struct { |
| FILTER_INTRA_MODE filter_intra_mode; |
| uint8_t use_filter_intra; |
| } FILTER_INTRA_MODE_INFO; |
| |
| static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { |
| DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED |
| }; |
| |
| #if CONFIG_RD_DEBUG |
| #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) |
| #endif |
| |
| typedef struct RD_STATS { |
| int rate; |
| int64_t dist; |
| // Please be careful of using rdcost, it's not guaranteed to be set all the |
| // time. |
| // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In |
| // these functions, make sure rdcost is always up-to-date according to |
| // rate/dist. |
| int64_t rdcost; |
| int64_t sse; |
| int skip_txfm; // sse should equal to dist when skip_txfm == 1 |
| int zero_rate; |
| #if CONFIG_RD_DEBUG |
| int txb_coeff_cost[MAX_MB_PLANE]; |
| // TODO(jingning): Temporary solution to silence stack over-size warning |
| // in handle_inter_mode. This should be fixed after rate-distortion |
| // optimization refactoring. |
| int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE] |
| [TXB_COEFF_COST_MAP_SIZE]; |
| #endif // CONFIG_RD_DEBUG |
| } RD_STATS; |
| |
| // This struct is used to group function args that are commonly |
| // sent together in functions related to interinter compound modes |
| typedef struct { |
| uint8_t *seg_mask; |
| int8_t wedge_index; |
| int8_t wedge_sign; |
| DIFFWTD_MASK_TYPE mask_type; |
| COMPOUND_TYPE type; |
| } INTERINTER_COMPOUND_DATA; |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Macros for optical flow experiment where offsets are added in nXn blocks |
| // rather than adding a single offset to the entire prediction unit. |
| #define OF_MIN_BSIZE_LOG2 2 |
| #define OF_BSIZE_LOG2 3 |
| // Block size to use to divide up the prediction unit |
| #define OF_MIN_BSIZE (1 << OF_MIN_BSIZE_LOG2) |
| #define OF_BSIZE (1 << OF_BSIZE_LOG2) |
| #define N_OF_OFFSETS_1D (1 << (MAX_SB_SIZE_LOG2 - OF_BSIZE_LOG2)) |
| // Maximum number of offsets to be computed |
| #define N_OF_OFFSETS (N_OF_OFFSETS_1D * N_OF_OFFSETS_1D) |
| #else |
| #define N_OF_OFFSETS 1 |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| /*! \brief Stores the coordinate/bsize for chroma plane. */ |
| typedef struct CHROMA_REF_INFO { |
| /*! \brief Whether the current luma block also contains chroma info. */ |
| int is_chroma_ref; |
| /*! \brief Whether the luma and chroma block has different coordinate. */ |
| int offset_started; |
| /*! \brief If offset_started, this stores the mi_row of the chroma block. */ |
| int mi_row_chroma_base; |
| /*! \brief If offset_started, this stores the mi_row of the chroma block. */ |
| int mi_col_chroma_base; |
| /*! \brief The block size of the current luma block. */ |
| BLOCK_SIZE bsize; |
| /*! \brief Stores the size of that the current chroma block needs to be coded |
| * at. */ |
| BLOCK_SIZE bsize_base; |
| } CHROMA_REF_INFO; |
| |
| #define INTER_TX_SIZE_BUF_LEN 16 |
| #define TXK_TYPE_BUF_LEN 64 |
| /*!\endcond */ |
| |
| /*! \brief Stores the prediction/txfm mode of the current coding block |
| */ |
| typedef struct MB_MODE_INFO { |
| /***************************************************************************** |
| * \name General Info of the Coding Block |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \brief The block size of the current coding block */ |
| // Common for both INTER and INTRA blocks |
| BLOCK_SIZE sb_type[PARTITION_STRUCTURE_NUM]; |
| /*! \brief Starting mi_row of current coding block */ |
| int mi_row_start; |
| /*! \brief Starting mi_col of current coding block */ |
| int mi_col_start; |
| /*! \brief The partition type of the current coding block. */ |
| PARTITION_TYPE partition; |
| /*! \brief The prediction mode used */ |
| PREDICTION_MODE mode; |
| #if CONFIG_IMPROVED_JMVD |
| /*! \brief The JMVD scaling mode for the current coding block. The supported |
| * scale modes for JOINT_NEWMV mode is 0, 1, 2, 3, and 4. The supported scale |
| * modes for JOINT_AMVDNEWMV mode is 0, 1, and 2.*/ |
| int jmvd_scale_mode; |
| #endif // CONFIG_IMPROVED_JMVD |
| /*! \brief The forward skip mode for the current coding block. */ |
| uint8_t fsc_mode[2]; |
| /*! \brief The UV mode when intra is used */ |
| UV_PREDICTION_MODE uv_mode; |
| /*! \brief The q index for the current coding block. */ |
| int current_qindex; |
| /**@}*/ |
| |
| /***************************************************************************** |
| * \name Inter Mode Info |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \brief The motion vectors used by the current inter mode */ |
| int_mv mv[2]; |
| /*! \brief The reference frames for the MV */ |
| MV_REFERENCE_FRAME ref_frame[2]; |
| #if CONFIG_NEW_TX_PARTITION |
| /*! \brief Transform partition type. */ |
| TX_PARTITION_TYPE tx_partition_type[INTER_TX_SIZE_BUF_LEN]; |
| #endif // CONFIG_NEW_TX_PARTITION |
| /*! \brief Filter used in subpel interpolation. */ |
| int interp_fltr; |
| #if CONFIG_FLEX_MVRES |
| /*! The maximum mv_precision allowed for the given partition block. */ |
| MvSubpelPrecision max_mv_precision; |
| /*! The mv_precision used by the given partition block. */ |
| MvSubpelPrecision pb_mv_precision; |
| /*! The most probable mv_precision used by the given partition block. */ |
| MvSubpelPrecision most_probable_pb_mv_precision; |
| /*! |
| * The precision_set of the current frame. |
| */ |
| uint8_t mb_precision_set; |
| #endif |
| /*! \brief The motion mode used by the inter prediction. */ |
| MOTION_MODE motion_mode; |
| /*! \brief Number of samples used by spatial warp prediction */ |
| uint8_t num_proj_ref; |
| /*! \brief The number of overlapped neighbors above/left for obmc/warp motion |
| * mode. */ |
| uint8_t overlappable_neighbors[2]; |
| /*! \brief The parameters used in warp motion mode. */ |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| WarpedMotionParams wm_params[2]; |
| #else |
| WarpedMotionParams wm_params; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| /*! \brief The type of intra mode used by inter-intra */ |
| INTERINTRA_MODE interintra_mode; |
| /*! \brief The type of wedge used in interintra mode. */ |
| int8_t interintra_wedge_index; |
| /*! \brief Struct that stores the data used in interinter compound mode. */ |
| INTERINTER_COMPOUND_DATA interinter_comp; |
| #if CONFIG_BAWP |
| /*! \brief The block level bawp enabling flag*/ |
| int8_t bawp_flag; |
| /*! \brief The bawp parameters weight*/ |
| int16_t bawp_alpha[3][2]; //[yuv][ref0/1], current only [0][0] is used. |
| /*! \brief The bawp parameters offset*/ |
| int32_t bawp_beta[3][2]; //[yuv][ref0/1], current only [0][0] is used. |
| #endif // CONFIG_BAWP |
| /**@}*/ |
| |
| /***************************************************************************** |
| * \name Intra Mode Info |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \brief Directional mode delta: the angle is base angle + (angle_delta * |
| * step). */ |
| int8_t angle_delta[PLANE_TYPES]; |
| /*! \brief The type of filter intra mode used (if applicable). */ |
| FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
| /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */ |
| int8_t cfl_alpha_signs; |
| /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */ |
| uint8_t cfl_alpha_idx; |
| #if CONFIG_IMPROVED_CFL |
| /*! \brief Chroma from Luma: Index of the CfL mode */ |
| uint8_t cfl_idx; |
| /*! \brief The implicitly derived scaling factors*/ |
| int cfl_implicit_alpha[2]; //[u/v] |
| #endif |
| /*! \brief Stores the size and colors of palette mode */ |
| PALETTE_MODE_INFO palette_mode_info; |
| /*! \brief Reference line index for multiple reference line selection. */ |
| uint8_t mrl_index; |
| #if CONFIG_AIMC |
| /*! \brief mode index of y mode and y delta angle after re-ordering. */ |
| uint8_t y_mode_idx; |
| /*! \brief mode index of uv mode after re-ordering. */ |
| uint8_t uv_mode_idx; |
| /*! \brief joint mode index of y mode and y delta angle before re-ordering. */ |
| uint8_t joint_y_mode_delta_angle; |
| /*! \brief re-ordered mode list for y mode and y delta angle. */ |
| uint8_t y_intra_mode_list[LUMA_MODE_COUNT]; |
| /*! \brief re-ordered mode list for uv mode. */ |
| uint8_t uv_intra_mode_list[UV_INTRA_MODES]; |
| #endif // CONFIG_AIMC |
| /**@}*/ |
| |
| /***************************************************************************** |
| * \name Transform Info |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \brief Whether to skip transforming and sending. */ |
| int8_t skip_txfm[PARTITION_STRUCTURE_NUM]; |
| /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */ |
| TX_SIZE tx_size; |
| /*! \brief Transform size when recursive txfm tree is on. */ |
| uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN]; |
| /**@}*/ |
| |
| /***************************************************************************** |
| * \name Loop Filter Info |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \copydoc MACROBLOCKD::delta_lf_from_base */ |
| int8_t delta_lf_from_base; |
| /*! \copydoc MACROBLOCKD::delta_lf */ |
| int8_t delta_lf[FRAME_LF_COUNT]; |
| /**@}*/ |
| |
| /***************************************************************************** |
| * \name Bitfield for Memory Reduction |
| ****************************************************************************/ |
| /**@{*/ |
| /*! \brief The segment id */ |
| uint8_t segment_id : 3; |
| /*! \brief Only valid when temporal update if off. */ |
| uint8_t seg_id_predicted : 1; |
| /*! \brief Which ref_mv to use */ |
| uint8_t ref_mv_idx : 3; |
| /*! \brief Inter skip mode */ |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| uint8_t skip_mode : 2; |
| #else |
| uint8_t skip_mode : 1; |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| /*! \brief Whether intrabc is used. */ |
| uint8_t use_intrabc[PARTITION_STRUCTURE_NUM]; |
| #if CONFIG_BVP_IMPROVEMENT |
| /*! \brief Intrabc BV prediction mode. */ |
| uint8_t intrabc_mode; |
| /*! \brief Index of ref_bv. */ |
| uint8_t intrabc_drl_idx; |
| /*! \brief Which ref_bv to use. */ |
| int_mv ref_bv; |
| #endif // CONFIG_BVP_IMPROVEMENT |
| |
| #if CONFIG_WARP_REF_LIST |
| /*! \brief Which index to use for warp base parameter. */ |
| uint8_t warp_ref_idx; |
| /*! \brief Maximum number of warp reference indices to use for warp base |
| * parameter. */ |
| uint8_t max_num_warp_candidates; |
| #endif // CONFIG_WARP_REF_LIST |
| |
| /*! \brief Indicates if masked compound is used(1) or not (0). */ |
| uint8_t comp_group_idx : 1; |
| /*! \brief Whether to use interintra wedge */ |
| uint8_t use_wedge_interintra : 1; |
| /*! \brief CDEF strength per BLOCK_64X64 */ |
| int8_t cdef_strength : 4; |
| /*! \brief chroma block info for sub-8x8 cases */ |
| CHROMA_REF_INFO chroma_ref_info; |
| #if CONFIG_CCSO |
| #if CONFIG_CCSO_EXT |
| /*! \brief Whether to use cross-component sample offset for the Y plane. */ |
| uint8_t ccso_blk_y : 2; |
| #endif |
| /*! \brief Whether to use cross-component sample offset for the U plane. */ |
| uint8_t ccso_blk_u : 2; |
| /*! \brief Whether to use cross-component sample offset for the V plane. */ |
| uint8_t ccso_blk_v : 2; |
| #endif |
| /**@}*/ |
| |
| #if CONFIG_RD_DEBUG |
| /*! \brief RD info used for debugging */ |
| RD_STATS rd_stats; |
| /*! \brief The current row in unit of 4x4 blocks for debugging */ |
| int mi_row; |
| /*! \brief The current col in unit of 4x4 blocks for debugging */ |
| int mi_col; |
| #endif |
| #if CONFIG_INSPECTION |
| /*! \brief Whether we are skipping the current rows or columns. */ |
| int16_t tx_skip[TXK_TYPE_BUF_LEN]; |
| #endif |
| } MB_MODE_INFO; |
| |
| #if CONFIG_C071_SUBBLK_WARPMV |
| /*! \brief Stores the subblock motion info of the current coding block |
| */ |
| // Note that this can not be stored in MB_MODE_INFO, because The MB_MODE_INFO is |
| // only physically stored for the first sunblock of a block, the info of the |
| // rest subblocks in the same block are only pointed to the first subblock and |
| // is not physically stored. |
| typedef struct SUBMB_INFO { |
| /*! \brief Stored subblock mv for reference. */ |
| int_mv mv[2]; |
| } SUBMB_INFO; |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| |
| /*!\cond */ |
| // Get the start plane for semi-decoupled partitioning |
| static INLINE int get_partition_plane_start(int tree_type) { |
| return tree_type == CHROMA_PART; |
| } |
| |
| // Get the end plane for semi-decoupled partitioning |
| static INLINE int get_partition_plane_end(int tree_type, int num_planes) { |
| return (tree_type == LUMA_PART) ? 1 : num_planes; |
| } |
| |
| /*! \brief Stores partition structure of the current block. */ |
| typedef struct PARTITION_TREE { |
| /*! \brief Pointer to the parent node. */ |
| struct PARTITION_TREE *parent; |
| /*! \brief Pointers to the children if the current block is further split. */ |
| struct PARTITION_TREE *sub_tree[4]; |
| /*! \brief The partition type used to split the current block. */ |
| PARTITION_TYPE partition; |
| /*! \brief Block size of the current block. */ |
| BLOCK_SIZE bsize; |
| /*! \brief Whether the chroma block info is ready. */ |
| int is_settled; |
| /*! \brief The row coordinate of the current block in units of mi. */ |
| int mi_row; |
| /*! \brief The col coordinate of the current block in units of mi. */ |
| int mi_col; |
| /*! \brief The index of current node among its siblings. i.e. current == |
| * current->parent->sub_tree[current->index]. */ |
| int index; |
| /*! \brief Data related to the chroma block that the current luma block |
| * corresponds to. */ |
| CHROMA_REF_INFO chroma_ref_info; |
| } PARTITION_TREE; |
| |
| PARTITION_TREE *av1_alloc_ptree_node(PARTITION_TREE *parent, int index); |
| void av1_free_ptree_recursive(PARTITION_TREE *ptree); |
| |
| typedef struct SB_INFO { |
| int mi_row; |
| int mi_col; |
| PARTITION_TREE *ptree_root[2]; |
| #if CONFIG_FLEX_MVRES |
| MvSubpelPrecision sb_mv_precision; |
| #endif // CONFIG_FLEX_MVRES |
| } SB_INFO; |
| |
| void av1_reset_ptree_in_sbi(SB_INFO *sbi, TREE_TYPE tree_type); |
| |
| static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi, int tree_type) { |
| return mbmi->use_intrabc[tree_type == CHROMA_PART]; |
| } |
| |
| static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { |
| assert(mode < UV_INTRA_MODES); |
| static const PREDICTION_MODE uv2y[] = { |
| DC_PRED, // UV_DC_PRED |
| V_PRED, // UV_V_PRED |
| H_PRED, // UV_H_PRED |
| D45_PRED, // UV_D45_PRED |
| D135_PRED, // UV_D135_PRED |
| D113_PRED, // UV_D113_PRED |
| D157_PRED, // UV_D157_PRED |
| D203_PRED, // UV_D203_PRED |
| D67_PRED, // UV_D67_PRED |
| SMOOTH_PRED, // UV_SMOOTH_PRED |
| SMOOTH_V_PRED, // UV_SMOOTH_V_PRED |
| SMOOTH_H_PRED, // UV_SMOOTH_H_PRED |
| PAETH_PRED, // UV_PAETH_PRED |
| DC_PRED, // UV_CFL_PRED |
| INTRA_INVALID, // UV_INTRA_MODES |
| INTRA_INVALID, // UV_MODE_INVALID |
| }; |
| return uv2y[mode]; |
| } |
| |
| static INLINE int is_inter_ref_frame(MV_REFERENCE_FRAME ref_frame) { |
| return ref_frame != INTRA_FRAME && ref_frame != INTRA_FRAME_INDEX && |
| ref_frame != NONE_FRAME; |
| } |
| |
| #if CONFIG_TIP |
| static INLINE int is_tip_ref_frame(MV_REFERENCE_FRAME ref_frame) { |
| return ref_frame == TIP_FRAME; |
| } |
| #endif // CONFIG_TIP |
| |
| static INLINE int is_inter_block(const MB_MODE_INFO *mbmi, int tree_type) { |
| return is_intrabc_block(mbmi, tree_type) || |
| is_inter_ref_frame(mbmi->ref_frame[0]); |
| } |
| |
| /*!\brief Returns whether the current block size is square */ |
| static INLINE int is_square_block(BLOCK_SIZE bsize) { |
| return block_size_high[bsize] == block_size_wide[bsize]; |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| /*!\brief Returns whether the current block size has height > width. */ |
| static INLINE bool is_tall_block(BLOCK_SIZE bsize) { |
| return block_size_high[bsize] > block_size_wide[bsize]; |
| } |
| |
| /*!\brief Returns whether the current block size has width > height. */ |
| static INLINE bool is_wide_block(BLOCK_SIZE bsize) { |
| return block_size_high[bsize] < block_size_wide[bsize]; |
| } |
| |
| /*!\brief Returns the partition type for a non-square block based on the symbol |
| * transmitted through the bitstream. */ |
| static INLINE PARTITION_TYPE get_partition_from_symbol_rec_block( |
| BLOCK_SIZE bsize, PARTITION_TYPE_REC partition_rec) { |
| if (is_wide_block(bsize)) |
| return partition_map_from_symbol_block_wgth[partition_rec]; |
| else if (is_tall_block(bsize)) |
| return partition_map_from_symbol_block_hgtw[partition_rec]; |
| else |
| return PARTITION_INVALID; |
| } |
| |
| /*!\brief Returns the partition type for a non-square block based on the symbol |
| * transmitted through the bitstream when extended partition is disabled. */ |
| static INLINE PARTITION_TYPE |
| get_partition_noext_from_symbol_rec_block(BLOCK_SIZE bsize, int symbol) { |
| if (symbol == 0) { |
| return PARTITION_NONE; |
| } else { |
| const int is_wide = is_wide_block(bsize); |
| const PARTITION_TYPE partition_longside_2way = |
| is_wide ? PARTITION_VERT : PARTITION_HORZ; |
| const PARTITION_TYPE partition_shortside_2way = |
| is_wide ? PARTITION_HORZ : PARTITION_VERT; |
| |
| if (symbol == 1) |
| return partition_longside_2way; |
| else if (symbol == 2) |
| return partition_shortside_2way; |
| else |
| return PARTITION_INVALID; |
| } |
| } |
| |
| /*!\brief Returns the symbol to be transmitted through the bitstream for |
| * a non-square block based on the partition type. */ |
| static INLINE PARTITION_TYPE_REC get_symbol_from_partition_rec_block( |
| BLOCK_SIZE bsize, PARTITION_TYPE partition) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| assert(partition < EXT_PARTITION_TYPES); |
| if (is_wide_block(bsize)) |
| return symbol_map_from_partition_block_wgth[partition]; |
| else if (is_tall_block(bsize)) |
| return symbol_map_from_partition_block_hgtw[partition]; |
| else |
| return PARTITION_INVALID_REC; |
| } |
| |
| /*!\brief Returns the symbol to be transmitted through the bitstream for |
| * a non-square block based on the partition type when extended partition is |
| * disabled. */ |
| static INLINE PARTITION_TYPE_REC get_symbol_from_partition_noext_rec_block( |
| BLOCK_SIZE bsize, PARTITION_TYPE partition) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| assert(partition < EXT_PARTITION_TYPES); |
| |
| if (partition >= PARTITION_TYPES) return PARTITION_INVALID_REC; |
| if (partition == PARTITION_NONE) return 0; |
| |
| PARTITION_TYPE partition_longside_2way = |
| is_wide_block(bsize) ? PARTITION_VERT : PARTITION_HORZ; |
| if (is_bsize_geq(BLOCK_8X8, bsize) || is_bsize_geq(bsize, BLOCK_64X64)) { |
| return partition == partition_longside_2way ? 1 : PARTITION_INVALID_REC; |
| } else { |
| return partition == partition_longside_2way ? 1 : 2; |
| } |
| } |
| |
| /*!\brief Returns the symbol to be transmitted through the bitstream for the |
| * middle block of extended partition. |
| * \note "limited_partition" refers to the fact that the middle block of |
| * extended partition cannot be split in the same direction as the extended |
| * partition. */ |
| static INLINE PARTITION_TYPE get_symbol_from_limited_partition( |
| PARTITION_TYPE part, PARTITION_TYPE parent_part) { |
| assert(part != PARTITION_INVALID); |
| assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3); |
| static const int partition_to_symbol_map[NUM_LIMITED_PARTITION_PARENTS] |
| [EXT_PARTITION_TYPES] = { |
| // PARTITION_HORZ_3 |
| { 0, PARTITION_INVALID_REC, 1, 2, |
| 3 }, |
| // PARTITION_VERT_3 |
| { 0, 1, PARTITION_INVALID_REC, 2, |
| 3 }, |
| }; |
| const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1; |
| const int symbol = partition_to_symbol_map[dir][part]; |
| return symbol; |
| } |
| |
| /*!\brief Returns the symbol to be transmitted through the bitstream for the |
| * middle block of extended partition when extended partition is disabled. |
| * \note "limited_partition" refers to the fact that the middle block of |
| * extended partition cannot be split in the same direction as the extended |
| * partition. */ |
| static INLINE PARTITION_TYPE get_symbol_from_limited_partition_noext( |
| PARTITION_TYPE part, PARTITION_TYPE parent_part) { |
| assert(part != PARTITION_INVALID); |
| assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3); |
| static const int partition_to_symbol_map[NUM_LIMITED_PARTITION_PARENTS] |
| [EXT_PARTITION_TYPES] = { |
| // PARTITION_HORZ_3 |
| { 0, PARTITION_INVALID_REC, 1, |
| PARTITION_INVALID_REC, |
| PARTITION_INVALID_REC }, |
| // PARTITION_VERT_3 |
| { 0, 1, PARTITION_INVALID_REC, |
| PARTITION_INVALID_REC, |
| PARTITION_INVALID_REC }, |
| }; |
| const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1; |
| const int symbol = partition_to_symbol_map[dir][part]; |
| return symbol; |
| } |
| |
| /*!\brief Returns the partition type based on the symbol transmitted through the |
| * bitstream for the middle block of extended partition. \note |
| * "limited_partition" refers to the fact that the middle block of extended |
| * partition cannot be split in the same direction as the extended partition. */ |
| static INLINE PARTITION_TYPE |
| get_limited_partition_from_symbol(int symbol, PARTITION_TYPE parent_part) { |
| assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3); |
| static const PARTITION_TYPE horz3_parts[EXT_PARTITION_TYPES - 1] = { |
| PARTITION_NONE, /* PARTITION_HORZ, */ PARTITION_VERT, PARTITION_HORZ_3, |
| PARTITION_VERT_3 |
| }; |
| static const PARTITION_TYPE vert3_parts[EXT_PARTITION_TYPES - 1] = { |
| PARTITION_NONE, PARTITION_HORZ, /* PARTITION_VERT, */ PARTITION_HORZ_3, |
| PARTITION_VERT_3 |
| }; |
| switch (parent_part) { |
| case PARTITION_HORZ_3: return horz3_parts[symbol]; |
| case PARTITION_VERT_3: return vert3_parts[symbol]; |
| default: |
| assert(0 && |
| "Invalid parent partition in get_limited_partition from symbol"); |
| return PARTITION_INVALID; |
| } |
| } |
| |
| /*!\brief Returns the partition type based on the symbol transmitted through the |
| * bitstream for the middle block of extended partition when extended partition |
| * is disabled. \note "limited_partition" refers to the fact that the middle |
| * block of extended partition cannot be split in the same direction as the |
| * extended partition. */ |
| static INLINE PARTITION_TYPE get_limited_partition_noext_from_symbol( |
| int symbol, PARTITION_TYPE parent_part) { |
| assert(parent_part == PARTITION_HORZ_3 || parent_part == PARTITION_VERT_3); |
| static const PARTITION_TYPE horz3_parts[LIMITED_PARTITION_TYPES] = { |
| PARTITION_NONE, PARTITION_VERT |
| }; |
| static const PARTITION_TYPE vert3_parts[LIMITED_PARTITION_TYPES] = { |
| PARTITION_NONE, PARTITION_HORZ |
| }; |
| switch (parent_part) { |
| case PARTITION_HORZ_3: return horz3_parts[symbol]; |
| case PARTITION_VERT_3: return vert3_parts[symbol]; |
| default: |
| assert(0 && |
| "Invalid parent partition in get_limited_partition from symbol"); |
| return PARTITION_INVALID; |
| } |
| } |
| |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { |
| return is_inter_ref_frame(mbmi->ref_frame[1]); |
| } |
| |
| #if CONFIG_AIMC |
| PREDICTION_MODE av1_get_joint_mode(const MB_MODE_INFO *mi); |
| #else |
| PREDICTION_MODE av1_get_block_mode(const MB_MODE_INFO *mi); |
| #endif // CONFIG_AIMC |
| |
| static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, |
| TransformationType type) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; |
| const int block_size_allowed = |
| AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && |
| block_size_allowed; |
| } |
| |
| static INLINE int is_partition_point(BLOCK_SIZE bsize) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| return bsize != BLOCK_4X4 && bsize < BLOCK_SIZES; |
| #else |
| return is_square_block(bsize) && bsize >= BLOCK_8X8 && bsize < BLOCK_SIZES; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_4X4: return 0; |
| case BLOCK_8X8: return 1; |
| case BLOCK_16X16: return 2; |
| case BLOCK_32X32: return 3; |
| case BLOCK_64X64: return 4; |
| case BLOCK_128X128: return 5; |
| default: return SQR_BLOCK_SIZES; |
| } |
| } |
| |
| // For a square block size 'bsize', returns the size of the sub-blocks used by |
| // the given partition type. If the partition produces sub-blocks of different |
| // sizes, then the function returns the largest sub-block size. |
| // Implements the Partition_Subsize lookup table in the spec (Section 9.3. |
| // Conversion tables). |
| // Note: the input block size should be square. |
| // Otherwise it's considered invalid. |
| static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, |
| PARTITION_TYPE partition) { |
| if (partition == PARTITION_INVALID) { |
| return BLOCK_INVALID; |
| } else { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (is_partition_point(bsize)) |
| return subsize_lookup[partition][bsize]; |
| else |
| return partition == PARTITION_NONE ? bsize : BLOCK_INVALID; |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); |
| return sqr_bsize_idx >= SQR_BLOCK_SIZES |
| ? BLOCK_INVALID |
| : subsize_lookup[partition][sqr_bsize_idx]; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| } |
| |
| #if CONFIG_H_PARTITION |
| // Get the block size of the ith sub-block in a block partitioned via an |
| // h-partition mode. |
| static INLINE BLOCK_SIZE get_h_partition_subsize(BLOCK_SIZE bsize, int index, |
| PARTITION_TYPE partition) { |
| assert(partition == PARTITION_HORZ_3 || partition == PARTITION_VERT_3); |
| assert(index >= 0 && index <= 3); |
| if (!is_partition_point(bsize) || |
| subsize_lookup[partition][bsize] == BLOCK_INVALID) { |
| return BLOCK_INVALID; |
| } |
| |
| if (index == 0 || index == 3) { |
| return subsize_lookup[partition][bsize]; |
| } else { |
| static const BLOCK_SIZE mid_sub_block_hpart[BLOCK_SIZES] = { |
| BLOCK_INVALID, // BLOCK_4X4 |
| BLOCK_INVALID, // BLOCK_4X8 |
| BLOCK_INVALID, // BLOCK_8X4 |
| BLOCK_INVALID, // BLOCK_8X8 |
| BLOCK_4X8, // BLOCK_8X16 |
| BLOCK_8X4, // BLOCK_16X8 |
| BLOCK_8X8, // BLOCK_16X16 |
| BLOCK_8X16, // BLOCK_16X32 |
| BLOCK_16X8, // BLOCK_32X16 |
| BLOCK_16X16, // BLOCK_32X32 |
| BLOCK_16X32, // BLOCK_32X64 |
| BLOCK_32X16, // BLOCK_64X32 |
| BLOCK_32X32, // BLOCK_64X64 |
| BLOCK_INVALID, // BLOCK_64X128 |
| BLOCK_INVALID, // BLOCK_128X64 |
| BLOCK_INVALID, // BLOCK_128X128 |
| }; |
| |
| return mid_sub_block_hpart[bsize]; |
| } |
| } |
| |
| // Get the mi_row offset of the ith sub-block in a block partitioned via an |
| // h-partition mode. |
| static INLINE int get_h_partition_offset_mi_row(BLOCK_SIZE bsize, int index, |
| PARTITION_TYPE partition) { |
| assert(get_h_partition_subsize(bsize, index, partition) != BLOCK_INVALID); |
| |
| const int hbh = mi_size_high[bsize] >> 1; |
| assert(hbh > 0); |
| if (partition == PARTITION_VERT_3) { |
| return index == 2 ? hbh : 0; |
| } else { |
| const int qbh = hbh >> 1; |
| assert(qbh > 0); |
| |
| switch (index) { |
| case 0: return 0; |
| case 1: |
| case 2: return qbh; |
| case 3: return 3 * qbh; |
| default: assert(0); return -1; |
| } |
| } |
| } |
| |
| // Get the mi_col offset of the ith sub-block in a block partitioned via an |
| // h-partition mode. |
| static INLINE int get_h_partition_offset_mi_col(BLOCK_SIZE bsize, int index, |
| PARTITION_TYPE partition) { |
| assert(get_h_partition_subsize(bsize, index, partition) != BLOCK_INVALID); |
| |
| const int hbw = mi_size_wide[bsize] >> 1; |
| assert(hbw > 0); |
| if (partition == PARTITION_HORZ_3) { |
| return index == 2 ? hbw : 0; |
| } else { |
| const int qbw = hbw >> 1; |
| assert(qbw > 0); |
| |
| switch (index) { |
| case 0: return 0; |
| case 1: |
| case 2: return qbw; |
| case 3: return 3 * qbw; |
| default: assert(0); return -1; |
| } |
| } |
| } |
| #endif // CONFIG_H_PARTITION |
| |
| static INLINE int is_partition_valid(BLOCK_SIZE bsize, PARTITION_TYPE p) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (p == PARTITION_SPLIT) return 0; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| if (is_partition_point(bsize)) |
| return get_partition_subsize(bsize, p) < BLOCK_SIZES_ALL; |
| else |
| return p == PARTITION_NONE; |
| } |
| |
| static INLINE void initialize_chroma_ref_info(int mi_row, int mi_col, |
| BLOCK_SIZE bsize, |
| CHROMA_REF_INFO *info) { |
| info->is_chroma_ref = 1; |
| info->offset_started = 0; |
| info->mi_row_chroma_base = mi_row; |
| info->mi_col_chroma_base = mi_col; |
| info->bsize = bsize; |
| info->bsize_base = bsize; |
| } |
| |
| // Decide whether a block needs coding multiple chroma coding blocks in it at |
| // once to get around sub-4x4 coding. |
| static INLINE int have_nz_chroma_ref_offset(BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| int subsampling_x, |
| int subsampling_y) { |
| const int bw = block_size_wide[bsize] >> subsampling_x; |
| const int bh = block_size_high[bsize] >> subsampling_y; |
| const int bw_less_than_4 = bw < 4; |
| const int bh_less_than_4 = bh < 4; |
| const int hbw_less_than_4 = bw < 8; |
| const int hbh_less_than_4 = bh < 8; |
| const int qbw_less_than_4 = bw < 16; |
| const int qbh_less_than_4 = bh < 16; |
| switch (partition) { |
| case PARTITION_NONE: return bw_less_than_4 || bh_less_than_4; |
| case PARTITION_HORZ: return bw_less_than_4 || hbh_less_than_4; |
| case PARTITION_VERT: return hbw_less_than_4 || bh_less_than_4; |
| case PARTITION_SPLIT: return hbw_less_than_4 || hbh_less_than_4; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_H_PARTITION |
| case PARTITION_HORZ_3: return hbw_less_than_4 || qbh_less_than_4; |
| case PARTITION_VERT_3: return qbw_less_than_4 || hbh_less_than_4; |
| #else |
| case PARTITION_HORZ_3: return bw_less_than_4 || qbh_less_than_4; |
| case PARTITION_VERT_3: return qbw_less_than_4 || bh_less_than_4; |
| #endif // CONFIG_H_PARTITION |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: return hbw_less_than_4 || hbh_less_than_4; |
| case PARTITION_HORZ_4: return bw_less_than_4 || qbh_less_than_4; |
| case PARTITION_VERT_4: return qbw_less_than_4 || bh_less_than_4; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: |
| assert(0 && "Invalid partition type!"); |
| return 0; |
| break; |
| } |
| } |
| |
| // Decide whether a subblock is the main chroma reference when its parent block |
| // needs coding multiple chroma coding blocks at once. The function returns a |
| // flag indicating whether the mode info used for the combined chroma block is |
| // located in the subblock. |
| static INLINE int is_sub_partition_chroma_ref(PARTITION_TYPE partition, |
| int index, BLOCK_SIZE bsize, |
| BLOCK_SIZE parent_bsize, int ss_x, |
| int ss_y, int is_offset_started) { |
| (void)is_offset_started; |
| (void)parent_bsize; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int plane_w = bw >> ss_x; |
| const int plane_h = bh >> ss_y; |
| const int plane_w_less_than_4 = plane_w < 4; |
| const int plane_h_less_than_4 = plane_h < 4; |
| switch (partition) { |
| case PARTITION_NONE: return 1; |
| case PARTITION_HORZ: |
| case PARTITION_VERT: return index == 1; |
| case PARTITION_SPLIT: |
| if (is_offset_started) { |
| return index == 3; |
| } else { |
| if (plane_w_less_than_4 && plane_h_less_than_4) |
| return index == 3; |
| else if (plane_w_less_than_4) |
| return index == 1 || index == 3; |
| else if (plane_h_less_than_4) |
| return index == 2 || index == 3; |
| else |
| return 1; |
| } |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_H_PARTITION |
| case PARTITION_VERT_3: |
| case PARTITION_HORZ_3: return index == 3; |
| #else |
| case PARTITION_VERT_3: |
| case PARTITION_HORZ_3: return index == 2; |
| #endif // CONFIG_H_PARTITION |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| if (is_offset_started) { |
| return index == 2; |
| } else { |
| const int smallest_w = block_size_wide[parent_bsize] >> (ss_x + 1); |
| const int smallest_h = block_size_high[parent_bsize] >> (ss_y + 1); |
| const int smallest_w_less_than_4 = smallest_w < 4; |
| const int smallest_h_less_than_4 = smallest_h < 4; |
| if (smallest_w_less_than_4 && smallest_h_less_than_4) { |
| return index == 2; |
| } else if (smallest_w_less_than_4) { |
| if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { |
| return index == 2; |
| } else if (partition == PARTITION_HORZ_A) { |
| return index == 1 || index == 2; |
| } else { |
| return index == 0 || index == 2; |
| } |
| } else if (smallest_h_less_than_4) { |
| if (partition == PARTITION_HORZ_A || partition == PARTITION_HORZ_B) { |
| return index == 2; |
| } else if (partition == PARTITION_VERT_A) { |
| return index == 1 || index == 2; |
| } else { |
| return index == 0 || index == 2; |
| } |
| } else { |
| return 1; |
| } |
| } |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| if (is_offset_started) { |
| return index == 3; |
| } else { |
| if ((partition == PARTITION_HORZ_4 && plane_h_less_than_4) || |
| (partition == PARTITION_VERT_4 && plane_w_less_than_4)) { |
| return index == 1 || index == 3; |
| } else { |
| return 1; |
| } |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: |
| assert(0 && "Invalid partition type!"); |
| return 0; |
| break; |
| } |
| } |
| |
| static INLINE void set_chroma_ref_offset_size( |
| int mi_row, int mi_col, PARTITION_TYPE partition, BLOCK_SIZE bsize, |
| BLOCK_SIZE parent_bsize, int ss_x, int ss_y, CHROMA_REF_INFO *info, |
| const CHROMA_REF_INFO *parent_info) { |
| const int plane_w = block_size_wide[bsize] >> ss_x; |
| const int plane_h = block_size_high[bsize] >> ss_y; |
| const int plane_w_less_than_4 = plane_w < 4; |
| const int plane_h_less_than_4 = plane_h < 4; |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| const int hpplane_w = block_size_wide[parent_bsize] >> (ss_x + 1); |
| const int hpplane_h = block_size_high[parent_bsize] >> (ss_y + 1); |
| const int hpplane_w_less_than_4 = hpplane_w < 4; |
| const int hpplane_h_less_than_4 = hpplane_h < 4; |
| const int mi_row_mid_point = |
| parent_info->mi_row_chroma_base + (mi_size_high[parent_bsize] >> 1); |
| const int mi_col_mid_point = |
| parent_info->mi_col_chroma_base + (mi_size_wide[parent_bsize] >> 1); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| assert(parent_info->offset_started == 0); |
| switch (partition) { |
| case PARTITION_NONE: |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_VERT_3: |
| case PARTITION_HORZ_3: |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| info->bsize_base = parent_bsize; |
| break; |
| case PARTITION_SPLIT: |
| if (plane_w_less_than_4 && plane_h_less_than_4) { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| info->bsize_base = parent_bsize; |
| } else if (plane_w_less_than_4) { |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ); |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| if (mi_row == parent_info->mi_row_chroma_base) { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| } else { |
| info->mi_row_chroma_base = |
| parent_info->mi_row_chroma_base + mi_size_high[bsize]; |
| } |
| } else { |
| assert(plane_h_less_than_4); |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT); |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| if (mi_col == parent_info->mi_col_chroma_base) { |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| } else { |
| info->mi_col_chroma_base = |
| parent_info->mi_col_chroma_base + mi_size_wide[bsize]; |
| } |
| } |
| break; |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| if ((hpplane_w_less_than_4 && hpplane_h_less_than_4) || |
| (hpplane_w_less_than_4 && |
| (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B)) || |
| (hpplane_h_less_than_4 && |
| (partition == PARTITION_HORZ_A || partition == PARTITION_HORZ_B))) { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| info->bsize_base = parent_bsize; |
| } else if (hpplane_w_less_than_4) { |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ); |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| if (mi_row == parent_info->mi_row_chroma_base) { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| } else { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base + |
| (mi_size_high[parent_bsize] >> 1); |
| } |
| } else { |
| assert(hpplane_h_less_than_4); |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT); |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| if (mi_col == parent_info->mi_col_chroma_base) { |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| } else { |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base + |
| (mi_size_wide[parent_bsize] >> 1); |
| } |
| } |
| break; |
| case PARTITION_HORZ_4: |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_HORZ); |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| if (mi_row < mi_row_mid_point) { |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| } else { |
| info->mi_row_chroma_base = mi_row_mid_point; |
| } |
| break; |
| case PARTITION_VERT_4: |
| info->bsize_base = get_partition_subsize(parent_bsize, PARTITION_VERT); |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| if (mi_col < mi_col_mid_point) { |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| } else { |
| info->mi_col_chroma_base = mi_col_mid_point; |
| } |
| break; |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| default: assert(0 && "Invalid partition type!"); break; |
| } |
| } |
| |
| static INLINE void set_chroma_ref_info(int mi_row, int mi_col, int index, |
| BLOCK_SIZE bsize, CHROMA_REF_INFO *info, |
| const CHROMA_REF_INFO *parent_info, |
| BLOCK_SIZE parent_bsize, |
| PARTITION_TYPE parent_partition, |
| int ss_x, int ss_y) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| initialize_chroma_ref_info(mi_row, mi_col, bsize, info); |
| if (parent_info == NULL) return; |
| if (parent_info->is_chroma_ref) { |
| if (parent_info->offset_started) { |
| if (is_sub_partition_chroma_ref(parent_partition, index, bsize, |
| parent_bsize, ss_x, ss_y, 1)) { |
| info->is_chroma_ref = 1; |
| } else { |
| info->is_chroma_ref = 0; |
| } |
| info->offset_started = 1; |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| info->bsize_base = parent_info->bsize_base; |
| } else if (have_nz_chroma_ref_offset(parent_bsize, parent_partition, ss_x, |
| ss_y)) { |
| info->offset_started = 1; |
| info->is_chroma_ref = is_sub_partition_chroma_ref( |
| parent_partition, index, bsize, parent_bsize, ss_x, ss_y, 0); |
| set_chroma_ref_offset_size(mi_row, mi_col, parent_partition, bsize, |
| parent_bsize, ss_x, ss_y, info, parent_info); |
| } |
| } else { |
| info->is_chroma_ref = 0; |
| info->offset_started = 1; |
| info->mi_row_chroma_base = parent_info->mi_row_chroma_base; |
| info->mi_col_chroma_base = parent_info->mi_col_chroma_base; |
| info->bsize_base = parent_info->bsize_base; |
| } |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, |
| int mi_row, int tx_blk_col, int tx_blk_row, |
| int subsampling_x, int subsampling_y) { |
| *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + |
| (tx_blk_col << MI_SIZE_LOG2); |
| *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + |
| (tx_blk_row << MI_SIZE_LOG2); |
| } |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision); |
| |
| struct buf_2d { |
| uint16_t *buf; |
| uint16_t *buf0; |
| int width; |
| int height; |
| int stride; |
| }; |
| |
| typedef struct eob_info { |
| uint16_t eob; |
| uint16_t max_scan_line; |
| } eob_info; |
| |
| typedef struct { |
| DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); |
| eob_info eob_data[MAX_MB_PLANE] |
| [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; |
| DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); |
| } CB_BUFFER; |
| |
| typedef struct macroblockd_plane { |
| PLANE_TYPE plane_type; |
| int subsampling_x; |
| int subsampling_y; |
| struct buf_2d dst; |
| struct buf_2d pre[2]; |
| ENTROPY_CONTEXT *above_entropy_context; |
| ENTROPY_CONTEXT *left_entropy_context; |
| |
| // The dequantizers below are true dequantizers used only in the |
| // dequantization process. They have the same coefficient |
| // shift/scale as TX. |
| int32_t seg_dequant_QTX[MAX_SEGMENTS][2]; |
| // Pointer to color index map of: |
| // - Current coding block, on encoder side. |
| // - Current superblock, on decoder side. |
| uint8_t *color_index_map; |
| |
| // block size in pixels |
| uint8_t width, height; |
| |
| qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| } MACROBLOCKD_PLANE; |
| |
| #define BLOCK_OFFSET(i) ((i) << 4) |
| |
| #if CONFIG_LR_MERGE_COEFFS |
| #define LR_BANK_SIZE 4 |
| #else |
| #define LR_BANK_SIZE 1 |
| #endif // CONFIG_LR_MERGE_COEFFS |
| |
| /*!\endcond */ |
| |
| /*!\brief Parameters related to Wiener Filter */ |
| typedef struct { |
| /*! |
| * Vertical filter kernel. |
| */ |
| DECLARE_ALIGNED(16, InterpKernel, vfilter); |
| |
| /*! |
| * Horizontal filter kernel. |
| */ |
| DECLARE_ALIGNED(16, InterpKernel, hfilter); |
| #if CONFIG_LR_MERGE_COEFFS |
| /*! |
| * Best Reference from dynamic bank |
| */ |
| int bank_ref; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| } WienerInfo; |
| |
| /*!\brief Parameters related to Wiener Filter Bank */ |
| typedef struct { |
| /*! |
| * Bank of filter infos |
| */ |
| WienerInfo filter[LR_BANK_SIZE]; |
| /*! |
| * Size of the bank |
| */ |
| int bank_size; |
| /*! |
| * Pointer to the most current filter |
| */ |
| int bank_ptr; |
| } WienerInfoBank; |
| |
| /*!\brief Parameters related to Sgrproj Filter */ |
| typedef struct { |
| /*! |
| * Parameter index. |
| */ |
| int ep; |
| |
| /*! |
| * Weights for linear combination of filtered versions |
| */ |
| int xqd[2]; |
| #if CONFIG_LR_MERGE_COEFFS |
| /*! |
| * Best Reference from dynamic bank |
| */ |
| int bank_ref; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| } SgrprojInfo; |
| |
| /*!\brief Parameters related to Sgrproj Filter Bank */ |
| typedef struct { |
| /*! |
| * Bank of filter infos |
| */ |
| SgrprojInfo filter[LR_BANK_SIZE]; |
| /*! |
| * Size of the bank |
| */ |
| int bank_size; |
| /*! |
| * Pointer to the most current filter |
| */ |
| int bank_ptr; |
| } SgrprojInfoBank; |
| |
| #if CONFIG_WIENER_NONSEP |
| #define WIENERNS_MAX_CLASSES 1 |
| #define NUM_WIENERNS_CLASS_INIT_LUMA 1 |
| #define NUM_WIENERNS_CLASS_INIT_CHROMA 1 |
| |
| // Need two of the WIENERNS_YUV_MAX to store potential center taps. Adjust |
| // accordingly. |
| #define WIENERNS_YUV_MAX 32 |
| // Special symbol to indicate the set of all classes. |
| #define ALL_WIENERNS_CLASSES -17 |
| /*! |
| * Nonseparable Wiener filter parameters. |
| */ |
| typedef struct { |
| /*! |
| * Filter data - number of classes |
| */ |
| int num_classes; |
| /*! |
| * Filter data - taps |
| */ |
| DECLARE_ALIGNED(16, int16_t, |
| allfiltertaps[WIENERNS_MAX_CLASSES * WIENERNS_YUV_MAX]); |
| |
| #if CONFIG_LR_MERGE_COEFFS |
| /*! |
| * Best Reference from dynamic bank for each class. |
| */ |
| |
| int bank_ref_for_class[WIENERNS_MAX_CLASSES]; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| } WienerNonsepInfo; |
| |
| /*!\brief Parameters related to Nonseparable Wiener Filter Bank */ |
| typedef struct { |
| /*! |
| * Bank of filter infos |
| */ |
| WienerNonsepInfo filter[LR_BANK_SIZE]; |
| /*! |
| * Size of the bank for each class. |
| */ |
| int bank_size_for_class[WIENERNS_MAX_CLASSES]; |
| /*! |
| * Pointer to the most current filter for each class. |
| */ |
| int bank_ptr_for_class[WIENERNS_MAX_CLASSES]; |
| } WienerNonsepInfoBank; |
| |
| int16_t *nsfilter_taps(WienerNonsepInfo *nsinfo, int wiener_class_id); |
| |
| const int16_t *const_nsfilter_taps(const WienerNonsepInfo *nsinfo, |
| int wiener_class_id); |
| void copy_nsfilter_taps_for_class(WienerNonsepInfo *to_info, |
| const WienerNonsepInfo *from_info, |
| int wiener_class_id); |
| void copy_nsfilter_taps(WienerNonsepInfo *to_info, |
| const WienerNonsepInfo *from_info); |
| #endif // CONFIG_WIENER_NONSEP |
| /*!\cond */ |
| |
| #if CONFIG_DEBUG |
| #define CFL_SUB8X8_VAL_MI_SIZE (4) |
| #define CFL_SUB8X8_VAL_MI_SQUARE \ |
| (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE) |
| #endif // CONFIG_DEBUG |
| #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) |
| #define CFL_BUF_LINE (32) |
| #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) |
| #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) |
| #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) |
| typedef struct cfl_ctx { |
| // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid |
| // shifts) |
| uint16_t recon_buf_q3[CFL_BUF_SQUARE]; |
| // Q3 AC contributions (reconstructed luma pixels - tx block avg) |
| int16_t ac_buf_q3[CFL_BUF_SQUARE]; |
| #if CONFIG_IMPROVED_CFL |
| // above luma reconstruction buffer |
| uint16_t recon_yuv_buf_above[MAX_MB_PLANE][CFL_BUF_LINE]; |
| // left luma reconstruction buffer |
| uint16_t recon_yuv_buf_left[MAX_MB_PLANE][CFL_BUF_LINE]; |
| // luma neighboring pixel average |
| uint16_t avg_l; |
| #endif |
| // Cache the DC_PRED when performing RDO, so it does not have to be recomputed |
| // for every scaling parameter |
| int dc_pred_is_cached[CFL_PRED_PLANES]; |
| // The DC_PRED cache is disable when decoding |
| int use_dc_pred_cache; |
| // Only cache the first row of the DC_PRED |
| int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; |
| |
| // Height and width currently used in the CfL prediction buffer. |
| int buf_height, buf_width; |
| |
| int are_parameters_computed; |
| |
| // Chroma subsampling |
| int subsampling_x, subsampling_y; |
| |
| // Whether the reconstructed luma pixels need to be stored |
| int store_y; |
| |
| #if CONFIG_DEBUG |
| int rate; |
| #endif // CONFIG_DEBUG |
| } CFL_CTX; |
| |
| typedef struct dist_wtd_comp_params { |
| int fwd_offset; |
| int bck_offset; |
| } DIST_WTD_COMP_PARAMS; |
| |
| struct scale_factors; |
| |
| /*!\endcond */ |
| |
| #if CONFIG_REF_MV_BANK |
| #define REF_MV_BANK_SIZE 4 |
| |
| /*! \brief Variables related to reference MV bank. */ |
| typedef struct { |
| /*! |
| * Number of ref MVs in the buffer. |
| */ |
| int rmb_count[MODE_CTX_REF_FRAMES]; |
| /*! |
| * Index corresponding to the first ref MV in the buffer. |
| */ |
| int rmb_start_idx[MODE_CTX_REF_FRAMES]; |
| /*! |
| * Circular buffer storing the ref MVs. |
| */ |
| CANDIDATE_MV rmb_buffer[MODE_CTX_REF_FRAMES][REF_MV_BANK_SIZE]; |
| /*! |
| * Total number of mbmi updates conducted in SB |
| */ |
| int rmb_sb_hits; |
| } REF_MV_BANK; |
| #endif // CONFIG_REF_MV_BANK |
| |
| #if CONFIG_WARP_REF_LIST |
| #define WARP_PARAM_BANK_SIZE 4 |
| |
| /*! \brief Variables related to reference warp parameters bank. */ |
| typedef struct { |
| /*! |
| * Number of warp parameters in the buffer. |
| */ |
| int wpb_count[INTER_REFS_PER_FRAME]; |
| /*! |
| * Index corresponding to the first warp parameters in the buffer. |
| */ |
| int wpb_start_idx[INTER_REFS_PER_FRAME]; |
| /*! |
| * Circular buffer storing the warp parameters. |
| */ |
| WarpedMotionParams wpb_buffer[INTER_REFS_PER_FRAME][WARP_PARAM_BANK_SIZE]; |
| /*! |
| * Total number of mbmi updates conducted in SB |
| */ |
| int wpb_sb_hits; |
| } WARP_PARAM_BANK; |
| |
| #endif // CONFIG_WARP_REF_LIST |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| /*! \brief Variables related to mvp list of skip mode.*/ |
| typedef struct { |
| //! MV list |
| CANDIDATE_MV ref_mv_stack[USABLE_REF_MV_STACK_SIZE]; |
| //! reference list 0 reference frame index |
| MV_REFERENCE_FRAME ref_frame0[USABLE_REF_MV_STACK_SIZE]; |
| //! reference list 1 reference frame index |
| MV_REFERENCE_FRAME ref_frame1[USABLE_REF_MV_STACK_SIZE]; |
| //! The weights used to compute the ref mvs. |
| uint16_t weight[USABLE_REF_MV_STACK_SIZE]; |
| //! Number of ref mvs in the drl. |
| uint8_t ref_mv_count; |
| //! context |
| int16_t mode_context[MODE_CTX_REF_FRAMES]; // to be updated |
| //! Global mvs |
| int_mv global_mvs[2]; |
| } SKIP_MODE_MVP_LIST; |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| |
| /*! \brief Variables related to current coding block. |
| * |
| * This is a common set of variables used by both encoder and decoder. |
| * Most/all of the pointers are mere pointers to actual arrays are allocated |
| * elsewhere. This is mostly for coding convenience. |
| */ |
| typedef struct macroblockd { |
| /** |
| * \name Position of current macroblock in mi units |
| */ |
| /**@{*/ |
| int mi_row; /*!< Row position in mi units. */ |
| int mi_col; /*!< Column position in mi units. */ |
| /**@}*/ |
| |
| /*! |
| * Same as cm->mi_params.mi_stride, copied here for convenience. |
| */ |
| int mi_stride; |
| |
| #if CONFIG_REF_MV_BANK |
| /** |
| * \name Reference MV bank info. |
| */ |
| /**@{*/ |
| #if !CONFIG_C043_MVP_IMPROVEMENTS |
| REF_MV_BANK *ref_mv_bank_pt; /*!< Pointer to bank to refer to */ |
| #endif |
| REF_MV_BANK ref_mv_bank; /*!< Ref mv bank to update */ |
| /**@}*/ |
| #endif // CONFIG_REF_MV_BANK |
| |
| #if CONFIG_WARP_REF_LIST |
| /** |
| * \name Reference warp parameters bank info. |
| */ |
| /**@{*/ |
| WARP_PARAM_BANK warp_param_bank; /*!< Ref warp parameters bank to update */ |
| #if !WARP_CU_BANK |
| WARP_PARAM_BANK *warp_param_bank_pt; /*!< Pointer to bank to refer to */ |
| #endif //! WARP_CU_BANK |
| /**@}*/ |
| #endif // CONFIG_WARP_REF_LIST |
| |
| /*! |
| * True if current block transmits chroma information. |
| * More detail: |
| * Smallest supported block size for both luma and chroma plane is 4x4. Hence, |
| * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma |
| * blocks smaller than 8x8 maybe combined into one chroma block. |
| * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4 |
| * luma blocks. Then, a single chroma block of size 4x4 will cover the area of |
| * these four luma blocks. This is implemented in bitstream as follows: |
| * - There are four MB_MODE_INFO structs for the four luma blocks. |
| * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit |
| * any information for chroma planes. |
| * - Last block will have is_chroma_ref = true and transmits chroma |
| * information for the 4x4 chroma block that covers whole 8x8 area covered by |
| * four luma blocks. |
| * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks. |
| */ |
| bool is_chroma_ref; |
| |
| /*! |
| * Info specific to each plane. |
| */ |
| struct macroblockd_plane plane[MAX_MB_PLANE]; |
| |
| /*! |
| * Tile related info. |
| */ |
| TileInfo tile; |
| |
| /*! |
| * Appropriate offset inside cm->mi_params.mi_grid_base based on current |
| * mi_row and mi_col. |
| */ |
| MB_MODE_INFO **mi; |
| |
| #if CONFIG_C071_SUBBLK_WARPMV |
| /*! |
| * Appropriate offset inside cm->mi_params.submi_grid_base based on current |
| * mi_row and mi_col. |
| */ |
| SUBMB_INFO **submi; |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| |
| /*! |
| * True if 4x4 block above the current block is available. |
| */ |
| bool up_available; |
| /*! |
| * True if 4x4 block to the left of the current block is available. |
| */ |
| bool left_available; |
| /*! |
| * True if the above chrome reference block is available. |
| */ |
| bool chroma_up_available; |
| /*! |
| * True if the left chrome reference block is available. |
| */ |
| bool chroma_left_available; |
| |
| /*! |
| * MB_MODE_INFO for 4x4 block to the left of the current block, if |
| * left_available == true; otherwise NULL. |
| */ |
| MB_MODE_INFO *left_mbmi; |
| /*! |
| * MB_MODE_INFO for 4x4 block above the current block, if |
| * up_available == true; otherwise NULL. |
| */ |
| MB_MODE_INFO *above_mbmi; |
| #if CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING |
| /*! |
| * MB_MODE_INFO for 4x4 block to the bottom-left of the current block, if |
| * left_available == true; otherwise NULL. |
| */ |
| MB_MODE_INFO *bottom_left_mbmi; |
| /*! |
| * MB_MODE_INFO for 4x4 block to the top-right of the current block, if |
| * up_available == true; otherwise NULL. |
| */ |
| MB_MODE_INFO *above_right_mbmi; |
| #endif // CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING |
| /*! |
| * Neighboring blocks' mbmi |
| * if no available mbmi, set to be NULL. |
| */ |
| MB_MODE_INFO *neighbors[MAX_NUM_NEIGHBORS]; |
| /*! |
| * Above chroma reference block if is_chroma_ref == true for the current block |
| * and chroma_up_available == true; otherwise NULL. |
| * See also: the special case logic when current chroma block covers more than |
| * one luma blocks in set_mi_row_col(). |
| */ |
| MB_MODE_INFO *chroma_left_mbmi; |
| /*! |
| * Left chroma reference block if is_chroma_ref == true for the current block |
| * and chroma_left_available == true; otherwise NULL. |
| * See also: the special case logic when current chroma block covers more than |
| * one luma blocks in set_mi_row_col(). |
| */ |
| MB_MODE_INFO *chroma_above_mbmi; |
| |
| /*! |
| * SB_INFO for the superblock that the current coding block is located in |
| */ |
| SB_INFO *sbi; |
| |
| /*! |
| * Appropriate offset based on current 'mi_row' and 'mi_col', inside |
| * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or |
| * 'MACROBLOCK' structs. |
| */ |
| TX_TYPE *tx_type_map; |
| /*! |
| * Stride for 'tx_type_map'. Note that this may / may not be same as |
| * 'mi_stride', depending on which actual array 'tx_type_map' points to. |
| */ |
| int tx_type_map_stride; |
| #if CONFIG_CROSS_CHROMA_TX |
| /*! |
| * Array of CCTX types. |
| */ |
| CctxType *cctx_type_map; |
| /*! |
| * Stride for 'cctx_type_map'. Note that this may / may not be same as |
| * 'mi_stride', depending on which actual array 'cctx_type_map' points to. |
| */ |
| int cctx_type_map_stride; |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| /** |
| * \name Distance of this macroblock from frame edges in 1/8th pixel units. |
| */ |
| /**@{*/ |
| int mb_to_left_edge; /*!< Distance from left edge */ |
| int mb_to_right_edge; /*!< Distance from right edge */ |
| int mb_to_top_edge; /*!< Distance from top edge */ |
| int mb_to_bottom_edge; /*!< Distance from bottom edge */ |
| /**@}*/ |
| |
| /*! |
| * tree_type specifies whether luma and chroma component in current coded |
| * block shares the same tree or not. |
| */ |
| TREE_TYPE tree_type; |
| |
| /*! |
| * An array for recording whether an mi(4x4) is coded. Reset at sb level. |
| * For the first dimension, index == 0 corresponds to LUMA_PART and |
| * SHARED_PART. Index == 1 corresponds to SHARED_PART. |
| */ |
| // TODO(any): Convert to bit field instead. |
| uint8_t is_mi_coded[2][MAX_MIB_SQUARE]; |
| |
| /*! |
| * Stride of the is_mi_coded array. |
| */ |
| int is_mi_coded_stride; |
| |
| /*! |
| * Scale factors for reference frames of the current block. |
| * These are pointers into 'cm->ref_scale_factors'. |
| */ |
| const struct scale_factors *block_ref_scale_factors[2]; |
| |
| /*! |
| * - On encoder side: points to cpi->source, which is the buffer containing |
| * the current *source* frame (maybe filtered). |
| * - On decoder side: points to cm->cur_frame->buf, which is the buffer into |
| * which current frame is being *decoded*. |
| */ |
| const YV12_BUFFER_CONFIG *cur_buf; |
| |
| /*! |
| * Entropy contexts for the above blocks. |
| * above_entropy_context[i][j] corresponds to above entropy context for ith |
| * plane and jth mi column of this *frame*, wrt current 'mi_row'. |
| * These are pointers into 'cm->above_contexts.entropy'. |
| */ |
| ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE]; |
| /*! |
| * Entropy contexts for the left blocks. |
| * left_entropy_context[i][j] corresponds to left entropy context for ith |
| * plane and jth mi row of this *superblock*, wrt current 'mi_col'. |
| * Note: These contain actual data, NOT pointers. |
| */ |
| ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE]; |
| |
| /*! |
| * Partition contexts for the above blocks. |
| * above_partition_context[p][i] corresponds to above partition context for |
| * ith mi column of the plane pth in this *frame*, wrt current 'mi_row'. This |
| * is a pointer into 'cm->above_contexts.partition'. |
| */ |
| PARTITION_CONTEXT *above_partition_context[MAX_MB_PLANE]; |
| /*! |
| * Partition contexts for the left blocks. |
| * left_partition_context[p][i] corresponds to left partition context for ith |
| * mi row of pth plane in this *superblock*, wrt current 'mi_col'. |
| * Note: These contain actual data, NOT pointers. |
| */ |
| PARTITION_CONTEXT left_partition_context[MAX_MB_PLANE][MAX_MIB_SIZE]; |
| /*! |
| * Transform contexts for the above blocks. |
| * above_txfm_context[i] corresponds to above transform context for ith mi col |
| * from the current position (mi row and mi column) for this *frame*. |
| * This is a pointer into 'cm->above_contexts.txfm'. |
| */ |
| TXFM_CONTEXT *above_txfm_context; |
| /*! |
| * Transform contexts for the left blocks. |
| * left_txfm_context[i] corresponds to left transform context for ith mi row |
| * from the current position (mi_row and mi_col) for this *superblock*. |
| * This is a pointer into 'left_txfm_context_buffer'. |
| */ |
| TXFM_CONTEXT *left_txfm_context; |
| /*! |
| * left_txfm_context_buffer[i] is the left transform context for ith mi_row |
| * in this *superblock*. |
| * Behaves like an internal actual buffer which 'left_txt_context' points to, |
| * and never accessed directly except to fill in initial default values. |
| */ |
| TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; |
| |
| /** |
| * \name Default values for the two restoration filters for each plane. |
| * Default values for the two restoration filters for each plane. |
| * These values are used as reference values when writing the bitstream. That |
| * is, we transmit the delta between the actual values in |
| * cm->rst_info[plane].unit_info[unit_idx] and these reference values. |
| */ |
| /**@{*/ |
| WienerInfoBank wiener_info[MAX_MB_PLANE]; /*!< Refs for Wiener filter*/ |
| SgrprojInfoBank sgrproj_info[MAX_MB_PLANE]; /*!< Refs for SGR filter */ |
| #if CONFIG_WIENER_NONSEP |
| /*! |
| * Nonseparable Wiener filter information for all planes. |
| */ |
| WienerNonsepInfoBank wienerns_info[MAX_MB_PLANE]; |
| #endif // CONFIG_WIENER_NONSEP |
| /**@}*/ |
| |
| /** |
| * \name Block dimensions in MB_MODE_INFO units. |
| */ |
| /**@{*/ |
| uint8_t width; /*!< Block width in MB_MODE_INFO units */ |
| uint8_t height; /*!< Block height in MB_MODE_INFO units */ |
| /**@}*/ |
| |
| /*! |
| * Contains the motion vector candidates found during motion vector prediction |
| * process. ref_mv_stack[i] contains the candidates for ith type of |
| * reference frame (single/compound). The actual number of candidates found in |
| * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side) |
| * or mbmi_ext->ref_mv_count[i] (encoder side). |
| */ |
| CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; |
| /*! |
| * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the |
| * DRL (dynamic reference list) mode contexts. |
| */ |
| uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; |
| |
| /*! |
| * skip_mvp_candidate_list is the MVP list for skip mode. |
| */ |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| SKIP_MODE_MVP_LIST skip_mvp_candidate_list; |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| |
| #if CONFIG_WARP_REF_LIST |
| /*! |
| * warp_param_stack contains the predicted warp parameters |
| */ |
| WARP_CANDIDATE warp_param_stack[INTER_REFS_PER_FRAME] |
| [MAX_WARP_REF_CANDIDATES]; |
| /*! |
| * valid number of candidates in the warp_param_stack. |
| */ |
| uint8_t valid_num_warp_candidates[INTER_REFS_PER_FRAME]; |
| #endif // CONFIG_WARP_REF_LIST |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| /*! |
| * True if this is the last vertical rectangular block in a VERTICAL or |
| * VERTICAL_4 partition. |
| */ |
| bool is_last_vertical_rect; |
| /*! |
| * True if this is the 1st horizontal rectangular block in a HORIZONTAL or |
| * HORIZONTAL_4 partition. |
| */ |
| bool is_first_horizontal_rect; |
| |
| #if CONFIG_C043_MVP_IMPROVEMENTS |
| /*! |
| * True if this is the last horizontal rectangular block in a HORIZONTAL or |
| * HORIZONTAL_4 partition. |
| */ |
| bool is_last_horizontal_rect; |
| /*! |
| * True if this is the 1st vertical rectangular block in a VERTICAL or |
| * VERTICAL_4 partition. |
| */ |
| bool is_first_vertical_rect; |
| #endif // CONFIG_C043_MVP_IMPROVEMENTS |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| /*! |
| * Counts of each reference frame in the above and left neighboring blocks. |
| * NOTE: Take into account both single and comp references. |
| */ |
| uint8_t neighbors_ref_counts[INTER_REFS_PER_FRAME]; |
| |
| /*! |
| * Current CDFs of all the symbols for the current tile. |
| */ |
| FRAME_CONTEXT *tile_ctx; |
| |
| /*! |
| * Bit depth: copied from cm->seq_params.bit_depth for convenience. |
| */ |
| int bd; |
| |
| /*! |
| * Quantizer index for each segment (base qindex + delta for each segment). |
| */ |
| int qindex[MAX_SEGMENTS]; |
| /*! |
| * lossless[s] is true if segment 's' is coded losslessly. |
| */ |
| int lossless[MAX_SEGMENTS]; |
| /*! |
| * Q index for the coding blocks in this superblock will be stored in |
| * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is |
| * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as |
| * the base, and adding any transmitted delta qindex on top of it. |
| * Precisely, this is the latest qindex used by the first coding block of a |
| * non-skip superblock in the current tile; OR |
| * same as cm->quant_params.base_qindex (if not explicitly set yet). |
| * Note: This is 'CurrentQIndex' in the AV1 spec. |
| */ |
| int current_base_qindex; |
| |
| /*! |
| * Same as cm->features.cur_frame_force_integer_mv. |
| */ |
| int cur_frame_force_integer_mv; |
| |
| /*! |
| * Pointer to cm->error. |
| */ |
| struct aom_internal_error_info *error_info; |
| |
| /*! |
| * Same as cm->global_motion. |
| */ |
| const WarpedMotionParams *global_motion; |
| |
| /*! |
| * Since actual frame level loop filtering level value is not available |
| * at the beginning of the tile (only available during actual filtering) |
| * at encoder side.we record the delta_lf (against the frame level loop |
| * filtering level) and code the delta between previous superblock's delta |
| * lf and current delta lf. It is equivalent to the delta between previous |
| * superblock's actual lf and current lf. |
| */ |
| int8_t delta_lf_from_base; |
| /*! |
| * We have four frame filter levels for different plane and direction. So, to |
| * support the per superblock update, we need to add a few more params: |
| * 0. delta loop filter level for y plane vertical |
| * 1. delta loop filter level for y plane horizontal |
| * 2. delta loop filter level for u plane |
| * 3. delta loop filter level for v plane |
| * To make it consistent with the reference to each filter level in segment, |
| * we need to -1, since |
| * - SEG_LVL_ALT_LF_Y_V = 1; |
| * - SEG_LVL_ALT_LF_Y_H = 2; |
| * - SEG_LVL_ALT_LF_U = 3; |
| * - SEG_LVL_ALT_LF_V = 4; |
| */ |
| int8_t delta_lf[FRAME_LF_COUNT]; |
| /*! |
| * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the |
| * current superblock has already been read from (decoder) / written to |
| * (encoder) the bitstream; and false otherwise. |
| * More detail: |
| * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st |
| * non-skip coding block. So, we need this array to keep track of whether CDEF |
| * strengths for the given CDEF units have been transmitted yet or not. |
| * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is |
| * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if |
| * superblock size is 128x128). Hence the array size is 4. |
| * 3. In the current implementation, CDEF strength for this CDEF unit is |
| * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside |
| * cm->mi_params.mi_grid_base). |
| */ |
| bool cdef_transmitted[CDEF_IN_SB]; |
| |
| /*! |
| * Mask for this block used for compound prediction. |
| */ |
| DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); |
| |
| /*! |
| * CFL (chroma from luma) related parameters. |
| */ |
| CFL_CTX cfl; |
| |
| /*! |
| * Offset to plane[p].color_index_map. |
| * Currently: |
| * - On encoder side, this is always 0 as 'color_index_map' is allocated per |
| * *coding block* there. |
| * - On decoder side, this may be non-zero, as 'color_index_map' is a (static) |
| * memory pointing to the base of a *superblock* there, and we need an offset |
| * to it to get the color index map for current coding block. |
| */ |
| uint16_t color_index_map_offset[2]; |
| |
| /*! |
| * Temporary buffer used for convolution in case of compound reference only |
| * for (weighted or uniform) averaging operation. |
| * There are pointers to actual buffers allocated elsewhere: e.g. |
| * - In decoder, 'pbi->td.tmp_conv_dst' or |
| * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and |
| * - In encoder, 'x->tmp_conv_dst' or |
| * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'. |
| */ |
| CONV_BUF_TYPE *tmp_conv_dst; |
| /*! |
| * Temporary buffers used to build OBMC prediction by above (index 0) and left |
| * (index 1) predictors respectively. |
| * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'. |
| * There are pointers to actual buffers allocated elsewhere: e.g. |
| * - In decoder, 'pbi->td.tmp_obmc_bufs' or |
| * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and |
| * -In encoder, 'x->tmp_pred_bufs' or |
| * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'. |
| */ |
| uint16_t *tmp_obmc_bufs[2]; |
| /*! |
| * Enable IST for current coding block. |
| */ |
| uint8_t enable_ist; |
| #if CONFIG_CCSO |
| #if CONFIG_CCSO_EXT |
| /** ccso blk y */ |
| uint8_t ccso_blk_y; |
| #endif |
| /** ccso blk u */ |
| uint8_t ccso_blk_u; |
| /** ccso blk v */ |
| uint8_t ccso_blk_v; |
| #endif |
| |
| #if CONFIG_CONTEXT_DERIVATION |
| /** buffer to store AOM_PLANE_U txfm coefficient signs */ |
| int32_t tmp_sign[1024]; |
| /** variable to store AOM_PLANE_U eob value */ |
| uint16_t eob_u; |
| #endif // CONFIG_CONTEXT_DERIVATION |
| |
| #if CONFIG_CONTEXT_DERIVATION |
| /** variable to store eob_u flag */ |
| uint8_t eob_u_flag; |
| #endif // CONFIG_CONTEXT_DERIVATION |
| } MACROBLOCKD; |
| |
| /*!\cond */ |
| |
| /* |
| static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) { |
| return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; |
| } |
| |
| static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { |
| return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| ? CONVERT_TO_BYTEPTR(buf16) |
| : buf16; |
| } |
| */ |
| |
| static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, |
| PLANE_TYPE plane_type) { |
| static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { |
| DCT_DCT, // DC_PRED |
| ADST_DCT, // V_PRED |
| DCT_ADST, // H_PRED |
| DCT_DCT, // D45_PRED |
| ADST_ADST, // D135_PRED |
| ADST_DCT, // D113_PRED |
| DCT_ADST, // D157_PRED |
| DCT_ADST, // D203_PRED |
| ADST_DCT, // D67_PRED |
| ADST_ADST, // SMOOTH_PRED |
| ADST_DCT, // SMOOTH_V_PRED |
| DCT_ADST, // SMOOTH_H_PRED |
| ADST_ADST, // PAETH_PRED |
| }; |
| const PREDICTION_MODE mode = |
| (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); |
| assert(mode < INTRA_MODES); |
| return _intra_mode_to_tx_type[mode]; |
| } |
| |
| static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } |
| |
| static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { |
| return bsize > BLOCK_4X4; |
| } |
| |
| // Number of transform types in each set type for intra blocks |
| static const int av1_num_ext_tx_set_intra[EXT_TX_SET_TYPES] = { 1, 1, 4, |
| 6, 11, 15, |
| #if CONFIG_ATC_NEWTXSETS |
| 7 |
| #endif // CONFIG_ATC_NEWTXSETS |
| }; |
| |
| #if CONFIG_ATC_NEWTXSETS && CONFIG_ATC_REDUCED_TXSET |
| static const int av1_num_reduced_tx_set = 2; |
| #endif // CONFIG_ATC_NEWTXSETS && CONFIG_ATC_REDUCED_TXSET |
| |
| // Number of transform types in each set type |
| static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { |
| 1, 2, 5, 7, 12, 16, |
| }; |
| |
| static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { |
| { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| #if CONFIG_ATC_NEWTXSETS |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| #endif // CONFIG_ATC_NEWTXSETS |
| }; |
| |
| #if CONFIG_ATC_NEWTXSETS |
| static const int av1_mdtx_used_flag[EXT_TX_SIZES][INTRA_MODES][TX_TYPES] = { |
| { |
| { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 }, |
| { 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0 }, |
| }, // size_class: 0 |
| { |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0 }, |
| }, // size_class: 1 |
| { |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0 }, |
| }, // size_class: 2 |
| { |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| }, // size_class: 3 |
| }; |
| #endif // CONFIG_ATC_NEWTXSETS |
| |
| static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = { |
| 0x080F, // DC_PRED: 0000 1000 0000 1111 |
| 0x040F, // V_PRED: 0000 0100 0000 1111 |
| 0x080F, // H_PRED: 0000 1000 0000 1111 |
| 0x020F, // D45_PRED: 0000 0010 0000 1111 |
| 0x080F, // D135_PRED: 0000 1000 0000 1111 |
| 0x040F, // D113_PRED: 0000 0100 0000 1111 |
| 0x080F, // D157_PRED: 0000 1000 0000 1111 |
| 0x080F, // D203_PRED: 0000 1000 0000 1111 |
| 0x040F, // D67_PRED: 0000 0100 0000 1111 |
| 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111 |
| 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111 |
| 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111 |
| 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110 |
| }; |
| |
| static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { |
| 0x0001, // 0000 0000 0000 0001 |
| 0x0201, // 0000 0010 0000 0001 |
| 0x020F, // 0000 0010 0000 1111 |
| 0x0E0F, // 0000 1110 0000 1111 |
| 0x0FFF, // 0000 1111 1111 1111 |
| 0xFFFF, // 1111 1111 1111 1111 |
| #if CONFIG_ATC_NEWTXSETS |
| 0xFFFF, |
| #endif // CONFIG_ATC_NEWTXSETS |
| }; |
| |
| #if CONFIG_ATC_NEWTXSETS |
| static const uint16_t av1_md_trfm_used_flag[EXT_TX_SIZES][INTRA_MODES] = { |
| { |
| 0x218F, |
| 0x148F, |
| 0x290F, |
| 0x01CF, |
| 0x218F, |
| 0x508F, |
| 0x218F, |
| 0x290F, |
| 0x148F, |
| 0x01CF, |
| 0x118F, |
| 0x218F, |
| 0x3C0D, |
| }, // size_class: 0 |
| { |
| 0x019F, |
| 0x148F, |
| 0x290F, |
| 0x01CF, |
| 0x01AF, |
| 0x10AF, |
| 0x019F, |
| 0x211F, |
| 0x00EF, |
| 0x01CF, |
| 0x019F, |
| 0x01AF, |
| 0x2C0F, |
| }, // size_class: 1 |
| { |
| 0x019F, |
| 0x04AF, |
| 0x091F, |
| 0x019F, |
| 0x019F, |
| 0x01AF, |
| 0x019F, |
| 0x015F, |
| 0x01AF, |
| 0x019F, |
| 0x019F, |
| 0x01AF, |
| 0x1C0F, |
| }, // size_class: 2 |
| { |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| 0x0000, |
| }, // size_class: 3 |
| }; |
| #endif // CONFIG_ATC_NEWTXSETS |
| |
| static const TxSetType av1_ext_tx_set_lookup[2][2] = { |
| { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX }, |
| { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }, |
| }; |
| |
| static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; |
| if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; |
| if (tx_size_sqr_up == TX_32X32) |
| return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; |
| #if CONFIG_ATC_REDUCED_TXSET |
| if (use_reduced_set) return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_NEW_TX_SET; |
| #else |
| if (use_reduced_set) |
| return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; |
| #endif // CONFIG_ATC_REDUCED_TXSET |
| #if CONFIG_ATC_NEWTXSETS |
| if (is_inter) { |
| const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; |
| return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; |
| } else { |
| return EXT_NEW_TX_SET; |
| } |
| #else |
| const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; |
| return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; |
| #endif // CONFIG_ATC_NEWTXSETS |
| } |
| |
| // Maps tx set types to the indices. |
| static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { |
| { // Intra |
| #if CONFIG_ATC_NEWTXSETS |
| 0, -1, -1, -1, -1, -1, 1 }, |
| #else |
| 0, -1, 2, 1, -1, -1 }, |
| #endif // CONFIG_ATC_NEWTXSETS |
| { // Inter |
| 0, 3, -1, -1, 2, 1 }, |
| }; |
| |
| static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const TxSetType set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); |
| return ext_tx_set_index[is_inter][set_type]; |
| } |
| |
| static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const int set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); |
| return is_inter ? av1_num_ext_tx_set[set_type] |
| : av1_num_ext_tx_set_intra[set_type]; |
| } |
| |
| #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) |
| #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) |
| |
| static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { |
| const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; |
| if (bsize == BLOCK_4X4) |
| return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); |
| if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) |
| return max_rect_tx_size; |
| else |
| return largest_tx_size; |
| } |
| |
| static const uint8_t mode_to_angle_map[] = { |
| 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, |
| }; |
| |
| // Converts block_index for given transform size to index of the block in raster |
| // order. |
| static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, |
| int block_idx) { |
| // For transform size 4x8, the possible block_idx values are 0 & 2, because |
| // block_idx values are incremented in steps of size 'tx_width_unit x |
| // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to |
| // block number 1 in raster order, inside an 8x8 MI block. |
| // For any other transform size, the two indices are equivalent. |
| return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; |
| } |
| |
| // Inverse of above function. |
| // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. |
| static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, |
| int raster_order) { |
| assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); |
| // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. |
| return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; |
| } |
| |
| static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, |
| const MACROBLOCKD *xd, |
| TX_SIZE tx_size, |
| int is_screen_content_type) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (is_inter_block(mbmi, xd->tree_type) || plane_type != PLANE_TYPE_Y || |
| xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 || |
| is_screen_content_type) |
| return DCT_DCT; |
| |
| return intra_mode_to_tx_type(mbmi, plane_type); |
| } |
| |
| // Implements the get_plane_residual_size() function in the spec (Section |
| // 5.11.38. Get plane residual size function). |
| static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, |
| int subsampling_x, |
| int subsampling_y) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| assert(subsampling_x >= 0 && subsampling_x < 2); |
| assert(subsampling_y >= 0 && subsampling_y < 2); |
| return ss_size_lookup[bsize][subsampling_x][subsampling_y]; |
| } |
| |
| static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| int max_blocks_wide = block_size_wide[bsize]; |
| |
| if (xd->mb_to_right_edge < 0) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); |
| } |
| |
| // Scale the width in the transform block unit. |
| return max_blocks_wide >> MI_SIZE_LOG2; |
| } |
| |
| static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane) { |
| int max_blocks_high = block_size_high[bsize]; |
| |
| if (xd->mb_to_bottom_edge < 0) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); |
| } |
| |
| // Scale the height in the transform block unit. |
| return max_blocks_high >> MI_SIZE_LOG2; |
| } |
| |
| static INLINE int get_plane_tx_unit_height(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| int row, int ss_y) { |
| const int max_plane_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int mu_plane_blocks_high = |
| AOMMIN(mi_size_high[BLOCK_64X64] >> ss_y, max_plane_blocks_high); |
| return AOMMIN(mu_plane_blocks_high + (row >> ss_y), max_plane_blocks_high); |
| } |
| |
| static INLINE int get_plane_tx_unit_width(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| int col, int ss_x) { |
| const int max_plane_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int mu_plane_blocks_wide = |
| AOMMIN(mi_size_wide[BLOCK_64X64] >> ss_x, max_plane_blocks_wide); |
| return AOMMIN(mu_plane_blocks_wide + (col >> ss_x), max_plane_blocks_wide); |
| } |
| |
| /*!\brief Returns the index of luma/chroma based on the current partition tree |
| * type. |
| * |
| * If the tree_type includes luma, returns 0, else returns 1. */ |
| static INLINE int av1_get_sdp_idx(TREE_TYPE tree_type) { |
| switch (tree_type) { |
| case SHARED_PART: |
| case LUMA_PART: return 0; |
| case CHROMA_PART: return 1; break; |
| default: assert(0 && "Invalid tree type"); return 0; |
| } |
| } |
| |
| /*!\brief Returns bsize at which the current block needs to be coded. |
| * |
| * If the current plane is AOM_PLANE_Y, returns the current block size. |
| * If the luma and chroma trees are shared, and the current plane is chroma, |
| * then the corresponding luma block size is stored in |
| * CHROMA_REF_INFO::bsize_base. |
| * If the luma and chroma trees are decoupled, then the bsize is stored in |
| * MB_BLOCK_INFO::sb_type with the appropriate index. |
| * */ |
| static INLINE BLOCK_SIZE get_bsize_base(const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, int plane) { |
| BLOCK_SIZE bsize_base = BLOCK_INVALID; |
| if (xd->tree_type == SHARED_PART) { |
| bsize_base = |
| plane ? mbmi->chroma_ref_info.bsize_base : mbmi->sb_type[PLANE_TYPE_Y]; |
| } else { |
| bsize_base = mbmi->sb_type[av1_get_sdp_idx(xd->tree_type)]; |
| } |
| return bsize_base; |
| } |
| |
| static INLINE BLOCK_SIZE get_mb_plane_block_size(const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| int plane, int subsampling_x, |
| int subsampling_y) { |
| assert(subsampling_x >= 0 && subsampling_x < 2); |
| assert(subsampling_y >= 0 && subsampling_y < 2); |
| const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); |
| return get_plane_block_size(bsize_base, subsampling_x, subsampling_y); |
| } |
| |
| // These are only needed to support lpf multi-thread. |
| // Because xd is shared among all the threads workers, xd->tree_type does not |
| // contain the valid tree_type, so we are passing in the tree_type |
| static INLINE BLOCK_SIZE get_bsize_base_from_tree_type(const MB_MODE_INFO *mbmi, |
| TREE_TYPE tree_type, |
| int plane) { |
| BLOCK_SIZE bsize_base = BLOCK_INVALID; |
| if (tree_type == SHARED_PART) { |
| bsize_base = |
| plane ? mbmi->chroma_ref_info.bsize_base : mbmi->sb_type[PLANE_TYPE_Y]; |
| } else { |
| bsize_base = mbmi->sb_type[av1_get_sdp_idx(tree_type)]; |
| } |
| return bsize_base; |
| } |
| |
| static INLINE BLOCK_SIZE get_mb_plane_block_size_from_tree_type( |
| const MB_MODE_INFO *mbmi, TREE_TYPE tree_type, int plane, int subsampling_x, |
| int subsampling_y) { |
| assert(subsampling_x >= 0 && subsampling_x < 2); |
| assert(subsampling_y >= 0 && subsampling_y < 2); |
| const BLOCK_SIZE bsize_base = |
| get_bsize_base_from_tree_type(mbmi, tree_type, plane); |
| return get_plane_block_size(bsize_base, subsampling_x, subsampling_y); |
| } |
| |
| /* |
| * Logic to generate the lookup tables: |
| * |
| * TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) |
| * txs = sub_tx_size_map[txs]; |
| * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| * const int bw_uint_log2 = mi_size_wide_log2[bsize]; |
| * const int stride_log2 = bw_uint_log2 - tx_w_log2; |
| */ |
| static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, |
| int blk_col) { |
| static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3, |
| }; |
| static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2, |
| }; |
| static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1, |
| }; |
| const int index = |
| ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + |
| (blk_col >> tw_w_log2_table[bsize]); |
| assert(index < INTER_TX_SIZE_BUF_LEN); |
| return index; |
| } |
| |
| #if CONFIG_INSPECTION |
| /* |
| * Here is the logic to generate the lookup tables: |
| * |
| * TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| * for (int level = 0; level < MAX_VARTX_DEPTH; ++level) |
| * txs = sub_tx_size_map[txs]; |
| * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| * const int bw_uint_log2 = mi_size_wide_log2[bsize]; |
| * const int stride_log2 = bw_uint_log2 - tx_w_log2; |
| */ |
| static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, |
| int blk_col) { |
| int index = 0; |
| #if CONFIG_NEW_TX_PARTITION |
| assert(bsize < BLOCK_SIZES_ALL); |
| TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| // Get smallest possible sub_tx size |
| txs = smallest_sub_tx_size_map[txs]; |
| const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| const int bw_uint_log2 = mi_size_wide_log2[bsize]; |
| const int stride_log2 = bw_uint_log2 - tx_w_log2; |
| index = ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2); |
| assert(index < TXK_TYPE_BUF_LEN); |
| return index; |
| #endif // CONFIG_NEW_TX_PARTITION |
| static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, |
| }; |
| static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, |
| }; |
| static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2, |
| }; |
| index = ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + |
| (blk_col >> tw_w_log2_table[bsize]); |
| assert(index < TXK_TYPE_BUF_LEN); |
| return index; |
| } |
| #endif // CONFIG_INSPECTION |
| |
| static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row, |
| int blk_col, TX_SIZE tx_size, |
| TX_TYPE tx_type) { |
| const int stride = xd->tx_type_map_stride; |
| xd->tx_type_map[blk_row * stride + blk_col] = tx_type; |
| |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| // The 16x16 unit is due to the constraint from tx_64x64 which sets the |
| // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block |
| // size, the constraint takes effect in 32x16 / 16x32 size too. To solve |
| // the intricacy, cover all the 16x16 units inside a 64 level transform. |
| if (txw == tx_size_wide_unit[TX_64X64] || |
| txh == tx_size_high_unit[TX_64X64]) { |
| const int tx_unit = tx_size_wide_unit[TX_16X16]; |
| for (int idy = 0; idy < txh; idy += tx_unit) { |
| for (int idx = 0; idx < txw; idx += tx_unit) { |
| xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type; |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_CROSS_CHROMA_TX |
| #if CCTX_C2_DROPPED |
| // Determine whether or not to keep the second chroma channel (C2). |
| static INLINE int keep_chroma_c2(CctxType cctx_type) { |
| return |
| #if !CCTX_DROP_45 |
| cctx_type == CCTX_MINUS45 || cctx_type == CCTX_45 || |
| #endif // !CCTX_DROP_45 |
| #if !CCTX_DROP_30 |
| cctx_type == CCTX_MINUS30 || cctx_type == CCTX_30 || |
| #endif // !CCTX_DROP_30 |
| #if !CCTX_DROP_60 |
| cctx_type == CCTX_MINUS60 || cctx_type == CCTX_60 || |
| #endif // !CCTX_DROP_60 |
| cctx_type == CCTX_NONE; |
| } |
| #endif |
| |
| // When the current block is chroma reference, obtain amounts of mi offsets to |
| // its corresponding luma region. Otherwise set the offsets to 0. |
| static INLINE void get_chroma_mi_offsets(MACROBLOCKD *const xd, |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| TX_SIZE tx_size, |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| int *row_offset, int *col_offset) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| *row_offset = xd->mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base; |
| *col_offset = xd->mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base; |
| #else |
| const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| *row_offset = |
| (xd->mi_row & 0x01) && (tx_size_high_unit[tx_size] & 0x01) && ss_y; |
| *col_offset = |
| (xd->mi_col & 0x01) && (tx_size_wide_unit[tx_size] & 0x01) && ss_x; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| static INLINE void update_cctx_array(MACROBLOCKD *const xd, int blk_row, |
| int blk_col, int blk_row_offset, |
| int blk_col_offset, TX_SIZE tx_size, |
| CctxType cctx_type) { |
| const int stride = xd->cctx_type_map_stride; |
| const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| assert(xd->is_chroma_ref); |
| |
| // For sub 8x8 block, offsets will be applied to reach the mi_row and mi_col |
| // of the >= 8x8 block area. Transform block size is upscaled to match the |
| // luma block size. |
| const int br = (blk_row << ss_y) - blk_row_offset; |
| const int bc = (blk_col << ss_x) - blk_col_offset; |
| const int txw = tx_size_wide_unit[tx_size] << ss_x; |
| const int txh = tx_size_high_unit[tx_size] << ss_y; |
| |
| // To make cctx_type available for its right and bottom neighbors, cover |
| // all elements in cctx_type_map within the transform block range with the |
| // current cctx type |
| for (int idy = 0; idy < txh; idy++) |
| memset(&xd->cctx_type_map[(br + idy) * stride + bc], cctx_type, |
| txw * sizeof(xd->cctx_type_map[0])); |
| } |
| |
| static INLINE CctxType av1_get_cctx_type(const MACROBLOCKD *xd, int blk_row, |
| int blk_col) { |
| const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int br = blk_row << pd->subsampling_y; |
| const int bc = blk_col << pd->subsampling_x; |
| return xd->cctx_type_map[br * xd->cctx_type_map_stride + bc]; |
| } |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| static INLINE int tx_size_is_depth0(TX_SIZE tx_size, BLOCK_SIZE bsize) { |
| TX_SIZE ctx_size = max_txsize_rect_lookup[bsize]; |
| return ctx_size == tx_size; |
| } |
| |
| #if !CONFIG_NEW_TX_PARTITION |
| static INLINE int tx_size_to_depth(TX_SIZE tx_size, BLOCK_SIZE bsize) { |
| TX_SIZE ctx_size = max_txsize_rect_lookup[bsize]; |
| int depth = 0; |
| while (tx_size != ctx_size) { |
| depth++; |
| ctx_size = sub_tx_size_map[ctx_size]; |
| assert(depth <= MAX_TX_DEPTH); |
| } |
| return depth; |
| } |
| #endif |
| |
| /* |
| * If secondary transform is enabled (IST) : |
| * Bits 4~5 of tx_type stores secondary tx_type |
| * Bits 0~3 of tx_type stores primary tx_type |
| * |
| * This function masks secondary transform type used by the transform block |
| * |
| */ |
| static INLINE void disable_secondary_tx_type(TX_TYPE *tx_type) { |
| *tx_type &= 0x0f; |
| } |
| /* |
| * This function masks primary transform type used by the transform block |
| */ |
| static INLINE void disable_primary_tx_type(TX_TYPE *tx_type) { |
| *tx_type &= 0xf0; |
| } |
| /* |
| * This function returns primary transform type used by the transform block |
| */ |
| static INLINE TX_TYPE get_primary_tx_type(TX_TYPE tx_type) { |
| return tx_type & 0x0f; |
| } |
| /* |
| * This function returns secondary transform type used by the transform block |
| */ |
| static INLINE TX_TYPE get_secondary_tx_type(TX_TYPE tx_type) { |
| return (tx_type >> 4); |
| } |
| /* |
| * This function checks and returns 1 if secondary transform type needs to be |
| * signaled for the transform block |
| */ |
| static INLINE int block_signals_sec_tx_type(const MACROBLOCKD *xd, |
| TX_SIZE tx_size, TX_TYPE tx_type, |
| int eob) { |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| PREDICTION_MODE intra_dir; |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| intra_dir = |
| fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| } else { |
| intra_dir = mbmi->mode; |
| } |
| const BLOCK_SIZE bs = mbmi->sb_type[PLANE_TYPE_Y]; |
| const TX_TYPE primary_tx_type = get_primary_tx_type(tx_type); |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const int sb_size = (width >= 8 && height >= 8) ? 8 : 4; |
| bool ist_eob = 1; |
| // Updated EOB condition |
| if (((sb_size == 4) && (eob > IST_4x4_HEIGHT)) || |
| ((sb_size == 8) && (eob > IST_8x8_HEIGHT))) { |
| ist_eob = 0; |
| } |
| const int is_depth0 = tx_size_is_depth0(tx_size, bs); |
| const int code_stx = |
| (primary_tx_type == DCT_DCT || primary_tx_type == ADST_ADST) && |
| (intra_dir < PAETH_PRED) && |
| !(mbmi->filter_intra_mode_info.use_filter_intra) && is_depth0 && ist_eob; |
| return code_stx; |
| } |
| |
| /* |
| * This function returns the tx_type used by the transform block |
| * |
| * If secondary transform is enabled (IST) : |
| * Bits 4~5 of tx_type stores secondary tx_type |
| * Bits 0~3 of tx_type stores primary tx_type |
| */ |
| static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd, |
| PLANE_TYPE plane_type, int blk_row, |
| int blk_col, TX_SIZE tx_size, |
| int reduced_tx_set) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (xd->lossless[mbmi->segment_id]) { |
| return DCT_DCT; |
| } |
| if (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && |
| !is_inter_block(mbmi, xd->tree_type) && plane_type == PLANE_TYPE_Y) { |
| return IDTX; |
| } |
| TX_TYPE tx_type; |
| if (plane_type == PLANE_TYPE_Y) { |
| tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; |
| } else { |
| if (is_inter_block(mbmi, xd->tree_type)) { |
| // scale back to y plane's coordinate |
|