| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_PRED_COMMON_H_ |
| #define AOM_AV1_COMMON_PRED_COMMON_H_ |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/mvref_common.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| typedef struct { |
| int pyr_level; |
| int disp_order; |
| int base_qindex; |
| } RefFrameMapPair; |
| |
| static INLINE void init_ref_map_pair(AV1_COMMON *cm, |
| RefFrameMapPair *ref_frame_map_pairs, |
| int is_key) { |
| if (is_key) { |
| memset(ref_frame_map_pairs, -1, sizeof(*ref_frame_map_pairs) * REF_FRAMES); |
| return; |
| } |
| memset(ref_frame_map_pairs, 0, sizeof(*ref_frame_map_pairs) * REF_FRAMES); |
| for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { |
| // Get reference frame buffer |
| const RefCntBuffer *const buf = cm->ref_frame_map[map_idx]; |
| if (ref_frame_map_pairs[map_idx].disp_order == -1) continue; |
| if (buf == NULL) { |
| ref_frame_map_pairs[map_idx].disp_order = -1; |
| ref_frame_map_pairs[map_idx].pyr_level = -1; |
| ref_frame_map_pairs[map_idx].base_qindex = -1; |
| continue; |
| } else if (buf->ref_count > 1) { |
| // Once the keyframe is coded, the slots in ref_frame_map will all |
| // point to the same frame. In that case, all subsequent pointers |
| // matching the current are considered "free" slots. This will find |
| // the next occurance of the current pointer if ref_count indicates |
| // there are multiple instances of it and mark it as free. |
| for (int idx2 = map_idx + 1; idx2 < REF_FRAMES; ++idx2) { |
| const RefCntBuffer *const buf2 = cm->ref_frame_map[idx2]; |
| if (buf2 == buf) { |
| ref_frame_map_pairs[idx2].disp_order = -1; |
| ref_frame_map_pairs[idx2].pyr_level = -1; |
| ref_frame_map_pairs[idx2].base_qindex = -1; |
| } |
| } |
| } |
| ref_frame_map_pairs[map_idx].disp_order = (int)buf->display_order_hint; |
| ref_frame_map_pairs[map_idx].pyr_level = buf->pyramid_level; |
| ref_frame_map_pairs[map_idx].base_qindex = buf->base_qindex; |
| } |
| } |
| |
| /*!\cond */ |
| typedef struct { |
| // Scoring function for usefulness of references (the lower score, the more |
| // useful) |
| int score; |
| // Index in the reference buffer |
| int index; |
| // Temporal distance to the current frame |
| int distance; |
| // Display order hint |
| int disp_order; |
| // Quality of the reference frame |
| int base_qindex; |
| } RefScoreData; |
| /*!\endcond */ |
| |
| void av1_get_past_future_cur_ref_lists(AV1_COMMON *cm, RefScoreData *scores); |
| void av1_get_ref_frames(AV1_COMMON *cm, int cur_frame_disp, |
| RefFrameMapPair *ref_frame_map_pairs); |
| |
| // Find the reference that is furthest in the future |
| static INLINE int get_furthest_future_ref_index(const AV1_COMMON *const cm) { |
| int index = NONE_FRAME; |
| int ref_disp_order = -1; |
| for (int i = 0; i < cm->ref_frames_info.num_future_refs; i++) { |
| const int ref = cm->ref_frames_info.future_refs[i]; |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| if (buf == NULL) continue; |
| if ((int)buf->display_order_hint > ref_disp_order) { |
| index = ref; |
| ref_disp_order = (int)buf->display_order_hint; |
| } |
| } |
| return index; |
| } |
| |
| // Get the past reference that is temporally closest to the current frame |
| static INLINE int get_closest_past_ref_index(const AV1_COMMON *const cm) { |
| int index = NONE_FRAME; |
| int best_dist = INT_MAX; |
| for (int i = 0; i < cm->ref_frames_info.num_past_refs; i++) { |
| const int ref = cm->ref_frames_info.past_refs[i]; |
| const int dist = cm->ref_frames_info.ref_frame_distance[ref]; |
| if (dist < best_dist) { |
| index = ref; |
| best_dist = dist; |
| } |
| } |
| return index; |
| } |
| |
| // Get the current frame if it is available in the reference list. Otherwise |
| // get the closest past reference |
| static INLINE int get_closest_pastcur_ref_index(const AV1_COMMON *const cm) { |
| if (cm->ref_frames_info.num_cur_refs > 0) |
| return cm->ref_frames_info.cur_refs[0]; |
| return get_closest_past_ref_index(cm); |
| } |
| |
| static INLINE int get_best_past_ref_index(const AV1_COMMON *const cm) { |
| const int index = cm->ref_frames_info.num_past_refs > 0 |
| ? cm->ref_frames_info.past_refs[0] |
| : NONE_FRAME; |
| assert(index < INTER_REFS_PER_FRAME); |
| return index; |
| } |
| |
| // Gets directional i.e. past/future ref rank from overall rank |
| // in dir_refrank[0]/[1] respectively. Returns 0 if found in past |
| // list, 1 if found in future list, -1 if not found in either (error). |
| // Note dir_refrank can be NULL, in which case only the direction |
| // is returned, the ranks are not output. |
| static INLINE int get_dir_rank(const AV1_COMMON *const cm, int refrank, |
| int *dir_refrank) { |
| if (!is_inter_ref_frame(refrank)) return -1; |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(refrank)) { |
| if (dir_refrank) { |
| dir_refrank[0] = -1; |
| dir_refrank[1] = -1; |
| } |
| return 1; |
| } |
| #endif // CONFIG_TIP |
| assert(refrank < cm->ref_frames_info.num_total_refs); |
| if (dir_refrank) { |
| dir_refrank[0] = -1; |
| dir_refrank[1] = -1; |
| } |
| for (int i = 0; i < cm->ref_frames_info.num_past_refs; ++i) { |
| if (cm->ref_frames_info.past_refs[i] == refrank) { |
| if (dir_refrank) dir_refrank[0] = i; |
| return 0; |
| } |
| } |
| for (int i = 0; i < cm->ref_frames_info.num_future_refs; ++i) { |
| if (cm->ref_frames_info.future_refs[i] == refrank) { |
| if (dir_refrank) dir_refrank[1] = i; |
| return 1; |
| } |
| } |
| // If refrank has the same distance as a reference return 0 (past) |
| // but the dir_refrank[0] is -1 |
| if (cm->ref_frames_info.cur_refs[0] == refrank) return 0; |
| return -1; |
| } |
| |
| #if CONFIG_TIP |
| static INLINE int get_tip_ctx(const MACROBLOCKD *xd) { |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += is_tip_ref_frame(neighbor->ref_frame[0]); |
| } |
| } |
| |
| return ctx; |
| } |
| #endif // CONFIG_TIP |
| |
| static INLINE int get_segment_id(const CommonModeInfoParams *const mi_params, |
| const uint8_t *segment_ids, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| const int mi_offset = mi_row * mi_params->mi_cols + mi_col; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); |
| const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); |
| int segment_id = MAX_SEGMENTS; |
| |
| for (int y = 0; y < ymis; ++y) { |
| for (int x = 0; x < xmis; ++x) { |
| segment_id = AOMMIN(segment_id, |
| segment_ids[mi_offset + y * mi_params->mi_cols + x]); |
| } |
| } |
| |
| assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); |
| return segment_id; |
| } |
| |
| static INLINE int av1_get_spatial_seg_pred(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| int *cdf_index) { |
| int prev_ul = -1; // top left segment_id |
| int prev_l = -1; // left segment_id |
| int prev_u = -1; // top segment_id |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const uint8_t *seg_map = cm->cur_frame->seg_map; |
| if ((xd->up_available) && (xd->left_available)) { |
| prev_ul = |
| get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 1, mi_col - 1); |
| } |
| if (xd->up_available) { |
| prev_u = |
| get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 1, mi_col - 0); |
| } |
| if (xd->left_available) { |
| prev_l = |
| get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 0, mi_col - 1); |
| } |
| // This property follows from the fact that get_segment_id() returns a |
| // nonnegative value. This allows us to test for all edge cases with a simple |
| // prev_ul < 0 check. |
| assert(IMPLIES(prev_ul >= 0, prev_u >= 0 && prev_l >= 0)); |
| |
| // Pick CDF index based on number of matching/out-of-bounds segment IDs. |
| if (prev_ul < 0) /* Edge cases */ |
| *cdf_index = 0; |
| else if ((prev_ul == prev_u) && (prev_ul == prev_l)) |
| *cdf_index = 2; |
| else if ((prev_ul == prev_u) || (prev_ul == prev_l) || (prev_u == prev_l)) |
| *cdf_index = 1; |
| else |
| *cdf_index = 0; |
| |
| // If 2 or more are identical returns that as predictor, otherwise prev_l. |
| if (prev_u == -1) // edge case |
| return prev_l == -1 ? 0 : prev_l; |
| if (prev_l == -1) // edge case |
| return prev_u; |
| return (prev_ul == prev_u) ? prev_u : prev_l; |
| } |
| |
| static INLINE int av1_get_pred_context_seg_id(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| const int above_sip = (above_mi != NULL) ? above_mi->seg_id_predicted : 0; |
| const int left_sip = (left_mi != NULL) ? left_mi->seg_id_predicted : 0; |
| |
| return above_sip + left_sip; |
| } |
| |
| static INLINE int derive_comp_one_ref_context(const AV1_COMMON *cm, |
| const MB_MODE_INFO *const mi) { |
| MV_REFERENCE_FRAME furthest_future_ref = get_furthest_future_ref_index(cm); |
| int ctx = 0; |
| if (mi) { |
| if (has_second_ref(mi)) |
| ctx = mi->comp_group_idx; |
| else if (mi->ref_frame[0] == furthest_future_ref) |
| ctx = 2; |
| } |
| |
| return ctx; |
| } |
| |
| static INLINE int get_comp_group_idx_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| int bck_frame_index = 0, fwd_frame_index = 0; |
| int cur_frame_index = cm->cur_frame->order_hint; |
| |
| if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint; |
| if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint; |
| |
| int fwd = abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| fwd_frame_index, cur_frame_index)); |
| int bck = abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_frame_index, bck_frame_index)); |
| const int offset = (fwd == bck); |
| |
| const int ctx0 = derive_comp_one_ref_context(cm, xd->neighbors[0]); |
| const int ctx1 = derive_comp_one_ref_context(cm, xd->neighbors[1]); |
| |
| const int ctxmap[3 * 3] = { 0, 1, 2, 1, 3, 4, 2, 4, 5 }; |
| |
| return ctxmap[3 * ctx0 + ctx1] + offset * 6; |
| } |
| |
| static INLINE aom_cdf_prob *av1_get_pred_cdf_seg_id( |
| struct segmentation_probs *segp, const MACROBLOCKD *xd) { |
| return segp->pred_cdf[av1_get_pred_context_seg_id(xd)]; |
| } |
| |
| static INLINE int av1_get_skip_mode_context(const MACROBLOCKD *xd) { |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += neighbor->skip_mode; |
| } |
| } |
| |
| return ctx; |
| } |
| |
| static INLINE int av1_get_skip_txfm_context(const MACROBLOCKD *xd) { |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += neighbor->skip_txfm[xd->tree_type == CHROMA_PART]; |
| } |
| } |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (xd->mi[0]->skip_mode) ctx += (SKIP_CONTEXTS >> 1); |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| return ctx; |
| } |
| |
| #if CONFIG_NEW_CONTEXT_MODELING |
| static INLINE int get_intrabc_ctx(const MACROBLOCKD *xd) { |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += is_intrabc_block(neighbor, xd->tree_type); |
| } |
| } |
| |
| return ctx; |
| } |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| |
| #if CONFIG_CROSS_CHROMA_TX |
| static INLINE int is_cctx_enabled(const AV1_COMMON *cm, const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| return cm->seq_params.enable_cctx && !xd->lossless[mbmi->segment_id]; |
| } |
| |
| // Determine whether to allow cctx or not for a given block |
| static INLINE int is_cctx_allowed(const AV1_COMMON *cm, const MACROBLOCKD *xd) { |
| if (!is_cctx_enabled(cm, xd)) return 0; |
| |
| if (xd->tree_type == LUMA_PART) { |
| return 0; |
| } |
| |
| // Disable cctx for 32x32 or larger blocks in 422/444 formats, in which case |
| // the speed and quality tradeoff is worse. |
| const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE chroma_plane_bsize = |
| get_mb_plane_block_size(xd, xd->mi[0], AOM_PLANE_U, ss_x, ss_y); |
| assert(chroma_plane_bsize <= BLOCK_SIZES_ALL); |
| if (ss_x == 0 || ss_y == 0) |
| return block_size_wide[chroma_plane_bsize] < 32 || |
| block_size_high[chroma_plane_bsize] < 32; |
| return 1; |
| } |
| |
| static INLINE void get_above_and_left_cctx_type(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| TX_SIZE tx_size, |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| int *above_cctx, |
| int *left_cctx) { |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int stride = mi_params->mi_stride; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const int mi_grid_idx = |
| get_mi_grid_idx(mi_params, xd->mi[0]->chroma_ref_info.mi_row_chroma_base, |
| xd->mi[0]->chroma_ref_info.mi_col_chroma_base); |
| #else |
| const int ss_x = xd->plane[AOM_PLANE_U].subsampling_x; |
| const int ss_y = xd->plane[AOM_PLANE_U].subsampling_y; |
| const int txh = tx_size_high_unit[tx_size]; |
| const int txw = tx_size_wide_unit[tx_size]; |
| // Offsets are needed for sub 8x8 blocks to reach the top left corner of the |
| // current block where the current cctx_type is applied |
| const int mi_row_offset = (xd->mi_row & 0x01) && (txh & 0x01) && ss_y; |
| const int mi_col_offset = (xd->mi_col & 0x01) && (txw & 0x01) && ss_x; |
| const int mi_grid_idx = get_mi_grid_idx(mi_params, xd->mi_row - mi_row_offset, |
| xd->mi_col - mi_col_offset); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| CctxType *const cur_cctx_ptr = mi_params->cctx_type_map + mi_grid_idx; |
| *above_cctx = xd->chroma_up_available ? (int)cur_cctx_ptr[-stride] : -1; |
| *left_cctx = xd->chroma_left_available ? (int)cur_cctx_ptr[-1] : -1; |
| |
| assert(*above_cctx >= -1 && *above_cctx < CCTX_TYPES); |
| assert(*left_cctx >= -1 && *left_cctx < CCTX_TYPES); |
| } |
| |
| // Context of cctx type is determined by comparing the numbers of positive and |
| // negative angles in the above and left neighbors of the current tx block. |
| // 0: tie, 1: more positive angles, 2: more negative angles. |
| static INLINE int get_cctx_context(const MACROBLOCKD *xd, int *above, |
| int *left) { |
| int cnt = 0; |
| if (xd->chroma_up_available && *above > CCTX_NONE) |
| cnt += (*above > CCTX_60) ? -1 : 1; |
| if (xd->chroma_left_available && *left > CCTX_NONE) |
| cnt += (*left > CCTX_60) ? -1 : 1; |
| return cnt == 0 ? 0 : 1 + (cnt < 0); |
| } |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir); |
| |
| // Get a list of palette base colors that are used in the above and left blocks, |
| // referred to as "color cache". The return value is the number of colors in the |
| // cache (<= 2 * PALETTE_MAX_SIZE). The color values are stored in "cache" |
| // in ascending order. |
| int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, |
| uint16_t *cache); |
| |
| static INLINE int av1_get_palette_bsize_ctx(BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| return num_pels_log2_lookup[bsize] - num_pels_log2_lookup[BLOCK_8X8]; |
| } |
| |
| static INLINE int av1_get_palette_mode_ctx(const MACROBLOCKD *xd) { |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += (neighbor->palette_mode_info.palette_size[0] > 0); |
| } |
| } |
| |
| return ctx; |
| } |
| |
| int av1_get_intra_inter_context(const MACROBLOCKD *xd); |
| |
| int av1_get_reference_mode_context(const AV1_COMMON *cm, const MACROBLOCKD *xd); |
| |
| static INLINE aom_cdf_prob *av1_get_reference_mode_cdf(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| return xd->tile_ctx->comp_inter_cdf[av1_get_reference_mode_context(cm, xd)]; |
| } |
| |
| static INLINE aom_cdf_prob *av1_get_skip_txfm_cdf(const MACROBLOCKD *xd) { |
| return xd->tile_ctx->skip_txfm_cdfs[av1_get_skip_txfm_context(xd)]; |
| } |
| |
| int av1_get_ref_pred_context(const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, |
| int num_total_refs); |
| |
| // Obtain cdf of reference frame for single prediction |
| static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref(const MACROBLOCKD *xd, |
| MV_REFERENCE_FRAME ref, |
| int num_total_refs) { |
| assert((ref + 1) < num_total_refs); |
| return xd->tile_ctx |
| ->single_ref_cdf[av1_get_ref_pred_context(xd, ref, num_total_refs)][ref]; |
| } |
| |
| // This function checks whether the previously coded reference frame is on the |
| // same side as the frame to be coded. The returned value is used as the cdf |
| // context. |
| static INLINE int av1_get_compound_ref_bit_type( |
| const RefFramesInfo *const ref_frames_info, int i, int j) { |
| const int bit_type = (ref_frames_info->ref_frame_distance[i] >= 0) ^ |
| (ref_frames_info->ref_frame_distance[j] >= 0); |
| return bit_type; |
| } |
| |
| // Obtain cdf of reference frame for compound prediction |
| static INLINE aom_cdf_prob *av1_get_pred_cdf_compound_ref( |
| const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, int n_bits, int bit_type, |
| int num_total_refs) { |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| assert(ref < num_total_refs); |
| assert(n_bits < 2); |
| assert(bit_type < COMPREF_BIT_TYPES); |
| assert(IMPLIES(n_bits == 0, ref < RANKED_REF0_TO_PRUNE - 1)); |
| #else |
| assert((ref + 1) < num_total_refs); |
| assert(n_bits < 2); |
| assert(ref - n_bits < num_total_refs - 2); |
| assert(bit_type < COMPREF_BIT_TYPES); |
| assert(IMPLIES(n_bits == 0, ref < RANKED_REF0_TO_PRUNE - 1)); |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| return n_bits == 0 ? xd->tile_ctx->comp_ref0_cdf[av1_get_ref_pred_context( |
| xd, ref, num_total_refs)][ref] |
| : xd->tile_ctx->comp_ref1_cdf[av1_get_ref_pred_context( |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| xd, ref, num_total_refs)][bit_type][ref]; |
| #else |
| xd, ref, num_total_refs)][bit_type][ref - 1]; |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real blocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| static INLINE int get_tx_size_context(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const TX_SIZE max_tx_size = |
| max_txsize_rect_lookup[mbmi->sb_type[PLANE_TYPE_Y]]; |
| const int max_tx_wide = tx_size_wide[max_tx_size]; |
| const int max_tx_high = tx_size_high[max_tx_size]; |
| const int default_ctx[MAX_NUM_NEIGHBORS] = { |
| xd->above_txfm_context[0] >= max_tx_wide, |
| xd->left_txfm_context[0] >= max_tx_high |
| }; |
| |
| const int max_tx_threshold[MAX_NUM_NEIGHBORS] = { max_tx_wide, max_tx_high }; |
| |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| if (is_inter_block(neighbor, xd->tree_type)) { |
| const int block_size = neighbor->sb_type[PLANE_TYPE_Y]; |
| ctx += (block_size_wide[block_size] >= max_tx_threshold[i]); |
| } else { |
| ctx += default_ctx[i]; |
| } |
| } |
| } |
| |
| return ctx; |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_PRED_COMMON_H_ |